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Abstract. Isogeny based post-quantum cryptography is one of the most
recent addition to the family of quantum resistant cryptosystems. In
this paper we propose an efficient modular multiplication algorithm for
primes of the form p = 2 · 2a3b − 1 with b even, typically used in such
cryptosystem. Our modular multiplication algorithm exploits the spe-
cial structure present in such primes. We compare the efficiency of our
technique with Barrett reduction and Montgomery multiplication. Our
C implementation shows that our algorithm is approximately 3 times
faster than the normal Barrett reduction.
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1 Introduction

The rapid development in the field of quantum computing has increased the pos-
sibility of practical quantum computer arriving within a few decades [19]. Using
a powerful quantum computer, Shor’s [2] algorithm can factor integers and can
compute discrete logarithm in polynomial time. This has rendered cryptosystems
such as RSA and those using elliptic curve cryptography highly vulnerable.

Due to these developments, research in post-quantum cryptography has seen
a flurry of activity that resulted in many novel post-quantum cryptosystems.
Though the cryptosystems based on learning with errors or LWE has gained
the most interest, there exist other cryptosystems such as the McEliece cryp-
tosystem [20], cryptosystems based on isogeny between elliptic curves [1, 15], the
multivariate cryptosystem [21] etc. Many cryptographic schemes based on these
primitives have been proposed which are analogous to their classical counterparts
and hopefully will replace them in the near future.

A cryptosystem based on the computation of isogenies between elliptic curves
was first proposed by Anton Stolbunov [15]. The security of this cryptosys-
tem was based on the hardness of computing isogenies between ordinary elliptic



curves. The best known classical algorithm to solve this problem has exponen-
tial [13] complexity. But the work of Childs et al. [8] has shown that this problem
has sub-exponential complexity on a quantum computer. Also their system was
slow for practical purposes.

The isogeny based post quantum cryptosystem proposed by De Feo et al. [1]
uses supersingular elliptic curves instead of ordinary elliptic curves. The authors
in [1] have argued that the problem of computing isogenies between supersingular
elliptic curves is quantum secure. They have also shown that their cryptosystem
is many times faster than the previous system and offers post-quantum security
for practical parameter sizes.

2 Motivation

The isogeny based post-quantum cryptosystem proposed by De Feo et al. [1]
is based on the difficulty of computing isogenies between supersingular elliptic
curves. Computing isogenies and applying them to the points of elliptic curves
ultimately boils down to arithmetic operations in a finite field over which the
supersingular curve is defined. In isogeny based cryptography the prime p is of
the form p = f · 2a3b − 1 where f is a small number. Such a special structure
of the prime is essential for the scheme. Like many other cryptosystems, isogeny
based cryptosystem rely heavily on modular multiplication.
Montgomery multiplication [3] and Barrett reduction [7] are two ingenious meth-
ods to replace computationally costly divisions used in modular reduction with
additional multiplications, additions, bit shifts etc. These methods tackle the
costly modular multiplication quite efficiently and they can be applied for any
general prime. So they are unable to exploit any special structure of the prime
for even faster reduction.
Mersenne primes [5] and Pseudo-Mersenne primes [6] offer very fast reduction
due to their special structure. Also the NIST-curves [22] which are used in elliptic
curve cryptography frequently use fields over generalized Mersenne primes [4] for
the advantage of extremely fast modular reduction. Even though the primes we
discuss cannot be categorized as a Mersenne prime, generalized Mersenne prime
or Pseudo-Mersenne prime, the possibility of exploiting the special structure of
the prime for an efficient modular multiplication calculation is highly intriguing.
The parameters a and b for the prime p = 2 · 2a · 3b − 1 in the isogeny based
post-quantum protocol are chosen in such a way that log2(2

a) ≈ log2(3
b). For

example, the 771-bit prime p = 2 · 23863242− 1 is used in [1] for 128-bit security.

Our contribution. In this work we describe a fast modular multiplication
algorithm for the primes used in isogeny based post-quantum cryptosystems. Our
algorithm is inspired by the Barrett reduction [7] and leverages special structures
of the primes used in such cryptosystems. While there are several techniques for
performing efficient arithmetic in fields whose characteristic is a Mersenne prime
or a Pseudo-Mersenne prime [4], we are not aware of any techniques that could
accelerate modular arithmetic in finite fields of characteristic p = f · 2a3b − 1
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where f is a small number. In this paper we propose an efficient algorithm to
perform fast modular arithmetic with primes of the form p = 2 · 2a3b − 1 with
b even. Besides the new algorithm, we list a number of such primes for different
security levels. These primes are listed in Appendix C.

