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Abstract. Computational models of grounded language learning have
been based on the premise that words and concepts are learned simul-
taneously. Given the mounting cognitive evidence for concept formation
in infants, we argue that the availability of pre-lexical concepts (learned
from image sequences) leads to considerable computational efficiency in
word acquisition. Key to the process is a model of bottom-up visual at-
tention in dynamic scenes. Background learning and foreground segmen-
tation is used to generate robust tracking and detect occlusion events.
Trajectories are clustered to obtain motion event concepts. The object
concepts (image schemas) are abstracted from the combined appearance
and motion data. The set of acquired concepts under visual attentive
focus are then correlated with contemporaneous commentary to learn
the grounded semantics of words and multi-word phrasal concatenations
from the narrative. We demonstrate that even based on a mere half hour
of video (of a scene involving many objects and actvities), a number of
rudimentary concepts can be discovered. When these concepts are as-
sociated with unedited English commentary, we find that several words
emerge - approximately half the identified concepts from the video are
associated with the correct concepts. Thus, the computational model
reflects the beginning of language comprehension, based on attentional
parsing of the visual data. Finally, the emergence of multi-word phrasal
concatenations, a precursor to syntax, is observed where they are more
salient referents than single words.

1 Conceptual Spaces and Linguistic Labels

A traditional view of cognition holds that the concepts are declarative, amodal
and conscious - perceptual abstractions are procedural schemas that reflect im-
portant cognitive skills, but do not qualify as concepts [1]. In this late-conceptualization
view, concepts underlying language do not arise until the end of the sensorimo-
tor stage (about one and a half years), roughly the same time as language itself.



However, mounting evidence for infant skills in categorization and event struc-
turing has challenged this position leading to what may be called the Perceptual-
conceptualization view: that processes of perceptual abstraction lead directly to
symbolic structures. (see debates following the lead articles [2–4]).

Computationally, a fallout of the late-conceptualization position is that con-
cepts and linguistic tokens must be learned simultaneously. Here the computa-
tional task involves simultaneously learning the concepts and their associations
[5, 6]. This ignores any abstractions that may have formed over months of per-
ceptual interaction and concepts are learned ab initio the moment linguistic
tokens begin to appear. On a naive view, the perceptual-conceptualization po-
sition, where some degree of language-independent concept formation occurs in
the pre-lexical stage, should be easier since these concepts are already available
and they only have to be associated with the linguistic tokens. This approach
also ties in with cognitive linguistics, where language is viewed as part of an
embodied cognitive process, a mechanism for expressing (and transferring) cat-
egories acquired from sensory experience [7] rather than a purely formal symbol
manipulation system.

In this work, we consider this debate in a computational perspective by sim-
ulating pre-lexical concept learning from complex natural images, followed by
a very rudimentary model for associating these concepts with words from a
word-separated language commentary. First, we seek to determine if a cogni-
tively motivated model of visual cognition is competent to form concepts from
complex real-life image data in the pre-lexical stage. Second, we explore if the
availability of such concepts make it any easier to acquire language based on
contemporaneous image sequences and word-segmented-textual descriptions.

The main difficulty in this process - which is also one of the traditional
objections to perceptual symbols - is how to identify which part of a scene is
relevant to the concept [8] - e.g. in the action of pouring milk from a jug, is
it the colour of the jug that is relevant? We posit bottom-up visual attention
as a mechanism for determining visual saliency, and show how this results in
significant pruning of the possible concepts that can be associated with language
labels. We use a computational model of dynamic visual attention [9, 10] to
compute the saliency distribution over the image space.

1.1 Developmental Models of Perception

Consider the traffic scene of figure 1, say, with the complex interactions between
vehicles, pedestrians, animals, bicycles, etc. How is the system to make sense
of this complex domain? We feel that a developmentally motivated approach,
focusing on the capabilities that an infant brings to bear on such a task, may be
relevant.

