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Abstract

Computational models of visual attention result in
considerable data compression by eliminating process-
ing on regions likely to be devoid of meaningful content.
While saliency maps in static images is indexed on im-
age region (pixels), psychovisual data indicates that in
dynamic scenes human attention is object driven and
localized motion is a significant determiner of object
conspicuity. We have introduced a confidence map,
which indicates the uncertainty in the position of the
moving objects incorporating the exponential loss of in-
formation as we move away from the fovea. We im-
prove the model further using a computational model
of visual attention based on perceptual grouping of ob-
jects with motion and computation of a motion saliency
map based on localized motion conspicuity of the ob-
jects. Behaviors exhibited in the system include atten-
tive focus on moving wholes, shifting focus in multiple
object motion, focus on objects moving contrary to the
majority motion. We also present experimental data
contrasting the model with human gaze tracking in a
simple visual task.

1. Introduction

Visual attention refers to the ability of vision sys-
tems to rapidly select the most salient data in a scene,
so as to drastically reduce the amount of visual in-
formation required in high level tasks such as motion
tracking, object recognition, etc. Computationally,
visual attention models are becoming widespread for
static scenes like image compression [11] and segmenta-
tion [12] and are also beginning to be used for dynamic
scenes [11].

The Itti-Koch model[8], [7] provides a computa-
tional model for bottom-up attention in static scenes.
Their attention model for static scenes combine in-
tensity, colour and orientation features to produce a

saliency map, which which simulates a computational
function resident either in LGN or in the V1 in mam-
malian brains. Finally, a Winner-Take-All (WTA) net-
work (located near the thalamic recticular nucleus)
identifies the actual scene location for fixation. A com-
parison of the saccades from an implementation of Itti’s
model and psychological data is shown in Figure 1.

2. Dynamic Vision

Visual attention in dynamic scenes differs from
static models of gaze fixation in several important
ways:

• Object fixation. While saliency maps in static im-
ages are indexed on image region (pixels), psycho-
visual data indicates that in dynamic scenes hu-
man attention is object driven, and localized mo-
tion is a significant determiner of object conspicu-
ity.

• Motion-based Perceptual Grouping. Objects with
similar motion are grouped together in a motion
gestalt.

• Confidence Decay. Parts of the scene gain saliency
based on input features such as motion, but other
parts that have not been visited for some time also
face a decay in the confidence of their confidence
estimate.

• Relative Motion. Motion salience is predicated on
object motion, but even among moving objects,
objects moving contrary to the flow gain salience.

• Winner Take All and Inhibition are present as in
static attentive mechanisms.

Traditional methods to incorporate motion informa-
tion have been to include another saliency map for mo-
tion called the motion saliency map using the optical
flow information, or similar ideas. In [11] optical flow



Figure 1. The painting ”The Unexpected Visitor”, by I.E. Repin (left) the gaze switches by a subject
as observed in the pioneering work of Yarbus [14], and gaze switches computational model(right).

is used to locate portions in the images where there
is motion and higher saliency is attached to those lo-
cations. Though simple to understand these methods
are not suited to handle scenes where there is a lot of
motion and so a mechanism is needed to prioritize the
moving objects.

This work proposes a computational model of vi-
sual attention that uses flow segmentation to capture
the perceptual grouping of objects. A motion saliency
features is computed based on the localized motion con-
spicuity of the objects (groups). This motion saliency
model coupled with a static saliency model constitutes
the basic saliency map for simulating the visual at-
tention of humans in dynamic scenes. Finally, a Confi-
dence map is used to update the confidence for the cur-
rent foveated region. We validate the behavior in the
system with experimental data contrasting the model
with human gaze tracking in a simple visual task.

Visual attention is mediated by the current task
(top-down) as well by features of the scene itself
(bottom-up). While the former aspects vary widely,
the latter results in relatively stable computational pro-
cess. While these numbers can vary widely, some ex-
periments [2]suggest that when viewing natural im-
ages, task-dependent factors accounted for 39% of
the eye movement related information, whereas task-
independent factors accounted for 61%.

In our bottom-up attention architecture for dynamic
scenes, we build on the existing static attention mod-
els by incorporating features for visual motion. Four
principles guide the Itti-Koch model: Visual attention
is based on multi-featured inputs; saliency of a region
is affected by the surrounding context; the saliency of
locations is represented by a saliency map, and the
Winner Take All and Inhibition of return are suitable
mechanisms to allow attention shifts[Figure 3].