3 Mathematical Background

In this section we will briefly describe the isogeny based key exchange protocol
and then focus on efficient modular multiplication techniques. For a detailed
description of isogeny based key exchange interested readers may follow [1].

3.1 Isogenies of Elliptic curves

An isogeny ϕ : E1 → E2 is a basepoint preserving, i.e. ϕ(O) → O, morphism
between two elliptic curves E1 and E2 defined over Fq (Sec. III.4 in [14]). Two
elliptic curves are said to be isogenous if there exists an isogeny between them.
This is an equivalence relation and symmetry is given by the existence of a dual
isogeny. As mentioned in [1], an isogeny class is an equivalence class under the
above equivalence relation. Inside the same isogeny class the curves are either
all supersingular or all ordinary curves. The post-quantum key exchange scheme
by De Feo et al. in [1] uses supersingular curves.
In this key-exchange scheme the public parameters are a supersingular curve
E0 defined over a field Fp2 with p = f · 2a3b ± 1, and bases {Pa, Qa} and
{Pb, Qb} which generate the torsion groups E0[2

a] and E0[3
b] respectively. Alice

chooses ma, na ∈R Z/2aZ and computes the isogeny ϕa : E0 → Ea, Ea =
E0/⟨[ma]Pa+[na]Qa⟩. Alice also computes ϕa(Pb) and ϕa(Qb) under this isogeny
and sends Ea, ϕa(Pb), and ϕa(Qb) to Bob. Similarly Bob chooses mb, nb ∈R
Z/3bZ computes the isogeny ϕb : E0 → Eb, Eb = E0/⟨[mb]Pb + [nb]Qb⟩ and
sends Eb, ϕa(Pb), and ϕa(Qb) to Alice. After this Alice calculates the isogeny ϕ′

a :
Ea → Eab, Eab = Ea/⟨[ma]ϕb(Pa) + [na]ϕb(Qa)⟩ and similarly Bob calculates
ϕ′
b : Eb → Eba. Bob and Alice then use their common j-invariant j(Eab)=j(Eba)

as their shared key.
The difficulty of the key-exchange scheme is based on the hardness of computing
isogenies between supersingular elliptic curves. The authors in [1] have argued
that the complexity of the best known algorithm [18] for solving this problem
is 4
√
p using classical computers and 6

√
p using a quantum computer, where p is

the characteristic of the field over which the curves are defined (more details in
Section. 5 and 6 of [1]). The authors have described post quantum protocols for
zero knowledge proof, key-exchange and public key cryptosystem in their paper
[1]. Hash functions [17] and digital signature schemes [16] based on the isogenies
have also been proposed.
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Alice Bob

ma, na ∈R Z/2aZ
ϕa : E0 →

E0/⟨[ma]Pa + [na]Qa⟩

mb, nb ∈R Z/3bZ
ϕb : E0 →

E0/⟨[mb]Pb + [nb]Qb⟩

Send ϕa(Pb), ϕa(Qb)Ea

Send ϕb(Pa), ϕb(Qa)Eb

ϕ′
a : Ea →

Ea/⟨[ma]ϕb(Pa) +
[na]ϕb(Qa)⟩

Output : j(Eab)

ϕ′
b : Eb →

Eb/⟨[mb]ϕa(Pb) +
[nb]ϕa(Qb)⟩

Output : j(Eba)

Isogeny based key-exchange protocol

3.2 Efficient modular arithmetic

In this section we describe two famous algorithms for efficient modular reduc-
tions: the Barrett reduction, and the Montgomery reduction.

Barrett Reduction: Euclid’s division lemma tells us that for any two positive
integers a and b there exist q and r such that a = q · b+ r, r ∈ [0, b− 1]. Here
of course, a = r (mod b), but finding such q and r requires division of a by b.
There exist fast methods for division by small constants [10], but in general for
practical cryptographic settings, division is a computationally costly operation.
For constant divisors, Barrett’s reduction is a clever trick. it estimates 1/b to
substitute division by a few multiplications and bit shifts. The 1/b in Barrett
reduction is approximated as,

1/b =
(2k)/b

b · 2k/b
=

(2k)/b

2k
≈ x

2k

Usually the value of x is taken as x = ⌊2k/b⌋ where the parameter k depends on
a. The error e of the approximation of 1/b is e = 1/b− x/2k. Hence, the error
in approximating the quotient q is ae. As q ∈ Z+, for a correct result we require
that the error in approximating q is smaller than 1. This condition is satisfied
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when k = log2(a). The Barrett reduction algorithm is shown in Algorithm 1.

