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Abstract—A number of computational models simulate the
grounded learning of units of language in the early learner. But
can this initial lexical knowledge be used to acquire complex
grammatical notions such as anaphora? We build on earlier
work, where we simulate a language learner with perceptual
attention and learn, in an unsupervised manner, a set of action
models along with the participating agents, and then the corre-
sponding linguistic units (verbs). We consider how this knowledge
may be used to bootstrap the learning of anaphora. Given an
input video with moving shapes, the system considers human
narratives that refer to this scene. The acquired perceptual
schemas and their arguments are mapped to the appropriate
verbs and nouns in the discourse. We first detect the synonyms
of the arguments as the repeated labels used in the constructions
referring to a known action scene. After ruling out the synonyms,
we find that the anaphora remain as units that are referring to
more than one grounded object. We show that both third-person
singular and plural anaphors and even a common reciprocal
anaphor (“each other”) can be discovered. Finally, we show
that in situations where the referent is missing altogether (zero
anaphora), certain correlations may also be inferred from the
regularities in the mapping between perceptual schemas and
language.

I. INTRODUCTION

The question of how a language learner may begin to com-
prehend, and eventually use, functional units of language, have
been investigated computationally to a large extent [23], [7].
However, the question of how domain-general processes may
help learning a grammar remains inadequately understood.
Indeed, the question of learn-ability of grammar constitutes
one of the most controversial areas in cognitive science. The
“argument from the poverty of the stimulus” (term coined by
Chomsky, 1980) [17] claims that any set of expressions of
language can be explained by many grammars, so that the
instances seen by the child are inadequate. This together with
Gold’s theorem [8] which shows that grammar is not learnable
from only correct examples of language use, has bolstered the
claims for nativism. Though the possibility that semantics may
guide the learning of linguistic categories has been proposed
[9], the mechanisms for this process are far from clear.

In this work we consider the computational feasibility of
discovering the grammatical structure of anaphora by an early
language learner, who has a few prior motivations and an
inventory of machine learning algorithms, which it applies
to discover regularities in its input, be it sensorimotor or
linguistic. We consider this agent in a multi-modal interaction
mode, where it is able to observe a scene that it can parse in

terms of sensorimotor models of actions. Later it is exposed
to linguistic utterances that refer to the scene. We show how
such a system may acquire, in an unsupervised manner: a
small set of a) perceptual action models, b) words in language
for these actions and the participants, and c) constructions
in language mapping these actions and participants. We then
analyze a limited set of linguistic descriptors of actions in a
2D video, and demonstrate how such a system may be able to
distinguish situations where a specific description is missing
of a participant in a current action, and eventually correlate
this missing description with the use of anaphora such as
“it”. We describe briefly these three inputs (they are described
further in section III), and then the algorithm that is proposed.
The subsequent sections detail the problem and the algorithm.
Finally, we present some results for how such an algorithm
works with this limited input.

Action models: While a number of grounded sensorimotor
systems attempt to learn models for objects[19], [23], [14],
models that consider actions, often use prior knowledge for
visual parsing of actions [5], [7], [22]. Here we consider how
an unsupervised process may acquire action structures from
simple videos by clustering frequently observed sequences of
motions. The model uses bottom-up (task-independent) dy-
namic attention [21] to identify the objects that are interacting.
This work extends the results of Satish and Mukerjee [20],
who consider two-agent spatial motions, and four cluster
emerge; these turn out to correspond to the action categories
[come closer], [move away], and two clusters corresponding to
[chase]. These learned models or image schemas are acquired
prior to language, and defined on the perceptual space. They
are not related (as yet) to the linguistic input, though the latter
may eventually come to modify it. The learned models include
the agents participating in the action, which constitutes the
cognitive arguments of the action.

Initial Vocabulary: Later, when our computational learner
encounters language, it associates perceptual objects under
attention to linguistic units in the co-occurring utterances. The
strongest associations are learned as names for these objects
(nouns) [14]. Next, it associates sentences uttered during
the cognitive focus and correlates them with these actions.
The strongest associations are learned as labels for actions
(verbs) [20]. The actions [come closer] and [move away] do
not have a very confident associations, but [chase] is strongly
associated with the word “chase”.
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Fig. 1. Multimodal input: 2D video “Chase”: Three shapes, [big-square],
[small-square] and [circle] interact playfully (velocities shown in gray). The
system computes the relative velocities and positions and uses these as features
to learn image schemas for some of the frequent actions. Later these action
models are mapped to linguistic constructions to discover how arguments are
being referred.