Around the age of six months [11], infants are seen to observe the background
for some time before beginning to pay attention to figure objects (foreground).
This corresponds to well-known techniques in visual surveillance for learning a
background model in order to identify and track the foreground objects. This



(a) (b) (c)

Fig. 1. Traffic Scene input. Multiple moving objects with uncalibrated camera: (a)
Frame 50: White car moving from right to left (8 objects); (b) Frame 70: white car
overlapping rickshaw; (c) Frame 539 : truck moving from right to left. Note that the
occluded objects are also being tracked. Object shapes and trajectories are analyzed to
abstract agent concepts, which are then associated with an unaltered textual narrative.

together with the occlusion behavior which has been widely studied in develop-
mental literature, provides some evidence for the initial capabilities that infants
may be bringing to the task of constructing structures in the perceptual space.

A key component of this process is a model of visual attention. For this we use
an extension to dynamic images of the Itti-Koch model for static scenes [9]. This
model is key to identifying the objects and actions in a scene, and eventually, in
associating them with linguistic labels [12].

Another aspect of our work is the role of occlusion. In computer vision, occlu-
sion is often viewed as an obstacle to be overcome. Increasingly, developmental
models of perception seem to suggest that occlusion is one of the most salient
aspects of a scene that an infant pays attention to from very early on. In our
work, we have had some reasonable success in modeling interaction events be-
tween objects by using occlusion sequences as part of the visual signature for
these events. An overview of the system can be seen in Figure 2.

Our approach differs from earlier computational work on grounded language
acquisition. We are not limited to learning static features such as object shape
[6, 13]. Other computational models either use simplified line drawing anima-
tions [5], or assume pre-defined force dynamics primitives based on which higher
constructs are learned through observation [14]. The emphasis in social models
of grounded learning is on evolving a lexicon via interaction games [15]. The
attention-based approach of Yu and Ballard [12] is very close in spirit to our
model, except that where as they identify objects in focus by actually tracking
the speaker’s gaze, we use a synthetic attention model.

Although the learner is observing scenes of considerable visual complexity
- more than ten objects are often active simultaneously, we do not use camera
calibration or obtain any 3D motions - all imagery abstractions are computed
on the image plane alone. We also use no visual priors for the scene, nor any
linguistic priors for the language elements, and show that attentional focus may
be sufficient to associate actions and objects with words in textual narratives by



Fig. 2. System overview. Multiple targets are tracked in the input image sequence, and
object shape templates, trajectories, and occlusions are mined to obtain appearance
models and actions. These constitute the class of visual concepts. Oral commentaries
acquired synchronously with the image sequence are now associated with the images.
The association of a visual concept (concerning a certain object) to a language label
(single or multi-word phrase) is computed as a function of the probability that the
object is in attentive focus.

adult observers. Some samples of the commentary are shown in table 1); these
are used as is without any simplification.

2 Object Detection, Tracking and Modeling

In the first phase of the work, concepts are built up from the image sequences.
Each object instance is a space-time manifold characterized by the time in-
dexed set of appearances - a collection of position (XY ) and corresponding

color (RGB) vectors along with the centroid-trajectory {c(t)}t
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e ). This object model encodes both

its appearance and behavior and constitutes part of the cognitive percept or
perceptual schema for the object.

Object models are acquired based on perceptual units mediated by atten-
tive processes. Connected pixels moving in coherent motion are assumed to be
objects, and occlusions between objects are handled. The visual input consists



Table 1. Sample Commentaries showing frame numbers spanned by each sentence.
Note the diversity in the focus.

Frame Interval Narrator #1

1 - 67 car left to right
68 - 111 white car right to left
112 - 159 one jeep right to left
160 - 209 bike going right to left
210 - 312 cycle left to right
313 - 508 person coming very slowly from the right
509 - 559 truck coming right to left

Frame Interval Narrator #2

1 - 67 rickshaw moving down-wards
68 - 142 car moving and another tata Sumo seen
143 - 205 motor bike seen
206 - 247 person seen crossing the road
248 - 362 motorcycle right to left
363 - 432 person taking his cycle and walking
433 - 590 motorcycle, lorry and auto moving

Frame Interval Narrator #3

1 - 47 car from left to right
48 - 94 cycle from left to right
95 - 138 car from left to right
139 - 163 person is crossing the road
164 - 217 bike is moving from left to right
218 - 310 cycle from left to right
311 - 364 bike is moving from the right side to the left
365 - 421 cycle entering from the left of the screen
422 - 524 bike from right to left
525 - 550 truck moving from right to left

of traffic scenes with cars, people, bicycles, and vehicles - a total of 367 objects
in 10 categories, captured with a static camera. In constructing models for each
object, we use only image data; no 3D motions based on calibration data are
used.

