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Introduction and Motivation

» Polynomial-time Dimension:
Quantifies information density of infinite binary strings.
With polynomial-time resource bounds.

» Two approaches:
1. cdimp : Defined using s-gales (betting strategies).
2. Kpoly: Using time-bounded Kolmogorov complexity.

» Robustness question: Are these two notions equivalent?

» Our Result :
One-way functions <= Dimension gaps for a “Large”
collection of sequences.
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Polynomial Time Dimension (cdimp)

» s-gale: d:X* — [0,00) such that
d(w0) + d(wl) = 2° - d(w).
» Poly-time s-gale : d : ¥* — Q such that
d(w) runs in time |w|¥.

cdimp
For an infinite binary sequence X € ¥°°, define

cdimp(X) = inf{3 poly-time s-gale d : limsupd(X | n) = co}.
S n
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Polynomial Time Dimension (cdimp)

For an infinite binary sequence X € £, define

cdimp(X) = inf{3 poly-time s-gale d : limsupd(X | n) = cc}.

n

For a set of sequences F C L°°, define

cdimp (F) = inf{3 poly-time s-gale d : VX € F,limsupd(X [ n) = oo}.
s n
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Kolmogorov Complexity approach (Kpo1y)

For a finite string x € £*, for a time function t(n),

Ki(x) = min{|M| : U(M) = x}.

» Length of the shortest description of x from which a t(n)-time
algorithm can recover x.

Kpoly
For an infinite string X € X*° :

Kooy (F) = inf lim infw‘

tepoly n—o0
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Kolmogorov Complexity approach (Kpo1y)

For an infinite string X € ¥ :

Kpory (F) = telgcfly llnnlggf T a
For a set of infinite strings F C ¥ :
Ke(X 1 n)

Kpoy(F) = inf sup liminf

tEpoly xgF n—o0 n
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Robustness in the Classical Setting

Theorem (Mayordomo, Lutz)
For all F C X°°,

K(X
cdim(F) = sup liminf f n).
XeF N0 n

Theorem (Hitchcock , Vinodchandran)
For every F C X*°,

CdimpspACE(]:) = ’CPSPACE(]:)‘
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Robustness in the Polynomial-Time Setting ?

» Hitchcock, Vinodchandran [2005] : For all F C X°,
Kpoly(]:) < cdimp(F).
> However, the reverse inequality remains elusive.

Question
Is it true that, for every sequence X € X°°,

Cdimp (X) = ’Cpoly(X)?
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Our Main Results

» We resove this by relating it to the existence of one-way
functions.

» One-way functions = cdimp # Kpoly-
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Our Main Results

> We resove this by relating it to the existence of one-way
functions.

» One-way functions = cdimp # Kpoly-
» OWF = v {X : cdimp(X) # Kpory(X)} =1,

» (Converse) Dimension gap = (infinitetly-often) OWF.
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Dimension Gaps from One-Way Functions

Lemma
If one-way functions exist, then for all s < 1/2, there exists a set
F C X°° such that:

Kooy(F) <s and cdimp(F) > 1/2.
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Proof ldeas: Overview

» Assume one-way functions exist.

» For all s < 1, this implies the existence of pseudorandom
generators

(PRGs) {G, : " — X"} pen

running in polynomial time.

» We use these PRG's to construct a short seed map
g:X>® = x>,
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Construction of g

1 2™ 2m+1 2m+2 " 2n+l

Figure: lllustration of g(X).
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Proof ldeas: Overview

» We use these PRG's G, : 25" — X" to construct a short seed
map

g X® = x>,
» We show :
L. Kpoy(F = g(x>)) <.

2. Forany s’ € (s,1/2),
exists an s’-gale d that succeeds on F —>
exists a distinguisher A that breaks the PRG

. OWF = cdimp(F) > 1/2.
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Breaking a PRG

» The PRG {G,}, is broken if there exists
A polynomial-time algorithm A (Distinguisher) such that
for infinitely many n and some constant c:

Pr [A(Ga(y)) = 1] = Pr [A(r) =1]| = 1/n".

x~Us.n
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Breaking the PRG via gales

» We have an s’-gale d that succeeds on all Y € g(X*).

» Using standard techniques, convert d into a martingale d such
that for all Y € g(X):

d(y | 2n1) > 20=92"G(y | 2n),

for infinitely many n and some § € (25/,1).
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The Distinguisher Algorithm

» Construct a polynomial-time distinguisher A:
1. On an input w of length 2", randomly choose r € ¥52".
2. Compute w' = g(r).

3. Output 1 if y i} 5
d(w'w) > 20=9W . g(w'),

and output 0 otherwise.
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Performance of A on PRG Outputs

» Use Borell-Cantelli Lemma to get a uniform bound over a
positive measure-subset.

v(F) = p(g 1 (F)).
v(g(x>)) =1

Borel Cantelli:

v({Y - d(Y 2 > 20-92"G(y 1 2M)}) > 1/n2.
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Borel Cantelli Lemma

Define
> (V) =1iff d(Y | 2"t1) > 20=92"g(y | 2n),
> A, ={Y f(Y)=1}

We have :
> Forall Y € g(X%°), 3%°ns.t fr(Y)=1.
> v(limsupA,) = 1.
» Borel Cantelli : > v(A;) = oo.