Linguistic Constructions: At this stage the system knows
the names of the participants (e.g. “big square”), as well as
the label for the action (e.g. “chase”). Among the utterances
co-occurrent with the action, it now computes the probability
of different orderings for the units (e.g. the ordering of
“chase”+grammatical-particle, [chased] and [chaser]). Here
[chased], [chaser] are used by us for clarity - the system
knows this distinction only based on which one of the two
objects it is primarily attending to. It determines that with high
probability, the construction for the action [chase] in English
is [chaser] chase+particle [chased].

The question we consider in this work is how an agent who
has come this far may now proceed to infer the presence of
anaphoric mechanisms in grammar. The main insight is that
while such a learner is aware of referentially stable mappings
as with functional units, it can now discover that there are
other units (such as pronominal anaphora) whose referents
are dynamically determined by the recent discourse. Finally,
we also consider how the learner may discover regularities
where a referent is completely missing, i.e., the case of zero
anaphora.

II. RECOGNIZING ANAPHORA

Linguistic utterances often contain anaphoric references to
antecedent objects in the discourse. There is considerable
interest in computational models for disambiguating anaphora
[13], but there seem to be less work on computational models
for how a language learner can discover the phenomena
of anaphora. While traditional syntactic theory proposes a
number of solutions to the anaphora problem, a consensus
seems to be emerging that modeling anaphora will require the
combination of syntactic, semantic and pragmatic models [12].
Further, some anaphors involve deictic elements which tran-
scend discourse. Rather than construct a grammar through
syntactic analysis, this approach posits the discovery of these
mechanism by correlating the linguistic expression with prior
semantic knowledge in terms of sensorimotor schemas.

Here, we propose that an early learner with the three
abilities given above may discover thatunlike regular lin-
guistic units which refer to referentially stable categories,
the anaphors are mapped to dynamic referents based on the
recent discourse. The resulting models are grounded in the
sensorimotor domain, and thus transcend syntax alone as a
mechanism for modeling anaphora.

In this elementary demonstration of how this may work,
we consider a simple 2D video. We analyze the motions of
the agents, and correlate it with the linguistic narratives gen-
erated for these actions by humans. Anaphoric pronouns are
frequently encountered in the narrations of the visual scene,
‘it’, and ‘them’ being the most popular in our experiments
(e.g. The big square is chasing it.). Reciprocal anaphora also
appear (e.g. They are hitting each other). Sometimes, an
argument may be missing altogether, a phenomenon known
as zero anaphora. This may occur due to the nature of spoken
utterances which may otherwise be considered ungrammatical
(and chases the two), or in conjoined phrases (The big square
moves out of the box and pushes the small square).

In this work, we consider how a learner with the capabilities
outlined above may use them to identify situations where
the linguistic text uses the same unit (e.g. the third person
pronominal ‘it’) to refer to multiple classes of objects. Such a
model, by providing a bottom-up approach to the modeling of
anaphora, may also resolve a number of issues in the current
computational approach to anaphora in NLP literature. Such
approaches are generally based on a variety of constraints
and preferences, which are applied in different orders. These
constraints are those discovered by the researchers, but how
the early learner comes to acquire these remains unknown. The
phenomenon of zero anaphora is even more complex, and has
been considered in Chinese[4], Japanese[15], Spanish[6], but
relatively little work is available in English. Here we propose a
different, semantically grounded, approach towards modeling
the phenomenon of anaphora.

(a) (b) (c)

Fig. 2. Computed bottom-up attention windows during the part of the action
[chase(big-square,small-square)]. The switching of attention between objects
signals interaction between these objects and leads to the construction of 2-
agent action templates or image schemas.

III. GROUNDED DISCOVERY OF ACTIONS

The need for grounding words in language in terms
of elements outside the symbolic system has been well-
established [19]. We propose to ground our models of actions
in the perceptual input, which is the major mode of infant
learning in the first year [16]. As in [20], our input is an
extremely simple 2D video with squares and circles moving
around (a version of the well-known Heider and Simmel
video [11]), and associated narratives1. We focus on two-agent
action schemas, using a computational model of bottom-up
attention [21] to identify actors in a specific interaction.