2.1. Computational Model

To model the foveal image processing (exponential
fall of information from the fovea in human eye) in
human eye, we apply multiscale gaussian filtering to
the image. The foveal map is modeled as a a linear
combination of radially weighted smoothed (gaussian
convolved) images. Mathematically,

If (x, y) =
∑

i

fi(r) × Ii(x, y) (1)

where, If (., .) is the foveated image, fi is an exponential
function of r(=

√
x2 + y2) and Ii is image obtained by

convolving with the ith gaussian. Note that here the
gaussian obtained are not layers of gaussian pyramid
but we basically generate a pyramid of gaussian filters
of different sizes and ith smoothed image is obtained
by convolving the filter with (i−1)th smoothed image.

For foveating a color image, we first transform the
input image in RGB format to a suitable format YCrCb
which separates out the color component from intensity
Y. The color foveated image is obtained by foveating
the intensity image Y and superimposing the original
color information (CrCb).

Figure 2 pictorially describes the algorithm for
foveating an image.

2.2. Feature Maps for Static Images

First, a number of features (1 . . . j . . . n) are ex-
tracted from the scene by computing the so called
feature maps Fj . Such a map represents the image
of the scene, based on a well-defined feature, which
leads to a multi-featured representation of the scene.
In his implementation, Itti considered seven different
features which are computed from an RGB color image
and which belong to three main cues, namely intensity,
color, and orientation.
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Figure 2. Overview of Foveation Algorithm

• Intensity Feature: F1 = I = 0.3 ∗ R + 0.59 ∗ G +
0.11 ∗ B

• Two chromatic features based on the two color op-
ponency filtersR+G− and B+Y − where the yellow
signal is Y = R+G

2 . Such chromatic opponency ex-
ists in human visual cortex [6]. F2 = (R − G)/I,
F3 = (B−Y )/I. The normalization of the features
with I decouples hue from intensity.

• Four local orientation features (gabor filters) F4...7

according to the angles θ ∈ 0, 45, 90, 135.

2.3. Conspicuity Maps

In second step, each feature map is transformed in
its conspicuity map which highlights the parts of the
scene that strongly differ, according to a specific fea-
ture, from their surroundings. In biologically plausible
models [8], this is usually achieved by using a center-
surround-mechanism. Practically, this mechanism can
be implemented with a difference-of-Gaussians-filter,
DoG, which can be applied on feature maps to extract
local activities for each feature type. This method is
based on a multi-resolution representation of images.
For a feature j, a gaussian pyramid Pj is created by
progressively lowpass filtering and subsampling by fac-
tor 2 the feature map Fj , using a gaussian filter G:

Pj(0) = Fj (2)

Pj(i) =↓ (Pj(i − 1) ∗ G) (3)

where (*) refers to the spatial convolution operator
and ↓ refers to the downsampling operation. Center-
Surround is then implemented as the difference be-
tween fine (c for center) and coarse scales (s for
surround). Indeed, for a feature j (1 . . . j . . . n),
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Figure 3. Computational Model of Visual At-
tention

a set of intermediate multiscale conspicuity maps
Mj,k(1 . . . k . . . K) are computed according to the equa-
tion below, giving rise to (n*K) maps for n considered
features.

Mj,k = |Pj(ck) − Pj(sk)| (4)

where - is a cross-scale difference operator that first
interpolates the coarser scale to the finer one and then
carries out a pixel-by-pixel subtraction.

2.4. Motion

To model the effect of neural responses of the mo-
tion selective neurons based on the local motion, we
have used the optical flow models. Due to the aperture
problems and lack of enough texture, flow vectors ob-
tained using the Lucas Kanade approach [9] were very
poor.

One approach to obtain good flow vectors is to use
a set of image features that would enable object track-
ing. Since the stimulus (video) that we have used in
our experiments mainly contains triangles and quadri-
laterals hence the corners of these objects can be used
as a feature for tracking. This is also coherent with the
belief that to update our mental world model we also
rely on the boundary responses.



To extract the corners in the scene and for tracking
the selected set of corners in the scene, we have used the
pyramidal Lucas Kanade sparse feature tracking algo-
rithm [3]. The implementation of these routines are in-
cluded in OpenCV [5]. Flow vectors for non-boundary
points of the object are obtained by interpolating the
flow vectors at the corners.

