A pedal triangle of a triangle ABC
with respect to a point Q is defined as the triangle formed by the feet
of the perpendiculars dropped on the sides of ABC from Q.
The process of getting the pedal triangle
can be extended to the pedal triangle itself, thus yielding pedal triangles
of higher degree.Prove that the third pedal triangle of any triangle with
respect to a point is similar to the triangle itself.
Machine input:
Point order : ABCQDEFGHLMNO
Hypothesis: coll(AFB) coll(BDC) coll(CEA) coll(EFG) coll(ELD) coll(FHD) coll(GMH) coll(GOL) coll(HNL) perp(QOGL) perp(QDBC) perp(QEAC) perp(QFAB) perp(QGFE) perp(QHFD) perp(QLDE) perp(QMGH) perp(QNHL)
Conclusion : [NM,NQ] - [ON,NQ] - [CA,BA] = 0
Machine output:
[NM,NQ] - [ON,NQ] - [CA,BA]
= + [MH,HQ] - [ON,NQ] - [CA,BA]
( because
cyclic(N,M,Q,H) => [NM,NQ] = [MH,HQ] )
= + [MH,HQ] - [OL,LQ] - [CA,BA]
( because
cyclic(O,N,Q,L) => -1.0[ON,NQ] = -1.0[OL,LQ] )
= 90.0 + [MQ,HQ] - [OL,LQ] - [CA,BA]
( because
perp(M,H,M,Q) => [MH,HQ] = [MQ,HQ] + 90.0 )
= + [HG,HQ] - [OL,LQ] - [CA,BA]
( because
perp(M,Q,H,G) => [MQ,HQ] = [HG,HQ] + 90.0 )
= + [GF,FQ] - [OL,LQ] - [CA,BA]
( because
cyclic(H,G,Q,F) => [HG,HQ] = [GF,FQ] )
= 90.0 + [GQ,FQ] - [OL,LQ] - [CA,BA]
( because
perp(G,F,G,Q) => [GF,FQ] = [GQ,FQ] + 90.0 )
= + [FE,FQ] - [OL,LQ] - [CA,BA]
( because
perp(G,Q,F,E) => [GQ,FQ] = [FE,FQ] + 90.0 )
= + [EA,QA] - [OL,LQ] - [CA,BA]
( because
cyclic(F,E,Q,A) => [FE,FQ] = [EA,QA] )
= 90.0 + [EA,QA] - [OQ,LQ] - [CA,BA]
( because
perp(O,L,O,Q) => -1.0[OL,LQ] = -1.0[OQ,LQ] + -90.0 )
= + [EA,QA] - [LG,LQ] - [CA,BA]
( because
perp(O,Q,L,G) => -1.0[OQ,LQ] = -1.0[LG,LQ] + -90.0 )
= + [EA,QA] - [GE,EQ] - [CA,BA]
( because
cyclic(L,G,Q,E) => -1.0[LG,LQ] = -1.0[GE,EQ] )
= 90.0 + [EA,QA] - [GQ,EQ] - [CA,BA]
( because
perp(G,E,G,Q) => -1.0[GE,EQ] = -1.0[GQ,EQ] + -90.0 )
= + [EA,QA] - [FE,EQ] - [CA,BA]
( because
perp(G,Q,F,E) => -1.0[GQ,EQ] = -1.0[FE,EQ] + -90.0 )
= + [EA,QA] - [FA,QA] - [CA,BA]
( because
cyclic(F,E,Q,A) => -1.0[FE,EQ] = -1.0[FA,QA] )
= - [QA,CA] - [FA,QA] - [CA,BA]
( because
parallel(E,A,C,A) => [EA,QA] = -1.0[QA,CA] )
= - [QA,CA] + [QA,BA] - [CA,BA]
( because
parallel(F,A,B,A) => -1.0[FA,QA] = [QA,BA] )
= 0.0
( because
-1.0[QA,CA] = -1.0[QA,BA]+[CA,BA], simplifying )