Input: Two numbers a and b, parameter k, x =
⌊2k
b

⌋
Output: a (mod b)

1 q ← (a× x) >> k;
2 r ← a− q × b;
3 if r ≥ b then
4 r ← r − b
5 end
6 return r

Algorithm 1: Barrett’s Reduction Algorithm

Montgomery Multiplication : Montgomery multiplication [3] is another
technique used to remove the necessity of performing modular reduction after
each multiplication of the field elements. To use Montgomery’s technique we need
a number r co-prime to the modulus p or equivalently r ·r′+p ·p′ = 1. The values
r′ and p′ can be calculated by the extended Euclidean algorithm [12]. Mont-
gomery multiplication first converts the operands a and b to the Montgomery
domain as aM = a · r (mod p), bM = b · r (mod p), the multiplication algorithm
described in Algorithm 2 ensures that the product also stays in the Montgomery
domain as aM × bM = cM (mod p) = a · b · r (mod p). Also the result of addi-
tion and subtraction between operands in the Montgomery domain stays in the
Montgomery domain. As the conversion to and from the Montgomery domain is
a costly procedure, this technique is useful where we need many multiplications,
additions or subtractions in close succession.

Input: Two numbers aM = a · r (mod p) and bM = b · r (mod p)
Output: cM = a · b · r (mod p)

1 t← aM · bM ;
2 cM ←

(
t+ (t · p′ (mod r)) · p)/r;

3 if cM ≥ p then
4 cM ← cM − p
5 end
6 return cM

Algorithm 2: Montogomery Multiplication
As mentioned before, the above two methods do not utilize the special struc-

ture of the primes for faster modular multiplication. In the next section we are
going to describe our modular multiplication algorithm which exploits the special
structure of the prime for efficient modular multiplication.

4 New Modular Multiplication Algorithm

In our method, the representation of field elements plays an important role in
the efficiency of the method. We represent a field element, let’s say A ∈ Fp,
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where p = 2 · 2a3b − 1, as

A = a1 · 2a3b + a2 · 2a/23b/2 + a3, a1 ∈ [0, 1], a2, a3 ∈ [0, 2a/23b/2) (1)

In the above representation we have assumed that a is even. However it is not
mandatory. If a is odd we can write p = 4 · 2a−13b − 1. This change in the value
of the cofactor (from 2 to 4) does not affect the performance of the algorithm.
During the course of our modular multiplication algorithm the only significance
of the value of the cofactor is to determine the value of the coefficient a1, where
we need to divide some numbers by the cofactor. As division by 4 is almost
as easy as division by 2 in binary representation, the change of value of the
cofactor from 2 to 4 has little impact on the performance. In case a is odd the
range of a1 will change to [0, 3]. Here we want to note that we could have written
p = 2a+13b − 1 instead of p = 4 · 2a−13b − 1 with the cofactor equal to one, both
of these representations of p have no major impact on the performance and can be
switched between one another trivially by simple mathematical manipulations.
Using the same argument as above we need b to be even else it will impact the
performance significantly, as division by 6 or 12 is not as easy as division by 2
or 4.
We note that this conversion from normal integer representation to this special
representation and vice versa is a costly procedure. But we explain at the end of
this section that this conversion and reconversion are one-time procedures that
we need to perform at the beginning and the end of the key-exchange algorithm.

4.1 Multiplication Algorithm
Let’s suppose we have two numbers A,B ∈ Fp as represented in Equation (1).
After multiplying them we get the result C as per the equation shown below:

C = a1b1 · 22a32b + (a1b2 + a2b1)2
3a/233b/2 + (a1b3 + a2b2 + a3b1)2

a3b

+(a2b3 + a3b2)2
a/23b/2 + a3b3. (2)

Since the prime p is of the form 2 · 2a3b − 1, we can replace 2a3b in Equation
(2) by 2−1(mod p). Hence a1b1 · 22a32b gets replaced by 0 or 2−2 (mod p) as
a1, b1 ∈ {0, 1} and a1b1 ∈ {0, 1}. Note that for a fixed prime we can precompute
the value of 2−2 (mod p) and use that for the above replacement in Equation
(2).