Figure 4 shows an image (obtained by overlapping
2 consecutive frames) and the corresponding motion
feature map between these two frames.

(b)(a)

Figure 4. (a) 2 consecutive frames over-
lapped (b) motion saliency map

3. Perceptual Grouping

Perceptual grouping refers to the grouping of spa-
tial sensory information on the basis of features such
as form, shape etc. The concept of perceptual grouping
is inspired by psychophysical experiments. A neurolog-
ical basis is still non-existent. However, long range ex-
citatory connections in V1 and neural interactions are
believed to be involved in perceptual grouping. This
stage allows to integrate the space-based and object-
based theories of attention and hence can be used to
explain the observations supporting them. We further
believe that this process of grouping is strongly affected
by cognitive factors and hence forms a very crucial step
in scene understanding.

An obvious question that perceptual grouping raises
is what are the features that are involved in grouping.
Gestalt laws of perceptual organization tries to answer
this question, by a clearly enumerated set of principles
(see [13]). Since grouping of scene features into objects
is itself a very complicated task, hence in this work we
have focused on the ideas which we believe are relevant
to our video (see Experiment section for video details).
Since our video contains objects with different colors,
so clearly the principle of similarity (regions with simi-
lar features are grouped) and that of proximity (regions
that are close are grouped) based on features plays a
significant role. Another important gestalt principle
would be grouping in temporal domain based on mo-

tion similarity. But the randomness in object motion
allows us to safely assume that such grouping may not
have a significant effect.

We implement grouping of image parts by their sim-
ilarity of color features using and spatial proximity us-
ing a pyramidal segmentation algorithm, which looks at
neighbors of each pixel and group them based on their
similarity at each level of pyramid. Segments with size
below a certain threshold are dropped.

4. Bottom up saliency map

The low level feature processing decomposes the im-
age into feature maps. Now the question that rises is
how do we control a single attentional focus using mul-
tiple feature maps. To solve this problem, bottom-up
approaches of attention simply combine these feature
maps into a single map, which they call saliency map.
A saliency map is a scalar 2D map which indicates the
visual salience topographically. In this work, we have
simply taken saliency map to be the average of the
color, intensity, orientation and motion feature maps.
Figure 5 below shows some sample images and their
corresponding saliency maps.

(b)(a)

(b)(a)

Figure 5. (a)Images, (b)Saliency maps

5. Cognitive factors

Cognitive factors play a very important role in visual
attention by constraining attention to an “interesting”
subset of image locations. These factors primarily in-
clude object recognition, scene understanding and task
salience. Each of these is a very difficult problem in
itself. Scene understanding requires modeling the long



term memory and psychological factors while for com-
puting task salience, object relationships in context to
the task needs to be inferred.

In this work however, our choice of stimulus and the
task at hand makes it easier for us model these effects.
In particular, long term memory no longer needs to be
modeled and the search space for recognizing objects
in each frame is much smaller.

Another key task at this stage is object tracking
which corresponds to the pursuit human eye move-
ments.

5.1. Object tracking & Information map

Object tracking is achieved using the motion fea-
ture maps obtained in low level feature processing
stage. However rapidly changing speed and appear-
ance/disappearance of objects in the video have made
object tracking trickier than simply updating the ob-
ject positions using the low level motion features maps.
Between successive frames, we need to perform a search
in the neighborhood of the object to associate the flow
vector with a moving object. Search window size gives
a trade off between accuracy of event detections and
processing speed. Based on our observations on the ob-
ject size (10-12 pixels) and speed extremes (maximum
of 4-5 pixels per frame), we choose a search window
of 20×20 size. To simulate the effect of foveal pro-
cessing of motion features, the track features of only
objects within a certain threshold of foveal radius were
updated.