1This video was developed and the narratives collected by Bridgitte Martin
Hard and Barbara Tversky of the Space, Time, and Action Research group at
Stanford University [10].
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The learner considers pairs of objects attended to within a
short timespan, and computes two inner-product features for
a) the relative-velocity and relative position and b) the relative
pose and the sum of the velocities. The temporal histories
of these feature vectors are then clustered using the temporal
mining algorithm, Merge Neural Gas [24]. This work builds on
the results of [20], where four action clusters are discovered,
two of which correspond to [come-closer] and [move-away],
and two others to [chase]. Chase has two clusters because it is
asymmetric, and the primary attention may be on the chaser
(cluster 1) or on the chased (cluster 2). By computing the
feature vectors with the referents switched, the system can by
itself determine this alternation.

Next, the computational learner attempts to map linguis-
tic units to these clusters. For this, it first considers those
sentences which overlap temporally with the period when
the action clusters are active. One can align sentences with
objects in attentive focus to identify the names of objects
(nouns) [14], so at this point, we assume that the learner knows
these nouns, which are not considered as labels for verbs.
Extremely frequent words (e.g. the, an, etc) are also dropped
from consideration for mapping to actions. Using 1-, 2- and
3-word sequences from the text, the strongest associations for
the action clusters [come closer], [move away], and [chase]
emerge as ”move toward each”, “move away”, and “chase”.
Further, the learner is able to map certain linguistic construc-
tions associated with the verb. Thus, it discovers that in the
two clusters of chase, the sentences exhibit the construction
[chaser] chase+grammatical-marker [chased]
in 84% and 90% of the cases respectively. This construction
matches sentences such as “The square chased the circle” or
“The big square was chasing them”. In a minority of cases, it
also notes the construction [chased] chase+particle
by [chaser]. We assume our computational learner has
this level of competence before it attempts to detect substituted
arguments and missing arguments in linguistic structures.

IV. MAPS FOR ANAPHORA

In this work, we consider the problem of learning anaphora
under two differing assumptions:

a. Chase-only: Consider only the action clusters discovered
above. Since the linguistic forms for [move away] and
[come closer] are very diffuse, we are restricted primarily
to [chase]. However, we discover that [chase] also maps
to the word “follow”, and include sentences with “fol-
low”. Even then, our corpus of 35+15 sentences is very
small, so the frequencies of specific strings are quite low.

b. +Hit+Push In the second model, we assume that in
addition to [chase], we have action models and linguistic
mappings for the actions [hit] and [push], which occur
often in the commentary.

For the analysis, we consider the thirteen commentaries
collected from U. Stanford students [10], as well as twenty-
three collected from students at IIT Kanpur. These narratives
have a wide range of linguistic variation - e.g. here are some
sentences describing the sequence in figure 1:

a. Large square corners the little circle
b. Big square approaches little circle
c. Little square is moving away from the big square; and

objects inside are moving closer together
d. Big block tries to go after little circle.
As can be seen, there are many synonyms for the nouns used

in the narratives, and many perspectives highlighting different
aspects of the scene. For our purpose, we are considering only
those sentences where a target action (say [chase]) occurs
concurrently with a narrative that contains the target verb
(“chase”). Thus, the variations in perspective are not signifi-
cant, though the noun synonyms are. However, we find that
these synonyms can be detected, since the agent is aware of
the actual objects and their roles in the action. After ruling out
all such direct names, one observes that still many arguments
of actions are missing in the linguistic expression. However,
some terms, such as “it” or “they” may appear in the argument
positions - these terms do not correspond to a single object, but
appear to be applied to different objects in different situations.
This is the beginning of the discovery of an anaphora model.
The language learner categorizes the actions and with the
help of the grounded verb-models, determines the objects that
should act as the arguments of these actions. On matching this
with the given sentence, it is found that anaphoric references
are resolved. Furthermore, on many occasions, arguments are
completely missing. These will lead our computational learner
towards the phenomenon of zero anaphors.

