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Abstract—This work is premised on three assumptions: that
the semantics of certain actions may be learned prior to language,
that objects in attentive focus are likely to indicate the arguments
participating in that action, and that knowing such arguments
helps align linguistic attention on the relevant predicate (verb).
Using a computational model of dynamic attention, we present
an algorithm that clusters visual events into action classes in an
unsupervised manner using the Merge Neural Gas algorithm.
With few clusters, the model correlates to coarse concepts
such as come-closer, but with a finer granularity, it reveals
hierarchical substructure such as come-closer-one-object-static
and come-closer-both-moving. That the argument ordering is
non-commutative is discovered for actions such as chase or
come-closer-one-object-static. Knowing the arguments, and given
that noun-referent mappings that are easily learned, language
learning can now be constrained by considering only linguistic
expressions and actions that refer to the objects in perceptual
focus. We learn action schemas for linguistic units like “moving
towards” or “chase”, and validate our results by producing
output commentaries for 3D video.

I. INTRODUCTION

Computationally, learning noun-referent mappings from un-
supervised multimodal input is quite well understood [19],
[16], [15], but verbs present a more complex challenge [5],
[21]. It has been hypothesized that this is because of unavail-
ability of the grounded instance, as is available for nouns.
Yet verbs constitute the central structure that define how
an utterance is to be interpreted. Computational models that
attempt to learn verbs often involve manually encoding some
parts of an interaction space [14], [4], [12], [21].

In this work we take the view that the semantics of the
verb guides its syntax, sometimes known as the semantic
selection hypothesis [22]. Cognitively, this may imply that
early language learners may be acquiring some basic action
schemas along with their argument structure, in a pre-linguistic
stage [9]. Later, language labels get associated with these
available concepts. Computationally, the availability of the
argument structure makes it easy to constrain the search to
linguistic fragments involving the corresponding nominals.

We postulate that a key aspect of this process is the role
of perceptual attention [15], [1]. Attention constrains visual
search, but also helps limit the set of agents participating in the
action, which eventually generalizes to the argument structure.
However, there have been very few attempts that use attention
for learning language predicates or motion categories. Direct
human gaze was tracked in [1], who use the narrator’s gaze,

head and hand movements for grounded word acquisition, and
verbs such as “picking up” and “stapling” are associated with
the actions. However, the verbal concepts learned are difficult
to generalize into action schemas, applicable to new scenes or
situations. Top down attention guided by linguistic inputs is
used to identify objects in [17]. More recently, in [6] attentive
focus is used to learn labels for simple motion trajectories, but
this is also restricted to a particular visual domain.

A. From Concept to Label to Language

Here we wish to explore the possibility of learning transitive
verbs, along with their argument structure (involving two
agents), in an unsupervised manner, based on initial perceptual
input, and later multimodal input. We proceed in three stages:
concept learning, language association, and finally, validation
through language production in a novel context.

In the concept learning phase, the system induces a model
or schema for the action observed, from the perceptual input
alone. Such models, often called Image Schema in Cognitive
Linguistics [8] or Perceptual Schema in Experimental Psychol-
ogy [9], involve abstractions on low-level features extracted
from sensorimotor modalities (positions and velocities), as
well as the argument structure. These schemas are implicit, and
instances can only be verified against the schema, the structure
itself is not explicitly available. Constructing such action
templates has a long history in Computer vision [11], but
the emphasis has been on recognizing single-agent activities
(e.g. gestures), and less so on the interactions between agents.
Most of the work has used visual priors for recognition, and
only recently have unsupervised approaches become prevalent
[13], [6]. We restrict ourselves to two-object interactions,
using no priors, and our feature vectors are combinations of
relative position and velocity vectors of the objects (we use a
simple inner product). We use the Merge Neural Gas algorithm
[20], which maintains a temporal context against which event
similarity is measured for clustering purposes. By considering
different levels of cluster granularity in the unsupervised
learning process, we also learn subsets of coarse concepts as
finer action concepts, resulting in an action hierarchy which
may be thought of as a rudimentary ontology. However, since
the concepts are grounded, the model is considerably flexible,
unlike a predicate-inheritance based structure.