We can replace (a1b3 + a2b2 + a3b1)2
a3b as follows. If (a1b3 + a2b2 + a3b1) is

even, we can write (a1b3 + a2b2 + a3b1)2
a3b = (a1b3 + a2b2 + a3b1)/2 (mod p).

Otherwise we can write (a1b3 + a2b2 + a3b1)2
a3b = ((a1b3 + a2b2 + a3b1−1)/2)

(mod p)+ (a1b3 + a2b2 + a3b1) (mod 2) · 2a3b. Considering both the even and
odd cases we can write the following equation:

(a1b3 + a2b2 + a3b1)2
a3b

=⇒
(
⌊(a1b3 + a2b2 + a3b1)/2⌋

)
+
(
(a1b3 + a2b2 + a3b1) mod 2

)
2a3b.
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Similarly,(
a1b2 + a2b1

)
· 23a/233b/2

=⇒
(
⌊(a1b2 + a2b1)/2⌋

)
· 2a/23b/2 +

(
(a1b2 + a2b1) mod 2

)
· 2a/2−13b/2.

Rewriting Equation (2) by replacing the coefficients we get the following equa-
tion:
A×B =

(
2−2 (mod p)︸ ︷︷ ︸
replacing 22a32b

a1b1 + a3b3 + ((a1b2 + a2b1) (mod 2))2a/2−13b/2+

⌊(a1b3 + a2b2 + a3b1)/2)⌋︸ ︷︷ ︸
replacing (a1b3 + a2b2 + a3b1)2

a3b

)
+
(
⌊(a1b2 + a2b1)/2⌋︸ ︷︷ ︸

replacing
(a1b2 + a2b1)2

3a/233b/2

+(a2b3+a3b2)
)
2a/23b/2

+
(
(a1b3 + a2b2 + a3b1) (mod 2)

)
2a3b.

The algorithm is described in Algorithm 4. To compute the above expression
we have to perform four smaller multiplications: a2b2, a2b3, a3b2 a3b3, as the
other terms which are multiplied with a1, b1 ∈ {0, 1}.

Now we have the product as A×B = C = C1 ·2a3b + C2 ·2a/23b/2 + C3, but
in this expression the coefficients C2 and C3 lie in the range [0, 2a3b), which is
not consistent with our representation where C2 and C3 should lie in the range
[0, 2a/23b/2). Hence we need to split them further so that they fit according to
our representation scheme. This splitting involves divisions of the coefficients Ci

for i = 2 and 3 by 2a/23b/2. In the next section we are going to explain how we
can do this division efficiently.

4.2 Efficient Division

Our purpose is to divide a number Ci ∈ [0, 2a3b) by 2a/23b/2 and calculate the
quotient q and remainder r in an efficient way. We note that division by two is
a simple right shift operation. Hence we perform the division by 2a/23b/2 using
the steps shown below.

1. Extract the a/2 least significant bits of Ci and store them in a variable r1.
2. Right shift Ci by a/2 bits to obtain C ′

i.
3. Divide C ′

i by 3b/2 to get the quotient q and the remainder r2.

Hence we have Ci = q · 2a/23b/2 + (r2 · 2a/2 + r1) = q · 2a/23b/2 + r.
The division operation by 3b/2 in Step 3 is not as easy as the division by

2a/2. However since b is a fixed integer, the division can be performed using
multiplications similar to the Barrett reduction technique [7] as described in
Algorithm1 in Section 3.
Obtaining the quotients and remainders after dividing C2 and C3 by 2a/23b/2,
it is trivial to write C in the desired representation of a finite field element.
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Input: 2 numbers Q ∈ [0, 2a3b) and P = 2a/23b/2 and log2 Q ≈ 2 · log2 P .
P ′ = P/2a/2 precomputed x = 2k/P ′, k is as described in Section
3.2

Output: q and r such that Q = q · P + r
1 t← ⌊Q/2a/2⌋, s = Q (mod 2a/2);
2 q ← t× x >> k;
3 r ← t− P ′ × q;
4 r ← r × 2a/2 + s;
5 if r > P then
6 r ← r − P ;
7 q ← q + 1

8 end
9 return q, r

Algorithm 3: Our Division Algorithm
In the next part of this section we will compare the cost of our modular

reduction technique with the original Barrett reduction technique. Note that
the parameters a and b in the prime p = 2 · 2a · 3b − 1 are chosen in such a way
that log2(2

a) ≈ log2(3
b). For convenience let us take log2(2

a) ≈ log2(3
b) ≈ N .