In our experiments, we observed that that when sub-
jects switch attention from one object to another, they
fixate on it for a few frames. We believe that during
this time they update their internal representation of
the object and its features. Fixating on moving objects
essentially correspond to pursuit of eye movements for
tracking. In this work, we modeled this behavior by en-
coding the tracking error obtained from foveal feature
update and finite optical flow window into an motion
error salience map. This confidence map highlights the
high tracking error regions of objects, which in turn
indicates how confident the system is about the ob-
ject’s position. (a low confidence value means a high
salience)

The tracking error (in object’s position) between
successive frames is obtained by calculating the por-
tion of overlap between the predicted position of the
object obtained using the motion feature map and the
current position obtained by perceptual grouping. We
associate a confidence term (or information term) with
each object that stores the overlap ratio. So a high
overlap ratio means that we have a higher confidence

on the position of the object and its features. Hence
lower confidence value implies higher salience for that
object.

For matching objects in successive frames, we say
that if overlap ratio is above a certain threshold then
they are instances of the same object and update the
track features. This allows the system to continuously
track all the objects in the scene. If however the object
is moving too fast or its features have not been updated
since last few frames then this would result in noisy
flow and reduction in the overlap region. This would in
turn result in a lower confidence value and hence higher
salience. Note that since the flow vectors are not very
accurate, the overlap ratio over time may have some
error peaks/oscillations. So we enforce that changes
in overlap ratio result only in a decrease in confidence
value. In general, the confidence value of the object
increase only when it falls within the foveal processing
region.

5.2. Task driven salience

As discussed before the task at hand plays a signif-
icant role in driving our attention. One way to model
the effect of task salience is to use a task relevance map
as suggested by Navalpakkam et al in [10].

In this work, the task that we have chosen does not
involve any semantic concepts/relations between ob-
jects and hence task relevance map is rather simplistic
and need not be explicitly modeled. Since the task in-
volved keeping a count of red triangles and squares,
dominant features relating to task were shape and
color, in particular red objects were more task relevant.
Thus for this task we we used a weighted R component
of image as the task salience map.

5.3. Selection of the point of Attention

Once the saliency Map has been computed the Win-
ner Take All (WTA) and Inhibition of Return are suit-
able mechanisms to imitate the eye movements and the
focus of attention. The WTA network implements a
parallel computation and iteratively converges to the
point of maximum saliency. Stochasticity can be added
so that quicker convergence can be achieved.

However, WTA always selects the point with maxi-
mum salience and hence will end up fixating the point
of attention at the most salient point forever. The
movement of the attention point (to capture other ar-
eas of interest i.e comparitive salience) is achieved by
inhibiting the salience of the object currently in focus,
as done in the work of Backer et al [1]. At each iteration
the saliency of the object being attended to is decayed,



thus eventually the objects not being attended to will
increase in saliency and take the focus of attention. To
make sure that saliency decay rate does not overshadow
the effect of tracking error salience, decay rate was set
a very small value.

6. Comparison with human subjects

To validate our model, we present here a compari-
son of gaze position predicted by our system on a syn-
thetic video against human gaze position recorded for
the same video. We generated a video containing sim-
ple geometric objects undering dynamic events (vary-
ing object speeds, varying shapes/colors) and recorded
the reaction of human gaze on these events. We then
compared the gaze positions predicted by our system
with the real gaze data obtained from the experiment.
Gaze data was collected at University of Rochester,
New York using eyelink2 gaze tracker. The visual scan-
paths over dynamic scenes in not included here since
scanpaths in general were rings (pursuit movements)
with a few diagonals (saccadic jumps) that did not re-
veal much information about the eye movements.

6.1. Experiment Details

The input video (stimulus for the experiment) con-
tains objects with simple geometric shapes (triangle
and squares) circling around in the screen with chang-
ing frequencies. Objects keep appearing and disappear-
ing throughout the video and change their colors and
their shapes (triangle or square). Figure 4-(a) shows
an overlapping sample snapshot of the video. The first
column in Table 1 shows the occurence of various events
in the video.

In the experiment, subjects were asked to concen-
trate specifically on the object shapes and colors as
they may change over time and that they would have
to keep a count of the objects with different shapes and
colors. Furthermore they were told that their perfor-
mance will be evaluated at the end of the video, by
asking questions, a majority of which are on the red
objects. The prior knowledge of the domain of ques-
tions were aimed to analyze the effect of task on feature
selection.

Table 1 shows the ground truth and compari-
son between response time (in frames) to different
video events recorded on the humans and those pre-
dicted by our system. First column lists the events
while other columns indicate the frames at which our
model/subject responded to the corresponding event
(Video frame rate = 15 fps). NIL in table 1 means
these events had no effect on the gaze. * indicates that

the gaze was already close to that location and no sac-
cadic eye movement was observed.