In the Label learning phase, the action semantics learned
are associated with a co-occurrent textual input. For this, we



Fig. 1. Attention-based selection of object pairs more likely to select for salience. (a) Qualitative analysis of two object interaction: relative positions and
relative velocity of second object along X & Y respectively (reference object is at origin and moving along x-axis). Cases when motion does not have a simple
English label are blank. Others labels are: Come Closer (CC), Move {Away,Opposite, Together} (MA,MO,MT), Chase (CH) and Go Around (GoA). (b).
Distribution observed when object pairs are chosen without using attention: More than half (58%) the cases are un-labelled motions (in red). (c) Distribution
with attentive focus: 76% of frames have labels.

use noun labels which are already associated with the scene
objects, and we identify nominals present in any sentence,
and consider only actions that involve these agents in the
scene. This constrains the association search, and we show that
simply maximizing the conditional probability is sufficient to
obtain relatively good fits, unlike more complex association
measures such as those used in Machine translation [2].

In the final Language production phase, we attempt to
generate linguistic predicates instantiated with arguments, to
describe novel 2-body motions. We take a 3D surveillance
video, in which the depth of a foreground object is indicated
by it’s image y-coordinate. We show that the motion features
of humans can be labelled using the action schemas learned.
However, since we have not learned the morphology or syntax,
we simply produce the verb head along with the arguments.

II. ROLE OF ATTENTIVE FOCUS

One of the key questions we ask in this paper is about
the relevance of attentive focus. It turns out that restricting
computation to attended events somehow results in a better
correlation with motions that are named in language (Fig.1).
Like other models that use attention to associate agents or
actions to language [1], [6], we use attentive focus to constrain
the region of visual salience, and thereby the constituents
participating in an action. We use a computational model of
dynamic visual attention [18] to identify agents possibly in
focus.

While the process we adopt for learning two-agent inter-
actions is completely unsupervised, in order to simplify the
visual processing, we use a 2D video 1 of blocks and circles
moving around, well known in psychology [7]. It is assumed
that the perceptual apparatus can segment coherently moving
objects as “wholes”, and the motions of individual objects can
be tracked.

Fig. 1 shows a qualitative analysis of 2-body motions
from the video (Fig. 2), distinguishing only the signs of
the relative position and velocities. We observe that certain
motion-position combinations have ready labels in English,
whereas others are more difficult to name. When computing

1The particular video, as well as the commentaries used, were developed
by Bridgitte Martin Hard of the Space, Time, and Action Research group at
Stanford University.

Fig. 2. Scenes from “Chase” Video: Three agents, “big square”, ‘small
square” and “circle” play and chase each other. Circle moves away from big
square (left) but big square comes close to the circle (right). Velocities are
shown with gray rays.

the relative motions for a pair of objects, we find that the
motions are much more likely to be labels when the object-
pair is in attentive focus (Fig.1(c), 76%), than not (Fig.1(b),
42%). In some sense, this is not very surprising, because we
give names to phenomena that are salient, those we attend to.

After learning the action schemas, we consider commen-
taries from thirteen users which are correlated with the actions
learned. Four “action”s are found to dominate the descriptions
of two agent interactions: Come Close(CC), Move Away(MA),
Chase1(A,B) Chase2(B,A). Chase1 and Chase2 differ in the
argument order, the others are commutative. One of our results
is that the set of clusters obtained by the learning system
has a high correlation with this set of actions, but using a
clustering model with a finer granularity, it reveals hierarchical
substructure such as come-closer-one-object-static and come-
closer-both-moving.

III. UNSUPERVISED CLUSTERING

In order to learn the actions, we use only two features -
abstractions defined on the raw motion data - as input. Both
features are dyadic (involving two bodies) and are based on
relative velocity and positions of the bodies - pos·velDiff:
(~xB −~xA) · (~vB −~vA) and pos·velSum: (~xB −~xA) · (~vB +~vA).
Here ‘·’ is the inner product and ~xA and ~vA refer to the unit
position and velocity vectors of object A, which is taken as
the reference object during feature vector computation. The
first feature captures the combination of relative position and
velocity, the second the relative position and magnitude.

These feature vectors are then clustered into categories in an
unsupervised manner based on a notion of distance between in-
dividuals. We use the Merge Neural Gas(MNG) algorithm[20]



Fig. 3. (Left) Delaunay triangulation of vectors in <n. (Right) Induced
Delaunay triangulation(dark edges) in high signal activity region(dark region)

for unsupervised learning which has been shown to be well-
suited for processing complex dynamic sequences as compared
to the other existing models for temporal data processing like
Temporal Kohonen map, Recursive SOM etc. This class of
temporal learning algorithms are more flexible with respect to
the state specifications and time history compared to HMMs
or VLMMs.