Objects are identified as foreground regions based on one of two kinds of
evidence: first, as regions of change with respect to a learned background model
[16]; and second, as regions exhibiting motion [17]. The background model is
learned as a pixel-wise mixture of Gaussians only for those pixels which exhibit
no image motion. Foreground blobs are associated with an object based on its
motion-predicted support region. The objects are further localized by iterative
centroid updates [18]. After all objects are localized, object-blob associations
are re-computed and object models are updated only for those objects which are
unoccluded by others.



2.1 Object Categorization

We perform unsupervised object categorization using the appearance (shape)
and trajectory features, constituting a 3-manifold in image-space × time for
each object. The shape features (dispersedness, area and aspect ratio) and the
trajectory data of each discovered object are clustered by agglomerative hier-
archical clustering [18]. We discover a total of 376 objects categorized into 19
different classes, of which several are infrequent outliers and a few appear due
to misidentification of merged blobs and other tracking errors. Owing to the rel-
ative infrequency in 9 such classes, we remove them from the present study. The
remaining ten concepts are then taken and the perceptual schema corresponding
to these are used for associative language learning: “ man ” (130 out of 376 or
34.57%), “ tempo ” (4.78%), “ bus ” (0.80%), “ truck ” (0.27%, one instance),
“ tractor ” (0.80%), “ car ” (4.79%), “motorbike ” (14.63%), “ cycle ”
(11.70%), “ rickshaw (6.65%)” and “ cow ” (4.52%).

The simplest model of agent behavior constitutes a clustering in the space of
the trajectories, modeled in terms of the temporally ordered centroids. Trajec-
tories are scaled onto time intervals of equal length on which we learn a mixture
of Gaussians. The four major trajectory categories obtained by unsupervised
trajectory clustering are left to right (77 out of 376 or 20.48%), right to
left (20.21%), from-bottom-turn-left (1.33%) and u-turn (3.99%). The
infrequent categories as well as the outliers are removed from the analysis. The
final set of concepts then include ten categories of objects, and four categories
of behaviors - thus the set of concepts Γ = {γr}nΓr=1 is the set of these learned
categories assumed to be available to the language learner. The sensitivities of
unsupervised categorization of object appearances (shape features) and actions
(trajectories) with respect to the number of clusters is shown in figure 3.
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Fig. 3. The sensitivities of unsupervised categorization w.r.t. the number of clusters
for (a) object shape templates (appearances) and (b) object trajectories (actions)



3 Visual Attention and the Perceptual Theory of Mind

Language Learning is largely a social activity, reflected in the Theory of Mind
hypothesis [19] - that the learner has a model for aspects of the speaker’s mind,
including a sensitivity to the object being attending to, intentions, belief struc-
tures, etc. When the learner is presented with only the visual stream and is not
in the presence of the speaker, attention is mediated by visual saliency alone,
and not by cues received from the speaker’s gaze. In many learning situations
where both speaker and viewer are looking at the same scene, this appears to be
the case, and we call this the Perceptual Theory of Mind – i.e., we assume that
the speaker would have attended to those parts of the scene that the learner also
finds salient.

Models of Visual Attention involve both bottom-up and top-down processes
[10, 20]. While top-down processes are task-dependent, bottom-up processes cap-
ture those features of the scene that have the highest payoff in terms of generating
conceptual abstractions in most relevant domains. Top-down processes require
a conceptual sophistication which is still not available to our pre-lexical learner,
and even bottom-up visual attention processes are in the formational process.
Nonetheless, we assume a degree of perceptual saliency measures are available
to our language learner.

Fig. 4. Bottom-Up Dynamic Visual Attention Model. Feature maps for static images
(color, intensity and orientation) are extended for motion saliency, computed from an
optical flow pyramid. Persistent connected blobs constitute perceptual objects, char-
acterized by shape, appearance, and motion features. Saliency is computed and the
focal object identified via winner-take-all. Finally, this fixated object is associated with
words from the co-occurring linguistic utterance.