A. Algorithm

Algorithm 1 A plausible approach towards the discovery of
anaphora.
Input :

• Set of timestamped action predicates Verb(arg1, arg2)
• Set of timestamped narrative sentences

Alignment :
1. Align co-occurrent predicates with sentences containing
the corresponding verb.
2. Increment the object associations against each language
phrases Li::

• For linguistic constructs of the form, 〈L1〉 verb 〈L2〉
map L1 to arg1 and L2 to arg2

• For constructs of the form, 〈L1〉 verb by 〈L2〉
map L1 to arg2 and L1 to arg1

3. For set of three agents, plus pairs (total 6 object-groups),
estimate the conditional probability P(object/language
phrase).
4. If the probability is close to 1, the language phrase is
likely to be a proper synonym of the corresponding object.
5. If some linguistic units are acting as a synonym for
multiple objects, their referent may not be fixed, but may
depend on some other aspect.

Step 5 in algorithm 1 gives the first indication of phenomena
such as anaphora. Furthermore, in many cases, some action
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arguments may be altogether missing. Such situations may
eventually suggest the presence of zero anaphora.

B. Working: Pronominal anaphora (“it”)

Consider the action shown in fig. 3, which is matched
with the image schemas acquired by the learner. In these
frames, only two objects are in attentive focus (fig. 2, the
big square ([BS]) and the small square ([SS]). Computing
the relative motion features between these two, the learner
finds that the motion sequence matches the image schema
for the action [chase], and given the order of the objects
in the feature computation, it obtains the predicate chase(
[BS], [SS]). Now, consider the sentence large square chases
little square, whose timestamps overlap this action predicate.
Matching the arguments with the linguistic construction, it is
able to associate “large square” with [BS] and ”little square”
with [SS]. Now, “big square” and “little square are already
known as labels for [BS] and [SS] [14], so “large square” is
associated with [BS] as a possible synonym map.

(a) (b) (c)

Fig. 3. Frame sequence in video concurrent with the utterances large square
chases little square, it is chasing the small box and chases little square. The
motions in the video matches the image schema [chase], with [BS] and [SS]
as the participants. These co-occurring language phrases are then mapped to
the predicate chase(BS,SS)

Another sentence aligned with the same action, it is chasing
the small box results in the associations “it”:[BS], and “small
box”:[SS]. Note that extremely frequent words like “the” are
dropped in this analysis. Similarly, in chases little block, there
is no referent at all for [BS], and “little block” is identified as
a possible synonym for [SS].

C. Estimating probabilities for Action maps

The computational results in the following make a number
of assumptions which are circular - in the sense that we assume
some things are known which may strictly become known only
later. For example, in [20], the mutual exclusivity principle
was used - i.e. if we have a name for concept 1, the same
word may not apply for concept 2. This was used to rule
out known nominals when looking for verbs. But though our
work is based on this, in the following, we shall be finding
lots of synonyms, which clearly violate mutual exclusivity.
Similarly, we will assume that frequent words like “the” are
being dropped, though strictly, this should also apply to words
like “it” which we are considering. Thus, the computations
shown next should be taken as indicative of the plausibility of
the approach, and not as a very formal implementation of the
algorithm.

Further, since the data is very limited, we shall be presenting
results under two differing assumptions: a) using only the
image schema for [chase], and b) assuming that similar image

schemas can be discovered for other motion verbs such as [hit]
and [push] (these have not been learned by us).

Furthermore, the chase action that is discovered by the
unsupervised learning only captures [chase] when the objects
are near each other as in fig. 2. An important chase sequence,
occurring towards the end of the video (fig. 4) happens where
the chaser is on the other side of the box. This sequence is
not detected by the image schema learnt by chase. Hence these
sentences are not aligned with the chase action and are dropped
in the computation under assumption 1.

(a) (b) (c)

Fig. 4. Frame sequence concurrent with the chase action involving the three
objects, towards the end of the video.

1) Assumption 1: Discourses mapping [chase] only: Of
the three classes of actions for which we have acquired image
schemas from the perceptual data, the narratives for [come-
closer] and [move-away] have widely varying constructions.
Focusing on the action chase, we discover that it maps to
two verbs in the linguistic descriptions: “chase”, and “fol-
low”. Constructions for both have the structure [chaser]
verb+particle [chased].