A. Merge Neural Gas algorithm

Neural gas algorithm [10] learns important topological rela-
tions in a given set of input vectors(signals) in an unsupervised
manner by means of a simple Hebb-like learning rule. It takes
a distribution of high-dimensional data, P(ξ) and returns a
densely connected network resembling the topology of the
input. The main steps of the algorithm are explained below.

A fixed number of random neurons are taken in <n, n being
the dimension of the signal space. For every signal ξi an edge
is introduced between the two closest neurons. The resulting
network would be a sub-graph of Delaunay triangulation of the
set of neurons (Fig. 3) with edges present in the regions of high
signal activity. The neurons that do not participate in this edge
growing process are called dead units. To make use of all the
neurons, adaptation should take place towards the signal area.
This is achieved in [10] by a Vector Quantization procedure
called Neural Gas. For every signal the neurons are adapted
towards the signal; the adaptation falls off exponentially as the
distance of neuron from the signal increases. This step makes
the dead units move towards the signal area and participate
in the edge growing process. An edge aging mechanism is
introduced, to remove the edges made obsolete by the neuron
movement, by setting an upper bound (edge aging parameter)
for the edge ages. The above steps are repeated over the signal
set till the adaptation or movement of neurons goes to zero
and the closely connected neurons lie in the signal activity
region.

For input feature vectors arriving from temporally connected
data, the information present in the time history is not captured
by the neural gas algorithm given above. Merge Neural Gas
algorithm [20] combines the neural gas mechanism with
explicit context representation which utilizes the temporal
ordering present in the feature vectors of the frames (signals).
We explain the changes made to the Neural Gas algorithm
to pass on the temporal information. A new vector, Context,
is defined for signals and neurons. The context vectors of
the neurons are initialized randomly along with the feature
vectors. In every iteration over the signal set, Context of the
current signal(cξ) is set as a linear combination of the feature

vector(fw) and context vector(cw) of the previous winner
neuron [cξ = (1 − β).fw + β.cw]. The context vector of the
first signal in the sequence is set to zero. The mixing factor,
β, decides the extent of context diversification (Here, β=0.55).
The distance function is also modified to accommodate context
influence(along with the usual feature vector) in the winner
neuron selection [di = (1 − α).dist(fξ, fi) + α.dist(cξ, ci)].
α determines the contribution of context distance. The knowl-
edge about the previous signals(or frames) in the sequence
is passed on using the context vector. The context and feature
vectors of the neurons are adapted towards current signal based
on their distance from the signal. The actual algorithm is in
[20].

The value of α is critical in utilizing the temporal infor-
mation present in the signals. A low value (α=0.02) is taken
initially and as the neurons are adapted, the feature vectors of
the neurons become more reliable and the entropy of the adap-
tation decreases (i.e., the movement of the neurons decreases).
α is then increased (α=0.6) to allow more context(temporal)
information to counteract the specialization of neurons only on
the feature vectors of the signals. And as entropy increases α is
reduced (α=0.4) to allow a fine tuning of the context influence
and of the ordering. It has been observed that during the final
stages, the context vector of the current signal converges to
an encoding of the feature vectors of the previous sequence
signals thus providing the temporal information needed at the
current step. Cluster labelling for the frames is obtained in the
final iteration of the algorithm using the winner neuron.

IV. CONCEPT ACQUISITION: CHASE VIDEO

Unsupervised clustering using the Merge Neural Gas algo-
rithm is used on the feature vectors from the video, corre-
sponding to object pairs that were in attentive focus around
the same time. Salient objects in a scene are ordered by a
computational model of bottom-up dynamic attention[18]. The
most salient object is determined for each frame, and other
objects that were salient within k frames before and after (we
use k = 10) are considered as attended simultaneously. Dyadic
feature vectors are computed for all object pairs in these 2k
frames.

Owing to the randomized nature of the algorithm, the
number of clusters varies from run to run. Clusters with less
than ten frames are not considered. When the aging parameter
was set to 30, the number of clusters came out to be four in
90% of the runs.