Models for bottom-up attention in static images have been encoded based on
multi-scale extraction of intensity, color and orientation contrast feature maps



[10]. This static model has been extended to dynamic scenes [9] by incorporating
features for motion saliency (computed from optical flow), and an inhibition of
return based on a confidence map reflecting the uncertainty accumulating at
image points not visited for some time. A small foveal bias is introduced to
favor proximal fixations over large saccades when saliencies are comparable. The
saliency map is thus the sum of the feature maps and confidence maps, mediated
by the foveal bias, and a Winner-Take-All (WTA) isolates the most conspicuous
location for the next fixation. In this work, we use this model of visual attention
(Figure 4) to compute the saliency distribution (Figure 5) which indicates the
probability of an object being attended.

(a) (b) (c)

Fig. 5. Saliency distribution of the tracked objects. (a) Frame 20 : 6 objects tracked in
a traffic scene. The blobs associated to the tacked objects are colored in (b) according
to their saliency distribution as shown in (c)

4 Learning from Textual Narratives

Data. A group of 18 student volunteers (Indian English speakers, ages 18− 25,
16 male, 2 female) were shown the video and instructed to “describe the scene as
it happens” without any further cues about the experimental objectives. Each
sentence in the resulting oral narrative was synchronized with the images, and
each word in the sentence correlated with the objects under attentive focus in
that time span.

The learning task then becomes one of associating conceptual image-schemas
γr from the set of acquired concepts Γ , with words from the narrative constitut-
ing the lexicon Σ. In order to retain generality, we consider k-word concatena-
tions σk(l) appearing in the narrative; so that sigma1 consists of single words.
Thus, from a sentence such as “Bus moves from left to right”, we would have
the set of σ2 phrases: { “Bus moves” , “moves from” , “from left” , “left to” ,
“to right” }.

We now search the set of k-word concatenations Σk = {σk(l)} for the best
match to a co-attentive pre-linguistic concept γr. We measure the degree of asso-
ciation between the concept (γr) and the lth k-length concatenation σk(l) using



extremely elementary probability measures: the joint probability P (σk(l), γr)
and the conditional probability P (γr|σk(l)). In the absence of sufficient data
(most combinations appear too infrequently to compute joint probabilities), we
find it productive to use the conditionally weighted joint probability measure
J (γr, σk(l)) given by,

J (γr, σk(l)) = P (γr|σk(l))P (σk(l), γr) (1)

Also, the probability of longer concatenations needs to be normalized by
the probability of k-length sequences, but given the very small sample of text,
this cannot be computed reliably and we make the weak assumption that this
likelihood is inversely proportional to the segment-length (1/k), so that k-word
strings have their probability multiplied by k. The association measure is a very
small fraction and results reported in tables 2 and 3 are multiplied by 1000.

While our results are limited to this particular scene, we assume that the
learning agent is also exposed to other contexts. Thus, it is likely that the more
common words (the, of, etc.) have been encountered in many other contexts -
thus their conditional probabilities are low. For single word matches (k = 1), we
discount the hundred most common words (based on the Gutenberg corpus).

4.1 Association Results

The set of concepts available include ten object categories and four trajectory
categories. For all concepts, utterances co-temporaneous with attentive focus
result in correlations with all words in the utterance. Concepts that have very
strong (frequent) associations are likely to be learned earlier.

Our narrative shows a preponderance of motion / trajectory words - most
frequent is the word left (447 instances) followed by right (387). Next, generic
motion verbs such as moving (128) and going (126) overwhelm the first nouns -
bike (111), car (81), etc.

In the following, we start to learn word associations (using phrase-length
k = 1 . . . 4) for both the trajectory and the agent concepts. Immediately we
discover that motion concepts are learned adequately at the k = 3 level (Table
2), whereas object labels are overwhelmed by trajectory descriptors like “left” or
“going”. Based on the mutual exclusivity principle [21], the early learner assumes
that different labels apply to different concepts - and therefore, having learned
the motion words, we drop the learned tags from the lexicon before proceeding
to learn the object labels. Inverting this order, attempting to learn the objects
first, results in a weaker correlation, e.g. the term “cycle” fails to get a high
association. This is of course atypical, since infants learn the first object labels
somewhat earlier than the first motion labels; it is no doubt an idiosyncracy of
the traffic scene where motions are preponderant.