So the prime is of size 2N bits.

Comparison with Barrett Reduction : In the Barrett reduction technique
in Algorithm 1 the result of an integer multiplication that is of size ≤ 4N bits is
reduced by a prime of size 2N bits. For correct computation k is of size 4N bits.
In this scenario we have to perform one 4N × 2N bit multiplication to compute
the quotient (line 1 in Algorithm 1) and one 2N ×2N bit multiplication to com-
pute the remainder (line 2 in Algorithm 1). Thus using a quadratic complexity
multiplier, the Barrett reduction technique has a cost of 12N2. In our modu-
lar reduction technique we perform divisions of two numbers C2 and C3 of size
≤ 2N by an N bit number 2a/23b/2. Since division by a power of two is almost
free, the cost of each division reduces to the cost of dividing a number of size
≤ 3N/2 bits by a N/2 bit number. To perform the divisions correctly we need
to fix the value of k to 3N/2. Hence each of the two division operations perform
a 3N/2 ×N bit multiplication and an N × N/2 bit multiplication (lines 2 and
3 in Algorithm 3). Thus using a quadratic complexity multiplier, our reduction
technique has a cost of 4N2.

Comparison with Montogomery multiplication : In this section we pro-
vide a comparison of the computational cost of Montgomery multiplication with
our technique. As defined in Section 4.2 our prime is of size 2 ·N bits. For exe-
cuting a single round of Montgomery multiplication we need two 2N × 2N bit
multiplications. And a relatively easier multiplication of t·p′ (mod r) where only
the last 2 ·N bits of the result are required. In our case we need only four N ×N
bit multiplications for the first part of our algorithm and two 3N/2×N bit and
N ×N/2 bit multiplications for the final reduction.
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Input: A,B ∈ Fp , A = a1 · 2a3b + a2 · 2(a/2)3(b/2) + a3 and
B = b1 · 2a3b + b2 · 2(a/2)3(b/2) + b3; 2−2 (mod p) precalculated

Output: C = A×B (mod p) ,C = C1 · 2a3b + C2 · 2(a/2)3(b/2) + C3

1 C1 = 0;C2 = 0;C3 = 0;
2 Multiply a2 × b2, a2 × b3, a3 × b2, a3 × b3; // ∈ [0, 2a3b)
3 Multiply

a1 × b1, a1 × b2, a1 × b3, b1 × a2 b1 × a3; // ∈ [0, 2a/23b/2)
4 C3 ← a1b1 · 2−2 (mod p) + a3b3;
5 C2 ← a2b3 + a3b2;
6 t← (a1b2 + a2b1) ; // replacing (a1b2 + a2b1)2

3a/233b/2

7 if isEven(t) then
8 C2 ← C2 + t/2
9 else

10 t← t− 1;
11 C2 ← C2 + t/2;
12 C3 ← C3 + 2a/2−13b/2

13 end
14 t← (a1b3 + a2b2 + a3b1) ; // replacing (a1b3 + a2b2 + a3b1)2

a3b

15 if isEven(t) then
16 C3 ← C3 + t/2;
17 C1 ← 0

18 else
19 t← t− 1;
20 C3 ← C3 + t/2;
21 C1 ← 1

22 end
/* End of first part C = C12

a3b + C22
a/23b/2 + C3, reduce

C2, C3 = O(2a3b) further by Barrett division */
23 q, r ← BarrettDivision(C3);
24 C3 ← r;
25 C2 ← C2 + q;
26 q, r ← BarrettDivision(C2);
27 C2 ← r;
28 C1 ← C1 + q;
29 if isEven(C1) then
30 C3 ← C3 + C1/2;
31 C1 ← 0

32 else
33 C3 ← C3 + (C1 − 1)/2;
34 C1 ← 1

35 end
36 if C3 overflows i.e C3 > 2a/23b/2, then C3 ← C3 − 2a/23b/2, C2 ← C2 + 1 if

C2 also overflows C1 ← C1 + 1 and repeat steps 29 to 35, this situation
occurs rarely and also then we have to perform this step at most once;

37 return (C1 · 2a3b + C2 · 2a/23b/2 + C3)
Algorithm 4: Multiplication Algorithm9



Here we want to mention that the two Barrett Divisions performed in the
reduction stage (23 and 26) of Algorithm 4 can be run in parallel, effectively
reducing the computing time by half.