Using the mechanism illustrated in the example above, we
can formulate associations to discover synonyms (algorithm 1
step 4). There are only 36 + 9 sentences with “chase” +
“follow”, so the data for these arguments is rather sparse. After
ruling out phrases that have a sample size of one, cases where
the conditional probability of the entity given the phrase is 1,
is taken as a synonyms (names known earlier in italics):
BS : big square, square, big box, large square, big block,

bigger square
SS : little square, small square, little box
C : circle, little circle, ball, small circle
Now, after ruling out synonyms and infrequent phrases

(those occurring only once), we are left with three units -
“it”, “them” and “each other” (table 5). We were surprised
ourselves that all three instances found are anaphora. After
many such experiences, the system notices that these units
do not have a fixed referent, and hence it searches for other
regularities by which their referents can be identified. This may
be the start of a process which leads to the idea of anaphora.

2) Assumption 2: + [hit] + [push]: While we have no com-
putational models for actions such as [hit] and [push], there
is considerable evidence that these concepts are typically ac-
quired fairly early, and also reflected in early vocabularies [3].
In the analysis next (table 6), we assume the availability of
[hit] and [push] models in addition to [chase], and consider the
same analysis as above, but now on the larger set of sentences
encoding these actions. A few additional synonyms are learned
(“he” for [BS], “small box”, “little block” for [SS]). Also the
labels “square and circle”, and “little circle and square” are
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Phrase #
Phrase

BS
/Phrase

SS
/Phrase

C
/Phrase

BS&SS
/Phrase

SS&C
/Phrase

it 10 0.5 0.4 0.1 0 0
them 5 0 0 0 0.2 0.8
each
other

3 0 0 0 0.66 0.33

[missing] 15 0.46 0.2 0.33 0 0

Fig. 5. Conditional probability computation (with values in the column
headers) for the non-synonymical arguments in sentences mapping [chase]
action.

associated with the combination [SS&C], sentences mapping
multiple predicates where both were involved in a patient role.
These results may also be interpreted as a slightly advanced
stage for the learner, when it has acquired these additional
structures.

The remaining words are not assigned to any single entity
but as in the [chase]-only case, they can be applied to multiple
referents. To the learner, this implies that this aspect, that these
phrases can be applied to multiple referents, is stable, and not
an artifact related to a single action or context. The learner may
now attempt to discover other regularities in how the referents
for each of these words is assigned. This requires even greater
vocabulary, since the prior referent must also be known.

Phrase #
Phrase

BS
/Phrase

SS
/Phrase

C
/Phrase

BS&SS
/Phrase

SS&C
/Phrase

it 19 0.63 0.26 0.11 0
each
other

10 0 0 0 0.9 0.1

they 6 0 0 0 0.66 0.33
them 5 0 0 0 0.2 0.8
[missing] 29 0.59 0.24 0.17 0

Fig. 6. Conditional probability computation (with values in column headers)
for the arguments of [chase], [hit] and [push].

Focusing on the word “it”, and assuming a greater inventory
of verbs, we can consider sequences of sentences such as The
bigger square just went inside the box / Looks like it is chasing
the small square. The “it” in the second sentence is known to
our learner as [BS] based on the video parse, and one notes
how the agent in the previous sentence is also [BS]. In another
situation we have The large square was chasing the other
square / And it got away. Here the “it” refers to the most
recent antecedent, [SS] (though in other examples, it refers
to the parallel antecedent). In the chase-only case, we note
that “it” refers to the immediately previous referent in 6/10
situations. Two cases involve plural vs single disambiguation:
e.g. Big square is chasing them / They outrun it, and one
case involves parallel reference, e.g. Now the big square is
hitting the small square / It has hit it again (in fact, unlike
our learner, the reader may have difficulty disambiguate the
“it”s here). While the referent identification pattern isn’t very

clear, the learner realizes that “it” at least refers to some earlier
referent in the discourse.

Further, even reciprocal anaphors such as “each other” can
be recognized since sentences such as they hit each other
overlap with multiple predicates with switched arguments
(hit([BS],[SS]) and hit([SS],[BS])). Beyond this little domain,
as our learner is exposed to thousands of linguistic fragments
every day, these regularities are likely to get reinforced.