In order to validate these clusters with human concepts,
we needed to obtain human labels (Ground Truth) for the
actions. Taking the dominant actions from the commentary
(Come Close(CC), Move Away(MA), Chase1 or Chase2), we
asked three subjects (Male, Hindi-English / Telugu-English
bilinguals, Age-22, 20 and 30) to label the scenes in the video.
They were shown the video twice and in the third viewing they
were asked to speak out one of three action labels (CC, MA,
Chase) which was recorded. Given the label and the frame
when this was uttered, the actual boundaries and participating



TABLE I
Clustering Accuracy: THE ith ROW, jth COLUMN GIVES THE NUMBER OF

ith ACTION LABELS IN jth NG CLUSTER. % IS THE FRACTION OF
VECTORS OF AN ACTION CORRECTLY CLASSIFIED TO THE TOTAL VECTORS

OF THAT TYPE. TOTAL CLASSIFICATION ACCURACY(TCA) IS THE % OF
TOTAL VECTORS CORRECTLY CLASSIFIED .

C1 C2 C3 C4 Total % TCA
CC 399 6 10 29 444 90
MA 16 311 5 48 380 82 84

Chase 21 59 149 154 383 79

Fig. 4. Comparison of human and algorithm labelling of “come closer”
action over a time line(x-axis) of first 1500 frames.

objects were assigned by inspection. In case of disagreement,
we took the majority view.

To validate the clustering algorithm, we correlated the
clusters learned with these human labellings, frame by frame.
The distribution of human labels across the neural gas clusters
when number of clusters was four is given in Table I. Clusters
C1 and C2 had an overwhelming correlation with CC and
MA. C3 and C4 were found to have a majority correlation
with Chase. Inspecting the individual frames, it was seen that
the reference object is leader in one chase cluster and chaser in
the other, i.e. the argument order distinction - chase1(A,B) vs.
chase2(B,A) - is discovered autonomously by the algorithm.

Fig.4 and Fig.5 present results along a time line for Come-
Closer and Chase actions, each row reflects a different com-
bination of agents (small square, big square, circle).

A surprising result was found when by experimenting with
the edge aging parameter in the Merge Neural Gas algo-
rithm. The number of clusters increase as aging parameter
is decreased, and at one stage nine clusters were formed
(edge aging parameter=16). The Total Classification Accuracy
(TCA) was about 51 and we would have discarded the result,
but inspecting the frames revealed that the clusters may be
reflecting what appeared to be hierarchy of action types. Thus
cluster C1 from the earlier classification (majority correla-
tion=CC) was broken up into C1, C5, C6. C1 was found to
contain frames where both objects are moving towards each

Fig. 5. Comparison of human and algorithm labelling of “chase” over first
1500 frames. Because of our choice of reference object, frames in first row
are in C3 and second row are in C4.

TABLE II
Hierarchical clustering: USING A LARGER NUMBER OF CLUSTERS

REVEALS A SUB-CLASSIFICATION; E.G. FRAMES CLASSIFIED AS CC IN
TABLE I, ARE NOW IN C1, C5, orC6 , REFLECTING TWO CASES OF

CCone−object−static , OR ONE CASE OF CCboth−moving .

C1 C2 C3 C4 C5 C6 C7 C8

CC 201 3 9 20 189 21 1 0
MA 8 126 4 45 9 1 181 6

Chase 1 9 142 151 13 9 32 26

TABLE III
Relevance of Argument Order: VALUE AT ith ROW, jth COLUMN GIVES

NUMBER OF VECTORS THAT WERE ORIGINALLY IN CLUSTER i AND NOW
ASSIGNED TO CLUSTER j WHEN OBJECT ORDER WAS SWITCHED IN

DYADIC FEATURE VECTORS. NOTE THAT C3 AND C4, THE CLUSTERS
CORRESPONDING TO Chase, ARE FLIPPED.

C1 C2 C3 C4

C1 390 20 11 15
C2 9 323 15 29
C3 6 12 1 145
C4 22 48 152 9

other whereas C5 contains frames where the smaller object
is stationary and the other moves closer. Thus Come-Closer
and Move-Away appear to be sub-classified into 3 classes (two
one object static cases, and one both moving case). This ‘finer’
classification is given in Table II, but since we have no human
labellings at this fine level, we were not able to measure the
clustering accuracy more precisely.