C3

Barrett Division

Barrett Division

r C3

+C2

q

C2
r

q’
’

(a) Serial Execution

3

Barrett Division Barrett Division

C C
2

C3
r

q q’,r’

q=q−mod
r’=r’+q

q’=q’+1

yes no

r’=r’+q

r’>mod

q>mod

q’,r’ q’,r’

r’=r’−mod
q’=q’+1

yes
no

C2 2
C

(b) Parallel Execution

Fig. 1. Serial and Parallel execution for the reduction part of Algorithm 4

5 Software implementation

For a comparison of the effective speedup of our algorithm we implemented
our algorithm using C in a 32 bit multi-precision format for a security level
of 128 bits. We also implemented a normal Barrett reduction using the same
multi-precision format. The cost of multiplication when multiplying two input

Operation running time (µ s)

Barrett Reduction 50.547
Normal multiplication 67.097

Our Reduction 19.565
Our Multiplication 38.490

Table 1. Comparison of Our algorithm with normal Barrett reduction algorithm

numbers in both of the algorithms is expected to remain the same. Therefore we
used normal schoolbook multiplication. Upon running multiple instances of both
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the algorithms on a computer with CentOS on a core i5 CPU and averaging the
running times we obtain the results as given in Table 1. As we can see from the
table, we achieve an approximate 62% speed-up in reduction and 43% speed-up
for modular multiplication (multiplication + reduction) with our method against
the normal Barrett reduction. This result is consistent with our prediction in
Section 4.2.

6 Hardware implementation

user data

user_en

user_en

user_data _en

dout_en

 X

>> 1

>>N/2

>>N/2

N/2

N/2

N+

N ACC

ACC

d_out

d_in1

d_in2

carry_in

0

lsb lsb_rst

0 1

0

0 0

0 0

0

0

0

0

0

1

1

1 1

1

1

1

1

1

Fig. 2. Hardware Architecture

To check the performance of the new modular multiplication scheme, we have
designed a hardware architecture that performs modular multiplications follow-
ing Algorithm. 4. The arithmetic unit of the architecture consists of a combina-
tional multiplier of input size N/2 and an addition/subtraction circuit of input
size N. The operands are stored as arrays of N/2 bit words in a register file that
contains 52 registers in total and of which 16 registers were used to store the
pre-computed values as required by the algorithm 4 . Since the proposed algo-
rithm performs arithmetic operations on two operands, we kept two output ports
and one input port in the register file. During a multiplication, the multiplier
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performs multiplications of words and the adder helps to accumulate the result
in the accumulator register ACC. For performing multi-precision additions and
subtractions, only the lower half (i.e. the N/2 bits) of the addition/subtraction
circuit is used. The control signals are generated by a hierarchy of finite state ma-
chines for multi-precision addition, subtraction, shifting and multiplication. On
the top of the hierarchy, a finite state machine executes the operations required
for the modular multiplication operation.

We have compiled the hardware architecture using the Xilinx ISE 14.4 tool
targetting the Virtex 6 FPGA (xc6vcx240t-2ff784). For this evaluation, we chose
the field generated by the prime 2 ·23863242−1 (hence N is 385 bits). After place
and route operation, the architecture consumes 11, 924 registers and 12, 790 look-
up-tables, accounting to 3% and 8% of the resources available in the FPGA. The
operating frequency of the architecture is 31 MHz. One modular multiplication
(integer multiplication + modular reduction) takes 236 cycles and hence 7.61
µs.

