Synthesis of Special Type of Stepheson's Six-Bar Mechanisms
&
Analysis of Higher Pair Mechanisms

Gaurav Shukla (95112)
Project Proposal : ME 751 Computer Aided Engineering Design
Indian Institute of Technology - Kanpur : November 1998

 
 
          This report is divided into two parts -
 

      Part (A) : Synthesis of Special Type of Six-Bar Mechanism

       Part (B) : Analysis of Higher Pair Mechanism


Contents


Motivation

    Rocking  motion  produced  by  the  "rocker"  of  the  four bar  mechanism
    has  various  applications.  Four bar  mechanisms  cannot  give  rockers
    with  rocking  angle  more  than  180  deg.  with  a  restriction  that
    mechanism  must  have  a  crank  for  providing  input  motion.  Six bar
    mechanisms  are  being  explored  for  the  solution  of  this  problem.
    So  for  only  qualitative  proof  is  available  that  a  rocker  with  rocking
    angle  more  than  360 deg.  is  possible  to  configure  with  the  help  of
    Stephenson's  mechanism.
 

 Past  Work  :

     Synthesis  of  four bar  mechanisms  has  already  been  studied  in  great
     depth.  Though  some  efforts  have  been  made  for  developing
     methodologies  for  synthesis  of  six bar  mechanisms  but  still  this  is
     an  fairly  unexplored  area.  Several  methods  have  been  reported  for
     both  kinematic  analysis  and  synthesis  of  planar  six link  mechanisms
     [1-5]. Optimum  solutions  of  six link  function  generators  including
     the  effects  of  tolerances  in  the  link-lenghts  and  clearances  in  the
     joints  have  also  been  attempted [6].  Kinematic  synthesis  of  Watt-I
     mechanisms  generating  closed  coupler  curves  with  up  to  four  cusps
     has  been  formulated  properly [5].  This  can  be  very  useful  to  this
     project.  Stationary  configurations  of  planar  six bar  kinematic  chains
     have  been  studied  fully [7].
 
 

Examples :

     Following figure shows a Stephenson's mechanism whose synthesis is aimed
    at in this project.


 
 
 

Sample  Input-Output :

     In  this  project,  efforts  will  be  made  to  develop  a  special  type  of
     Stephenson's  mechanism.  In  these  mechanisms  ternary  link  will  be
     frame  (Fixed).  Three  binary  links  will  be  connected  to  this  frame.
     One  of  the  binary  links  will  be  a  normal  crank  and  one  of  them
     will  be  a  rocker  with  rocking   angle  more  than  360  deg. .  Its  rocking
     range  in  the  clockwise  and  anti clockwise  directions  will  be  different.
     One  will  exceed  by  360 deg.  from  the  other.

   Input  :
                  1.  Maximum  Link  Length
                  2.  Rocking  Range  of  The  Rocker
                       e.g.    60 deg.  to  90  deg.  in  clockwise  direction
                       and   60  deg.  to  450  deg.  in  anti clockwise  direction
   Output :
                 Stephenson's  six bar  mechanism  in  which  one  binary  link
                    out  of  three  connected  to  a  ternary  link,  will  be  a  crank
                    and  one  will  rock  more  than  360  deg.
 
 

Methodology  :

        First, the problem of the synthesis was thought as a problem of path generation.
     The Six-bar was divided in to two parts (as shown in the figure). A fictitious
     coupler curve was generated according to requirements imposed by input-output
     relationship of the desired mechanism. Corresponding, 4-bar was generated by
     path generation synthesis. The implemented method for this synthesis was
     inspired from the paper "A Simple Approach For Optimum Synthesis Of A
     Class Of Planar Mechanism". The method suggested in the paper uses
     non-derivative and quasi-Newton methods in series for search while the
     implemented method depends upon derivatives of error terms with respect to
     link lengths which are used in the Least Square search.
     Problem of convergence was encontered in this method. Least square search may
     not stop at all for a given input.