Events GT S1 S2 S3 Model
Ro appears 1 1 1 1 1
Ro appears 28 30 43 46 28
Ro appears 81 82 87 86 82
Yo appears 117 124 124 NIL 118
Yo appears 178 190 190 182 179
Color change -
Yellow to Red 240 241 242 247 246
Ro appears 316 317 317 320 317
Ro appears 352 354 354 354 353
Ro appears 485 487 487 490 490
Bo appears 574 580 580 576 575
Bo appears 612 NIL NIL NIL 613
Color change -
Blue to Red 871 872* 872* 878 871
Ro appears 908 913 913 911 909
Yo appears 981 989 989 985 982
Color change -
Yellow to Red 1134 NIL 1143 1137 1138

Table 1. Table showing events in the video
and the frame at which objects involved in
the event were attended, Ro, Yo and Bo are
Red, Yellow and Blue Object respectively, GT
is the ground Truth, S1, S2 and S3 are various
subjects.

7. Modifications and Extensions

In this section we show that including local motion
conspicuity cue leads to better gaze prediction results.
In Figure 7, the ball at the center moving in the oppo-
site direction of the others, is the most salient object
in the image. The motion of objects in the local neigh-
borhood clearly influence how conspicuous an object
is.
We have implemented a computational model of this
based on clustering of the image regions into regions
of similar motion. This can be done by clustering flow
vectors. However in many synthetic scenes flow vec-
tors are sparse because of the lack of sufficient texture
so alternatively we have used the Motion Segmentation
Algorithm [4] to get the connected components(motion
segments) as seen in Figure 6- (row 2). The saliency
of each object is determined by the local motion con-
spicuity of the object. A gaussian mixture model is
fitted into the data of the motion directions of the ob-
jects within a certain radius and the conspicuity of the



object is inversely proportional to the prior of the gaus-
sian to which it belongs, quantifying how rare the mo-
tion of the object is within the local group. One of the
possible measures satisfying the above properties is the
following:

C(O) = (1 − P (g))n; g = argmaxa
d(O,µa)

σa
(5)

Here n is a constant and d(a,p) gives the distance
between the a and p. Higher values of n biases the
saliency towards the less probable directions. In our
experiments [Figure 6], we have used a n value of 3.
The model has been tested on these examples and the
results are compared with the previous model[ Figure
7]. Finally the model is tested on some realistic scenes
[Figure 6]- (row 1). Though it is known that human
gaze is highly task driven, the gaze predicted by our
model is visually very acceptable demonstrating the
efficacy of our model.

8. Future Work

In this work, we extended the conventional Itti-Koch
model to handle dynamic scenes. We have successfully
implemented our model and showed its efficiency and
accuracy by comparing it with the gaze data obtained
from the experiments on human subjects. We then
take the model a step further by providing a notion
of comparing the saliency of the moving regions and
perceptual grouping. As shown in the example videos
this becomes important when there are many moving
objects in the scene.

One very important tool that we felt is needed while
working on the project was a a performance measure
to compare the performance of any model as against
humans as well as other computational models. We
believe that such a measure can possibly be formulated
using the Levenstein distance between the gaze vectors.

Using a model of visual attention we can impose an
ordering on the objects in the scene (according to their
saliency), thus we can use this approach for ranking
these objects in order to speed up the content based
image retrieval systems. Another possible extension
would be to integrate a perceptual database with this
model and use the model for object recognition.
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Figure 6. The results of running the motion saliency part on the image sequence of the walking
person is shown(Note: the attended point is computed taking into account both motion and static
saliency maps). The first row is the input and the red dot is the final attended location computed by
the algorithm. The second rows shows the regions of motion obtained by motion segmentation. The
third row shows the weights of the regions with higher weight representing higher saliency. Notice
the system is able to locate the region of motion accurately and assign higher salience to those
regions.

Figure 7. Left image represents a first three and the right one three intermediate frames of the video
overlayed on a single image. Here the center ball(initially at the left) at rest initially and starts to
move in a direction opposite to the other balls.The gaze point predicted by the new motion saliency
model and the previous model is shown as the cyan and green dot respectively (The line indicates
the saccadic eye movements). The new model’s gaze point fixate at the center ball most of the time,
while the previous model’s gaze jumps from one ball to another.
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