For trajectory labels, single word tags such as “left” or “right” have weaker
associations, and multi-word concatenations, “left to right” and “right to left”,
emerge with the strongest association for the concepts left to right and right
to left. The categories from-bottom-turn-left and u-turn have very few



Table 2. Associating Language Labels to object Behavior (Trajectory)

LEFT-TO-RIGHT RIGHT-TO-LEFT FROM-BOTTOM U-TURN
TURN-LEFT

ONE WORD LONG LINGUISTIC LABELS (k = 1)

left 1.609 left 10.61 left 0.021 bus 0.661

to 1.471 to 9.441 person 0.018 left 0.368

right 1.334 right 8.715 the 0.017 to 0.300

moving 0.836 the 6.841 cycle 0.016 right 0.277

the 0.807 moving 4.991 to 0.013 from 0.248

TWO WORD LONG LINGUISTIC LABELS (k = 2)

to left 1.598 to left 13.01 gate and 0.056 bus coming 0.802

to right 1.422 right to 11.17 man in 0.040 bus comes 0.650

left to 1.368 to right 6.124 walking with 0.038 the Vikram 0.502

right to 1.312 from right 6.078 and turns 0.038 from left 0.442

from left 0.858 left to 5.894 IIT and 0.038 entering from 0.406

THREE WORD LONG LINGUISTIC LABELS (k = 3)

left to right 2.751 right to left 23.33 gate and going 0.105 entering the Vikram 0.966

right to left 2.607 left to right 11.45 person moving left 0.078 entering from the 0.771

moving right to 1.194 from right to 8.421 and turns left 0.072 left to right 0.756

from left to 0.960 moving right to 5.910 IIT and turns 0.072 tempo moves towards 0.678

white car moving 0.921 to the left 5.166 of IIT and 0.072 in tempo moves 0.678

FOUR WORD LONG LINGUISTIC LABELS (k = 4)

moving right to left 2.364 from right to left 15.28 gate and going to 0.184 lady entering the Vikram 1.712

from left to right 1.744 moving right to left 12.07 person moving left to 0.140 bus coming from left 1.320

from right to left 1.540 going right to left 9.996 IIT and turns left 0.124 tempo moves towards the 1.220

moving left to right 1.384 going from right to 7.368 of IIT and turns 0.124 in tempo moves towards 1.220

white car moving right 1.240 from left to right 7.256 out of IIT and 0.124 comes in tempo moves 1.220



instances and may require more observations before they can be learned. After
removing the trajectory labels from the set of words for object (noun) learning,
we find single-word results outweigh multi-word text, and only single word results
are reported (Table 3).

Table 3. Labels for object Concepts (word set Σ − {left, to, right})

man tempo bus truck tractor

moving 6.613 going 4.985 bus 0.081 lorry 0.141 tractor 0.046

going 6.280 moving 4.814 state 0.017 truck 0.046 loaded 0.019

motorbike 5.817 tempo 4.571 govt. 0.015 going 0.008 green 0.013

cycle 3.284 motorbike 3.057 big 0.010 motorbike 0.008 stuff 0.011

two 2.992 bus 3.018 exits 0.009 moving 0.007 fully 0.010

car motorbike cycle rickshaw cow

moving 1.488 moving 0.809 cycle 1.509 going 1.144 two 0.045

going 1.287 going 0.528 moving 1.429 moving 1.063 motorbike 0.041

motorbike 1.125 car 0.499 going 1.180 rickshaw 0.736 moving 0.041

car 1.054 motorbike 0.475 two 0.752 motorbike 0.680 tempo 0.037

coming 0.760 coming 0.373 tempo 0.669 car 0.669 going 0.030

4.2 Discussion

Some labels are easier to learn compared to others for several reasons. First,
there are instances of Synonymy, e.g. a concept like man can have labels people,
sardarji, person, guys, guy etc., diluting the effect of any particular label (we
do not remove plurals or do any kind of morphological processing on the text).
This is true also for car and for tempo. Secondly, our computational Visual
Saliency model may not have selected the objects mentioned in the narrative.
This is particularly true of people, who are preponderant in the scene but are
not selected either in the narrative nor by the visual focus. When they do ap-
pear in the narrative, they are sometimes not in attentive focus, and we see
that for the category man, no relevant label appears in the top five. On the
contrary, motorbikes are mentioned quite frequently, but are not as frequently
in attentive focus, and given the preponderance of objects (varying between five
and twenty at any time), motorbike emerges as one of the high contenders for
several concept categories. On the other hand, large objects like truck, which
appeared only once, despite two equal synonyms (truck (11), lorry (9)), have
both these labels at the top of the list. This is due to the high visual saliency
of this large moving region; the same may also hold for bus. Finally, there are
issues related to the Categorization Level, i.e., the narratives may refer to objects
at a subordinate (or superordinate) level. Thus, the concept car is referred to
by model names such as maruti, Sumo, Zen as well as taxi, van, car, cars etc.
There are also eight instances of the superordinate “vehicle” being used. Clearly,