     Alternatively, the problem can be solved by function generation. Standard
     method of optimisation is used for finding the mechanism. This method is
     adopted from the book "Kinematic Analysis and Synthesis of Mechanisms".
     In this method, four parameters of the six-bar need to be assumed. Rest of
     the six parameters are found by least square analysis. In this method, two
     rotation angles need to be assumed as function of a crank angle. The angle
     of the output link (i.e. link # 41) which is called "theta_6" is governed by
     angle of input link (i.e. link # 12) which is called "theta_2". The functionality
     is decided by the desired mechanism. In addition to this, "theta_3" (angle
     of floating link)  is also required to be expressed as a function of theta_2.
     These are called the guess values. A cubic function which can qualitatively
     satisfy the characteristics of the desired mechanism has been fitted for these
     guess values. Qualitative graphs of the two functions are shown in the
     following figure.
 


 

     The following loop closure equation form the basis of the least square
     analysis.
 
 
 

       l6b*l6b + l41*l41 + l5b*l5b - l31*l31
       + 2*l6b*l41*cos(theta_6)
       - 2*l12*l6b*cos(theta_2) - 2*l6b*l5b*cos(theta_3+Si)
       - 2*l41*l5b*cos(theta_6-theta_3-Si) 
       - 2*l41*l12*cos(theta_6-theta_2)
       + 2*l12*l5b*cos(theta_2-theta_3-Si)   = 0

       l12*l12 + l5a*l5a + l6a*l6a - l22*l22
       + 2*l12*l5a*cos(theta_2-theta_3)
       -2*l6a*l12*cos(theta_2-Phi) 
       - 2*l6a*l5a*cos(theta_3-Phi) = 0

     Ideally the left side of the two equations should be zero but it will
     not be so for the given design points. So these two equations will
     constitute error terms. These error terms will be minimised in the
     least square sense over all design points.
 
 

Results :

       The function generation method as discussed in the methodology has been
     implemented but it is not able to synthesize desired type of the mechanisms
     even after 25 iterations of Least Square method which is supposed to be
     very powerful search method. It is because of the "Guess Values". The
     function fitted for these guess values is probably orienting the search in
     wrong direction from the beginning itself.
                                                            The possible remedy for the problem
     is to identify the correct type of function for these guess values which
     will definitely have some relationship with the input-output functional
     relationship.
 

Bibliography  :

  @Article{Shukla/Mallik :19__,
           Author =  {Gaurav  Shukla  and  A. K. Mallik},
           Year = {19__},
           Institution =  {I.I.T., Kanpur},
           Title =  {Detection of A Crank in Six Link Planar Mechanisms},
           Annote  =  { When  a  ternary  link  of  Stephenson's  mechanism
  is  fixed  to  the  ground, there  are  three  binary  links  attached  to  it.
  Due  to  the  complex  nature  of  the  coupler  curve  generated  by  the
  point  "E"  (as  shown  in  Fig. 1)  link  "CD"  can  exhibit  special  type
  of  motion  characteristics.  This  link  can  oscillate  more  than  360
  deg.  This  is  proved  in this  paper  through  a  numerical  example. }}
 
 @Article{Cossalter/Doria:1992,
       Author =  {V. Cossalter and A. Doria and M. Pasini and C. Scattolo},
       Year =  {1992},
       Institution =  {University of Padova, Padova I-35131, Italy;
                               Nuovo Pignone SMIT, Schio, Italy},
       Title =   { A Simple Numerical Approach for Optimum Synthesis of a
                      Class of Planar Mechanism },
        Volume =  {Vol. 27, No. 3},
        Journal =  {Mech.  Mach.  Theory },
        Pages =  {357-366},
        Annote = { In this study a numerical method for optimum synthesis of
         planar mechanisms, generators of functions, paths and rigid motions, is
         presented. Design parameters have wide variability range, inside which
         first guess, demanded by the iterative minimisation procedure, can be
         chosen at random. Kinematic analysis is carried out by decomposition
         of the mechanism in to Assur groups; mechanism assembly is managed
         by the construction of a proper penalty function. Optimisation is carried
         out by using a non-derivative and a quasi-Newton method in series. }}
 
 

References  :

    1  .  Kinematic Analysis And Synthesis of Mechanisms
              by, A. K. Mallik, Amitabha Ghosh, Gunter Dittrich

    2  .  Sakamoto,  Y.,  Ogawa,  K.  and  Funabshi,  H.  Mech.  Mach.  Theory
                29,  345-356  (1994)

    3  .  Bagci,  C.  Proc.  I.  Mech.  E  189,  855-859  (1975)

