Some  Basic Concepts of CSG :

                                                          Constructive Solid Geometry (CSG)  are ordered binary trees. CSG schemes are unambiguous but non-unique.  The domain of a CSG scheme depends on the half-spaces  which underlie its set of primitive solids and on available motional and combinational operators.

                   CSG trees with uninstantiated parameters can be used to represent
generic objects (also  called procedure-,macro-, or parametric objects or object schemata).The validity  of  such generic  object  representations also may be ensured easily.

                             CSG object  is  built  from  the  standard  primitives ,using  regularised  Boolean  operations  and  rigid  motions.The  basic  primitives  for  2D  operations  may  be  any  type  of  quadrilaterals  and  ofcourse  any  type  of  curvely  bounded  planes also  provided the  boundary  should  be  well  defined.

The  basic  primitives  for   3D  operations  may  be  parallelopipped
 (block)  ,triangular prism,sphere,cylinder,cone,torus.They  are  generic  in the sense  that  they  represent  shapes  that  must  be  instantiated  by  the  user  to  chosen  dimensions.

                            After  instantiation  primitive  objects  can  be  combined   using  regularised  Boolean  operations.The  operations  are  regularised Union  denoted  here  by  RUNION , regularised  intersection denoted  by RINT, regularised negation  denoted  by  RNEG.They differ  from  the  corresponding
set-theoretic operations  in that  the  result  is  the  closure  of  operation  on  the interior  of  two  polygons  or  solids ,and  they  are  used  to  eliminate
"dangling"  lower  dimensional  structures.

click  here  to go to

    methodology

   Logic behind this project