a much richer characterization of objects and their subcategories would need to
be learned before these distinctions can be mastered.

To reiterate the main results - this work represents a completely unsupervised
process relying on visual attention to parse the visual input. Place the camera
at the scene, and observe the goings on for about half an hour. At some point,
have some adults comment on what is happening, and even with very primitive
statistical association measures, our infant learner is able to build mappings
for six new words/phrases. We feel that given the enormous prior knowledge
deployed in many computational learners, this is not bad going at all for our
infant learner.

5 Conclusion

In this work, we have presented a model that acquires concepts of object shape
and appearance, as well as actions, from complex multiagent videos. Despite the
complexity of the input, we demonstrate that some of these concepts can then
be successfully associated with word labels. The same task, if performed with
simultaneous concept and language acquisition, is considerably more difficult
(e.g. see [5] on prepositions). More importantly, such a procedure ignores any
possible perceptual abstractions that may have formed in the first year and a
half of life. While this does not rule out any other alternatives, it provides some
computational weight for the perceptual-conceptualization position.

To our knowledge, this is the first work that takes a complex visual scene,
identifies a number of concepts in a completely unsupervised manner, and then
associates these with unedited text inputs, to obtain a few phonetic to perceptual
schema mappings. The main burden of computation in this task is in the visual
processing - i.e. the visual concepts may be harder to learn than (at least some)
of the linguistic mappings.

Another key outcome is that some insight has been gained into the phrase
“image schema”, which has been used in a wide variety of meanings e.g. [7]
presents a linguistic perspective and [1] a perceptual view. Our approach provides
a plausible computational approach to constructing image-schemas from real
perceptual data. These are internalized as probability distributions ranging over
spatio-temporal manifolds. In our model, we find that certain image schemas
have correlations that may already be viewed as symbolic arguments - e.g. we
discover that action concepts such as left-to-right or right-to-left involve a single
moving object in an agentive role. Thus, their valency (a grammatical notion
related to the number of arguments a verb takes in a sentence), is determined
from these semantic considerations, and in the long run this may provide a
semantic basis for many considerations in syntax.

Such models clearly have immediate application value in visual surveillance;
the user has only to describe a few scenes, and it would be possible to then
identify salient aspects of the scene and code these in future encounters with
these objects.



As for syntax, it is tempting to claim that the approach is oblivious to syn-
tactic (and morphological) niceties, but it is important to remember that we
are learning primarily motion descriptors and nominals in a weakly inflected
language. In case-rich languages, the learning rate would surely be slower, and
some prior morphology learning may be needed before learning most of the
grounded nouns. This is true even for child learning, as attested in Turkish vs
English learners [22].

While our approach is rich in terms of perception, the learner is not an active
participant in the scene. Thus crucial aspects such as intentionality, purposive
action, and social interaction have been ignored in the present study. While some
amount of language learning may involve passive inputs, contingent interaction
is undoubtedly a powerful force that would be important to explore in following
work.

While the specific appearance models are indexed upon the specific view, the
object classes per se, as well as the occlusion-based interaction primitives, are
more general and can be applied to novel situations. It would be important to
consider the correlations between multiple views in constructing the appearance
models, so that all canonical views can be covered.

Finally, while we have used attentive focus to associate visual concepts with
words, we have not used attention at all for the task of forming conceptual clus-
ters. The use of attention for learning concepts is significant since the learned
concepts can then act as top-down mediators and bring in elements of intention-
ality into the system. On the whole, such associative maps for word meanings
are clearly just the first step - the vast majority of adult vocabularies are ac-
quired by extrapolation from a few grounded words, primarily by reading[19].
However, these first grounded words constitute the foundation on which these
other meanings can be anchored.
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