7 Conclusion

We presented a fast modular multiplication algorithm that exploits the spe-
cial structure of primes of the form p = 2 · 2a3b − 1, used in isogeny based
post-quantum cryptography. To our knowledge there is no other algorithm that
exploits the structure of such primes for fast reduction. We have shown that
our algorithm is more efficient than Montgomery multiplication and Barrett re-
duction. We believe that with our algorithm will significantly decrease the time
required to calculate isogenies between supersingular elliptic curves, which will
strengthen the potential of isogeny based post-quantum cryptography as a prac-
tical post-quantum cryptosystem.
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A An Example

In this section we provide a small example of the method described in the paper.
Let a = 22,and b = 16 so that the prime is p = 2 · 2a · 3b− 1 = 361102068154367,
n = 2a · 3b = 180551034077184,

√
n = 13436928

A = 128965951662196 = 0 ∗ n + 9597874 ∗
√
n + 971124, and

B = 230338429880123 = 1 ∗ n + 3705266 ∗
√
n + 334009

After executing the first stage of the multiplication algorithm, we reached A ×
B = C = C1n + C2

√
n + C3 with C1 = 0, C2 = 68262390904455, C3 =

50417786320088. We have to reduce C2 and C3 further by dividing them using√
n. Using our Barrett division algorithm we found C3 = 3752181∗

√
n+380120,

we set the remainder 380120 to C3 and add the quotient with C2. We again
divide C2 with

√
n

C2 = 68262390904455 + 3752181 = 68262394656636
C2 = 5080208 ∗

√
n+5535612, we set the remainder to C2 and add the quotient

with C1 to get C1 = 5080208.
As C1 (mod 2) = 0,we add C1/2 = 2540104 to C3 to get C3 = 380120 +
2540104 = 2920224.
Here C3 is smaller than

√
n and there is no overflow. So we stop our algorithm

here. Finally, we get the result as C = 0 ∗ n + 5535612 ∗
√
n + 2920224 =

74381622800160, which is indeed A×B (mod p).

B Application in Isogeny based post-quantum key
exchange protocol

The isogeny based post-quantum protocol, described in Section 3 works by com-
puting and applying isogenies over supersingular elliptic curve groups. These op-
erations are fundamentally field arithmetic operations over the field Fp2 , where
the curve is defined.
Here we want to mention that modular addition and subtraction is also easy
in our representation. Let’s say we want to add two numbers A,B ∈ Fp to get
the sum C = (a1 + b1) · n + (a2 + b2) ·

√
n + (a3 + b3) = C1 · n + C2 ·

√
n+ c3

for convenience we have assumed n = 2a3b. Here again, similar to multiplication
algorithm, C1, C2 and C3 may not be consistent with our representation as given
in Equation (1). To make C consistent with our representation we follow steps
23 to 36 of Algorithm 4. But here we do not have to use the division Algorithm
3, only a subtraction by 2a/23b/2 will suffice. For subtraction we first negate a
number B ∈ Fp as −B = p− b = (1− b1) ·n+(

√
n−1− b1) ·

√
n+ (

√
n− 1− b3)

followed by an addition.
To apply our method to the isogeny based key exchange algorithm as mentioned
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in section 3.1, we changed the representation of the public parameters in the be-
ginning of the algorithm and executed the algorithm. In the last step we changed
the representation back to the original form and matched both Alice and Bob’s
j-invariant.
To further test the correctness of the algorithm we ran an instance of the un-
modified algorithm with same parameter set and numbers m and n. We verified
that both executions produce identical results.

C List of Primes

In this section we list values for a and b for security level of around 256 bit
and 512 bit. We found these values by a simple brute-force search using a C
implementation. As mentioned before the prime is p = 2 · 2a3b + k, with the
value of log2(3b) close to a. The primality has been tested using GMP [23] and
PARI/GP [24]. Also we should mention that this list is not exhaustive.

# a b k # a b k # a b k

1 738 514 +1 10 760 490 -1 19 814 538 -1
2 741 510 +1 11 764 484 -1 20 819 552 +1
3 747 468 +1 12 768 518 +1 21 826 528 +1
4 748 468 -1 13 772 478 -1 22 826 538 -1
5 750 482 -1 14 774 476 -1 23 829 458 +1
6 750 490 +1 15 778 484 +1 24 830 512 +1
7 752 542 -1 16 784 496 +1 25 832 470 +1
8 756 468 -1 17 792 480 +1 26 834 488 -1
9 758 514 -1 18 798 526 +1

Table 2. Table for primes with around 256 bit PQ security

# a b k # a b k
1 1538 946 +1 5 1556 958 +1
2 1541 982 +1 6 1569 966 +1
3 1550 1018 -1 7 1570 942 -1
4 1551 964 +1 8 1598 1034 +1

Table 3. Table for primes with around 512 bit PQ security
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