    4  .  Chung,  W.  Y.  and  Chiang,  C.  H.  Mech.  Mach.  Theory  25,
                417-426  (1990)

    5  .  Cossalter,  V.,  Doria,  A.,  Pasini  M.  and  Scattolo,  C.  Mech.  Mach.
                Theory  27,  357-366  (1992)

    6  .  Chang,  C.  and  Hwang,  W.  Mech.  Mach.  Theory  29,  501-511  (1994)

    7  .  Husing,  M.   Dr.  Ing.  Dissertation,  T.  H.  Aachen  (1995)
 



  Part (B) : Analysis of Higher Pair Mechanism


Contents


Motivation :

    It  is  very  easy  to  solve  a  problem  of  path  generation  using  a  higher
    pair  joint  (i.e. Cam)  because  in  this  case  only  implementation  of  the
    solution  is  required.  On  the  other  hand, it is  very  difficult  to  solve  the
    problem  of  path  generation  using  linkages  because  here  it  amounts
    to  solving  an  inverse  problem.  This  is  the  reason  of  popularity  of
    higher pair  mechanisms  in  industry.  Though  they  are  expensive.  So,
    it  is  extremely  essential  to  have  software  packages  which  can  handle
    analysis  of  higher pair  mechanisms  in  general.
 

Past  Work  :

     Analysis  of  cams  is  a  direct  problem  (i.e.  given  the  complete  configu-
     ration  of  the  mechanism,  it  is  easy  to  analyze  and  animate  the
     mechanism  either  analytically  or  numerically). Analysis of typical roller
     follower, flat face follower or Knife edge follower with any cam has been
     established fairly well.
                                      But, in the given problem follower is a floating link
     of a constrained mechanism. It is very hard to find the configuration of the
     complete mechanism as a function of orientation of the cam analytically.
     Generally, these type of higher-pair  mechanisms  are  analyzed  numerically
     because analysis is hard to establish.
 

Examples :

         Sewing machine uses a typical higher pair mechanism which has a constrained
      3R-1P mechanism driven by a cam. Following figure shows its diagram.


 
 

Sample  Input-Output :

  Input  :
        Mechanisms which are similar to the mechanism shown in the example
        will be covered in this project.
                 1.  Complete  description  of  the  mechanism  including  the
                      profile  of  cam. Cam can have two types of profiles. First is a
                      circle with offset and second is achieved by fitting cubic curves
                      over an equilateral triangle. Following figure shows the cam
                      profiles in the two cases.

        For the first type of the cam, user need to input only radius of the circle and
        the offset. Similarly, for the second type of cam input is edge of the triangle
        and the offset. Mechanism  should  be  constrained.  i.e.  It  should  be  single
        degree of freedom mechanism.

  Output  :
                 1.  Animation  of  the  mechanism
 

Methodology  :


     Kinematic analysis of higher pair mechanisms invariably requires storing
     and dealing with cam profile. It also requires blend of analytical and
     numerical approach. The implemented software performs following steps :-

 
     First Step :

     It fits an appropriate profile of cubic splines if the triangular type of cam is
     selected.
    Second Step :

     Now a reference line over cam is assigned. A co-ordinate system is attached
     to the cam with X-axis being the reference line. Radius and Slope information
     is generated with respect to angle step being half of a deg. This information
     is stored.
    Third Step :

     It checks the mechanism for assemblability. For the given lengths of the
     mechanism, it may not be assemblable at all. This is done by fixing the
     orientation of the cam to zero deg. and checking each and every configuration
     of the floating link follower for a possible contact with any point over the
     surface of the cam. If any contact zone is found out the mechanism is
     assemblable.
    Fourth Step :

     Here the mechanism is animated if it has passed the assemblability test.
     For any particular position of the cam (i.e. input angle) configuration of the
     rest of the mechanism is found out numerically. Rest of the mechanism is a
     constrained mechanism. The floating link of this mechanism need to touch the
     cam profile at any point on its profile for each and every position of the cam for
     continuous driving by the cam. Following figure shows the schematic diagram
     of the mechanism.
 

  Results :

      Results for the higher pair mechanism are given in form of animation.
    Following sequence shows  animation for mechanism used in sewing machine.


 

References  :

    1  .  Kinematic Analysis And Synthesis of Mechanisms
              by, A. K. Mallik, Amitabha Ghosh, Gunter Dittrich