Finally, considering the cases of missing arguments, there
are two cues available to the early learner: a) that the relevant
action involves two arguments, but fewer are available in
the discourse, and b) that the missing argument refers to an
antecedent in the discourse. In English, zero anaphora is a very
common phenomenon. Even in our very small corpus, there
are 570 agents, of which 99 are zero anaphors. Clearly this
is a sufficiently high probability phenomenon which deserves
the attention of the early learner. Once the absent argument is
observed, it can be associated with the appropriate argument.
Note that since this substitution is occurring at the semantic
level and not in the syntax, only antecedents matching the
activity will be considered. Estimating the probabilities in
terms of frequencies even for this very small dataset, reveals
that of the 99 zero anaphors, 96 refer to the most recent
agent argument, often coming as a series e.g. big square says
“uh uh, don’t do that” / pushes little square around / pushes
little square around again/ chases little square. Thus, the most
recent argument may emerge as a dominant reference pattern
for zero anaphora. Also, we note how considerable knowledge
beyond syntax is involved in the remaining situations e.g. Door
is shut/ Went into the corner.

V. CONCLUSION

We have outlined how an unsupervised approach correlating
prior sensorimotor knowledge with linguistic structures, might
be used to eventually learn complex aspects of grammar such
as anaphora. Here, the learner first acquires an inventory
of sensorimotor image schemas that model commonly seen
actions. These schemas include not only symbolic aspects
such as the list of agents involved in the action, location,
manner, but also the subsymbolic aspects such as the nature
of the motion. Focusing on the action arguments, which are
apparent in the perceptual model, we show how their absence
in the linguistic expression can be detected. Arguments that
are not mentioned by a direct name are shown to have high
correlation with units such as the third person pronominal “it”,
the accusative “them”, and also the reciprocal anaphora “each
other”. Also, we highlight many cases of zero anaphora, and
show how these may also be inferred, most commonly as the
most recent agent in the scene.

This work is of course, merely a start. While some of the
action models, e.g. [chase], have been instantiated in earlier
work, that model covers only a limited range of the set of
actions covered by “chase” in English. Also, it is by no means
clear that other action models needed for such a step can be
similarly learned. However, there is considerable work that
hints at the infants being able to use perceptual cues to learn
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the base model of many motion primitives of this nature [16].
Also, the demonstration system is based on a simple 2D video.

A second lacuna is the necessity that the perceptual input
be available to the agent in the immediate context. This is
perhaps needed for the very earliest learners who are our
focus here. However, for more mature speakers, anaphora is
handled mentally, in terms of the context created by previous
discourses. While we do not explicitly consider this situation,
it may be argued that the image schemas invoked here by
direct perception, are actually capable of being simulated, and
thus the same schemas may be activated during comprehension
of symbolic structures. This also provides a mechanism for
modeling the cognitive structures during discourse comprehen-
sion, and perhaps the same phenomenon of missing arguments
would be detected there also. Thus, once the mechanisms
of anaphora is grasped in a grounded manner, most likely
through some degree of multimodal input, the purely linguistic
phenomenon, and other abstractions leading from it, may also
be enabled.

Although this demonstration is rather limited, it does high-
light several points. First, it underscores the role of concept
argument structures in aligning with linguistic expressions. It
provides some evidence for the position that some aspects
of semantics may be ontologically prior to syntax, at least
for human-like learning processes. Of course, once language
is acquired it modifies these early semantic structures in
profound ways that we do not begin to consider here.

Secondly, it addresses the very vexed question of learning
grammar from domain-general capabilities. While a computa-
tional demonstration such as this cannot provide full answers,
certainly it raises a very plausible mechanism, and attempts to
learn some complex grammatical constructs such as anaphora.

Finally, it addresses some of the issues related to learning
language from shared perception, such as the radical transla-
tion argument highlighted by Quine’s gavagai example [18],
and instantiates a possibility, first highlighted by [2], that
dynamic attention may prune the visual input and align with
linguistic focus.

For all humans, the vast majority of our vocabularies are
learned later purely from the linguistic input [1]. But this
is only possible because of the grounded nature of the first
few concepts, without which these later concepts cannot be
grounded. Thus the perceptually grounded nature of the very
first concepts are crucial to subsequent compositions. This
paper takes the argument one step further by suggesting that
this perceptual grounding may also be key to learning of other
grammatical phenomena such as anaphora.

The demonstration here clearly opens many more questions
than it answers, but the purpose of this paper is to provide
an initial argument for a semantically-grounded approach to
discovering grammar. The intent is to argue that this line of
investigation may be worth pursuing, and to provide a straw
model where a number of questions can be asked. It will take
considerable work before we know whether such an approach
would scale for other types of anaphora related phenomenon,
and if so, for what kinds of input, and if at all these reflect

models that are consistent with infant learning modalities.
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