Nine point Circle:
  Prove that the midpoints of the sides, the foot of the perpendiculars and the midpoints of the  lines joining the vertices to the orthocentre, all lie on a circle.
   (This circle is called as the nine point circle as the above nine points lie on it . )
 

Part 1:proving that the midpoints of the sides and the segments lie on a circle.

 Machine input:
 

 Point order:  ABCDEFHP

 Hypothesis:   mid(DBC), mid(EAC), mid(FAB), orthocentre(HABC) mid(PHA)

 Conclusion:   cyclic(PFDE)

 Machine output:

 [PE,ED] - [PF,FD]
  =  90.0 - [PF,FD]
        because  perp(P,E,E,D) => [PE,ED] = 90.0  )
=  0.0

        because  perp(P,F,F,D) => -1.0[PF,FD] = -90.0  )
 

Part 2: proving that the foot of the perpendiculars and the midpoint of the sides are concylic.

Machine input:

Point order :   ABCDLMN

Hypothesis :   coll(ALB) coll(ANC) coll(BDMC) mid(MBC) mid(NAC) mid(LAB) perp(ADBC)

Conclusion :   Cyclic(DLMN)
 

Machine output:
 - [NL,ND] + [ML,MD]
 =  90.0 + [ND,DA] + [ML,MD]
        ( because perp(N,L,D,A) => -1.0[NL,ND] = [ND,DA] + -90.0 )
=   + [ND,CB] + [ML,MD]
        ( because perp(D,A,C,B) => [ND,DA] = [ND,CB] + 90.0  )
 =  90.0 + [ND,CB] + [ML,DA]
        ( because perp(M,D,D,A) => [ML,MD] = [ML,DA] + 90.0  )
 =   + [ND,CB] + [ML,CB]
        ( because perp(D,A,C,B) => [ML,DA] = [ML,CB] + 90.0  )
 =   + [ND,CB] - [CB,CA]
        ( because parallel(M,L,C,A) => [ML,CB] = -1.0[CB,CA] )
=   - [NC,DC] - [CB,CA]
         (because [ND,CB] = -1.0[NC,DC] )
=  90.0 - [NC,DA] - [CB,CA]
        ( because perp(D,C,D,A) => -1.0[NC,DC] = -1.0[NC,DA] + -90.0  )
 =   - [NC,CB] - [CB,CA]
        ( because perp(D,A,C,B) => -1.0[NC,DA] = -1.0[NC,CB] + -90.0  )
 =   - [ML,CB] - [CB,CA]
        ( because parallel(N,C,M,L) => -1.0[NC,CB] = -1.0[ML,CB] )
=  0.0
         ( because parallel(M,L,C,A) => -1.0[ML,CB] = [CB,CA] )