A. Argument order in Action Schemas

In another experiment, we investigated the importance of
argument ordering by re-classifying the same frames, but
reversing the order of the objects used in the dyadic vector
computation. Earlier, if the larger object was arg1 or reference
object, now it became arg2 or non-reference object. If the
corresponding concept changed, especially if it flipped, this
would reflect a semantic necessity to preserve the argument
order; otherwise the arguments were commutative. Using
the coarser clusters, we observe that the argument order is
immaterial since the majority relation is unchanged (black) for
C1 and C2 (CC,MA respectively). On the other hand, both C3
and C4 (correlations with Chase) are flipped (Table III). Thus,
the fact that argument order is important for Chase is learned
implicitly within the action schema itself.

V. LANGUAGE ASSOCIATION

Having learned some action schemas, we now try to asso-
ciate these with language labels by associating the actions with
co-occurring narrative. Thirteen different commentaries on the
Chase video were used. The commentaries vary considerably
- e.g. for events in Fig.2, we have: “large square corners the
little circle”, “big square approaches little circle”, “little circle
is moving away from big square; and objects inside are moving
closer together”, “big block tries to go after little circle”, etc.
Learning the noun-object mappings in this type of input have
been reported elsewhere[12], and now we use this knowledge
to correlate linguistic and perceptual focus. Given two objects



TABLE IV
Association Results: MAXIMUM VALUES OF ASSOCIATION MEASURE FOR

N-GRAMS (ASSOCIATION VALUE IN PARENTHESIS).

Clusters Monograms Bigrams
Cluster1 Move(0.05) Move toward(0.11)
Cluster2 Come(0.06) Move away(0.10)
Cluster3 Chase(0.67) Chase around(0.30)
Cluster4 Chase(0.34) Chase after(0.14)

TABLE V
PHRASE WITH HIGHEST ASSOCIATION MEASURE FOR EACH CLUSTER

Clusters With Stemming Without Stemming
C1 move toward move towards
C2 move away moving away
C3 chase chasing
C4 chase chases

that are mentioned in a sentence, only those actions involving
these two objects were associated. As the number of objects
increase, object pairings rise as O(n2) and this is clearly
a computationally significant constraint. Since we are only
interested in concepts involving two agents, sentences not
referring to two nominals (or pronomial equivalents), are
eliminated. Very frequently occurring words (e.g. a, an, the)
are pruned. Assuming mutual exclusivity [15], we drop the
lexical labels for the agents participating in the action; the
mutual exclusivity principle holds that if an object has one
name, it should not have another. In our case, if the name is
that of the agent, it cannot be the name of the action as well.

In other work on perception-language association, complex
association measures adapted from Machine Translation are
often used [2]. However, given the excellent pruning already
achieved by aligning arguments, we were able to obtain
satisfactory results simply by maximizing the conditional
probability (P (pj/Ci) = P (Ci/pj)

P (Ci)
P (pj)) over the set of

phrase/n-gram pj co-occurring with the action schema Ci.
P(pj) is computed as the ratio of frequency of the n-gram
to the sum of frequencies of all n-grams in the commentary
file. For 3-grams and above P(pj) becomes unreliable because
of the sparse commentary. So we consider only monograms
and bigrams as labels for the clusters. We perform association
both with and without stemming of the commentary (Porter
stemming). We consider the coarser level clusters obtained
by the unsupervised algorithm. Association results are listed
in Table IV - note that English does not have one-word
classifications for CC or MA, and the corresponding clusters
show a stronger association with the 2-gram phrases. The best
linguistic labels assigned to the clusters are listed in Table V;
these constitute valid linguistic units of English describing the
majority mappings for each of these actions.

VI. LANGUAGE PRODUCTION: DESCRIBING UNSEEN 3D
VIDEO

Now that language labels, as well as action schemas (which
includes the argument structure) have been learned from a

Fig. 6. Test Video : Scenes from the 3D video

TABLE VI
DISTRIBUTION OF CHASE FRAMES(GROUND TRUTH) FROM THE 3D VIDEO

ACROSS THE NEURAL GAS CLUSTERS

C1 C2 C3 C4 Total Chase Frames %
Chase 13 15 496 253 777 96

multimodal stimulus (the Chase video), can these be used
to generate linguistic fragments describing similar situations?
Other 2D videos were tested for this, but here we report results
from a 3D video of three persons running around in a field
(Fig.6). In human classification of the action categories (into
one of CC, MA, Chase), the dominant predicate in the video,
(777 out of 991 frames), is Chase.

In the image processing stage, the system learns the back-
ground over the initial frames based on which it segments out
the foreground blobs. It is then able to track all the three agents
using the Meanshift algorithm. Assuming camera height near
eye level, the bottom-most point in each blob corresponds to
that agent’s contact with the ground, from which its depth can
be determined within some scaling error (157 frames with
extensive occlusion between agents were omitted). Given this
depth, one can solve for the lateral position - thus, we are able
to obtain, from a single view video, the (x, y) coordinates for
each agent in each frame, within a constant scale. Based on
this, the relative pose and motion parameters are computed
for each agent pair, and therefrom the features as outlined
earlier. Now these feature vectors are classified using the
action schemas (coarse clusters) already obtained from the
Chase video (2D). Each feature vector is assigned the same
label as its nearest neuron’s cluster. Table VI shows the result
for the predicate Chase; this has a 63% match with cluster 3
and 34% match with cluster 4, both of which had been earlier
associated with Chase. Remember these two clusters differ in
whether the larger object is the leader or the chaser. Using
the best-matching phrase from Table V, we can now generate
predicates with arguments and preserving ordering (Figure 7);
while these are not actual linguistic expressions, once the sys-
tem has learned some morphology and syntax, this association
can directly work with richer linguistic structures[8].

Fig. 7. Commentary generated by Algorithm: “Chase(Red,Green)”, “Move
Away(Red,Yellow)”, “Move Away(Green,Yellow)”



VII. DISCUSSION AND CONCLUSION

We have outlined how our unsupervised approach learns
action schemas of two-agent interactions, the arguments these
actions may take, and also the linguistic predicates for such ac-
tions. The image schematic nature of the clusters are validated
by producing commentary for a 3D video. The approach pro-
vided here underlines the role of concept argument structures
in aligning with linguistic expressions, and that of bottom-up
dynamic attention in pruning the visual input and in aligning
linguistic focus.

An important assumption underlying the methodology is
that the attention mechanism of our (computational) learner
is directed towards the same objects that the original narrators
had focused on. It is as if the listener knows, without explicitly
tracking their gaze, that the objects that are salient to her are
also those that were salient to the speaker. This assumption,
labeled the Perceptual Theory of Mind[12], may constitute an
important element in much discourse understanding.

While there is evidence that human infants are acquiring
some action models (often called perceptual schemas) in the
pre-linguistic stage, what are the computational imperatives
for such an approach? In the past, computational efforts
have often presented both language and visual inputs simul-
taneously [14], but these efforts required incorporating some
constraints manually in the form of structured elements. This
larger input space, including language as well as perception,
increases the dimensionality of search enormously. Another
reason why learning the perceptual schemata first may be
easier, is that it reduces the language learning problem to
one of associating tokens across modalities, a problem that
has been well addressed in machine translation[2]. Further,
knowing the arguments involved in an action schema severely
restricts the linguistic search as well.

Speculating further on the role of semantics in language
acquisition, one may suggest a mechanism for acquiring
grammatical elements, which are meaningless if not learned
together with their semantic pole [8]. Computationally, the
grounded semantics underlying syntactical structures may ac-
tually make it easier to learn the associated syntax as well.
That argument ordering may be important is highlighted in
situations involving irreversible predicates (e.g. X chases Y).
Other aspects such as particles “from” (participating here with
“move away”), and also morphological elements like “-er” e.g.
chaser, may be more tractably learned if combined with the
semantic pole underlying these structures.

Once a few basic concepts are learned, other concepts
can be learned without direct grounding, by using conceptual
blending mechanisms on the concept itself. These operations
are often triggered by linguistic cues, resulting in new con-
cepts, as well as their labels being learned together, in a
later stage. Indeed, the vast majority of our vocabularies are
learned later purely from the linguistic input [3]. But this
is only possible because of the grounded nature of the first
few concepts, without which these later concepts cannot be
grounded. Thus the perceptually grounded nature of the very

first concepts are crucial to subsequent compositions. The
linguistic aspects of these new structures may now be derived
from these conceptual underpinnings, although this of course
has been a matter of considerable debate.
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