F®n st v(A,) > 1/n%

19/35



Performance of A on PRG Outputs

Let n be such that v(A,) > 1/n?.

Pr [A(G(x))=1]= Pr Pr [d(w'w)> 209" d(w")]

XNUs.Q" XNU5A2" rNUsQ"
= y({Y :d(Y 21 > 20-92"G(y [ 2m)})
>1/n?.

3*°n s.t Prct, n[A(Gn(x)) = 1] > 1/n%.
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Performance of A on random inputs

Kolmogorov inequality : For any w’ € ¥2",
the number of w € X2 such that d(w'w) > 209wl . d(w)

is less than 27 /2-(1=39)Iw|

vn,  Pryou.[Ay) = 1] < 1/2079-2",
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OWF's and roboustness

There exists infintely many n such that

Pr [A(G(x) = 1] — Pryeu[Ay) = 1] > 1/

xrUs on

» Thus if VF C X, cdimp(F) = Kpory (F),
= PRGs {G, : X*" — X"} do not exist

= OWTF's do not exist.

22/35



Main Theorem

Theorem
Suppose that one-way functions exist. Then, for every s < % there

exists a short seed polynomial-time samplable distribution v over
> % such that:

1. For every s' € (s, %) and every polynomial-time
v-approximable s'-supergale d,

v(5(d)) = 0.

Furthermore, this implies the existence of infinitely-often one-way
functions.
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Polynomial Time Samplable Distribution

Definition (Polynomial Time Samplable Distribution)

A measure v over £ is short seed polynomial time samplable if :
there exists a Turing machine M that uses s.n random bits, where
s < 1, such that for every n and w € &7,

Pr, san[M(1",r) = w] = vp(w).
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OWEF's and roboustness of sequences

We now extend the result to sequences :

> IfYX € %, cdimp(X) = Kpoy(X),
= PRGs {G, : X*" — X"} do not exist

= OWTF's do not exist.
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OWEF's and roboustness of sequences

We construct an (almost) Universal polytime-gale .
Poly-time gale combination :

Theorem
There exist a t(n) - nlog(n)-time s-gale d s.t
for all t(n)-time s-gales d’, there exist a constant cyr s.t

VX EX® neN, d(X|n)>c,-d(X]|n).

Corollary : There exists a poly-time s-gale d that succeeds on a
v-positive measure subset of g(X>°).

26/35



Converse

Theorem

If, for some s < 1, there exists a polynomial-time samplable
distribution v over ¥*° such that:

1. The number of random bits used by the sampler for v on
input 1" is at most sn.

2. For every s’ € (s, %) and every polynomial-time
v-approximable s'-supergale d,

V(5%(d)) = 0.

Then infinitely-often one-way functions exist.
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v-approximable supergale

Let d : ¥* — [0,00) N Q be an s-supergale and v be any
probability distribution over X°°.

d is t(n)-time v-approximable if for Vk 3 probabilistic t(n)-time
machine M and constant ¢ < 1, s.t Vn,

> {weX": M(w)ég][c-d(w),d(w)]} C supp(vs)
> v {w € X" M(w) & [c-d(w),d(w)]} < n7k.

) Mis Mis
Mis Correct Wrong

Correct

Mis
Correct

v
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Proof Overview:

Construct d such that v(S*(d)) = 1

—i.0. OWFs = we can v approximate d

Contradiction to (2)
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Proof: Construct gale d s.t. v(S*(d)) =1

Let there be v such that condition (1) and (2) holds.

1
2lwl-s

Construct supergale: d(w) = 2°1"ly(w)
Property: From (1), we have, v,(w) >
= d(w) > 2IwI(s'=9) (%)

Claim: v(S8*(d)) =1

Proof: ¥X € supp(v)

(¥) = d(X | n)>2""=5) > 1
= limph00 d(X [ n) =00

{X :limpo00 d(X | n) =00} 2 supp(v)
= v{X € X®:limsup,_ ., d(X [ n) > v{supp(v)}oo} = 1.
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- j.0. OWF =

Let S be a machine s.t. Vn Vw € X",
Pr [S(1",r) = w] = vp(w)

r<— Unc/

Let f(w) = S, w)

-i0. OWF —
» Inverter for sampler f: f can be inverted by Z w.p.
>1-0 (%) forany g>1
> Approximating algo for v,: 3 PPT algo A and ¢ < 1, s.t.
Pry,[c - va(w) < A(w) < vp(w)] > 1—0(3). [IRS]
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Lemma from [IRS'22]

Theorem

Assume i.o. one-way functions do not exist. Let D = {D,} be a
poly time samplable distribution and g > 1. Then, 3 PPT algo A
and constant ¢ < 1 such that Vn,

Pryp,[c - Da(x) < A(x) < Dp(x)] = 1 — O <1> .

n9
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Use inverter Z and approximating algo A to
v-approximate d

Construct M(w) s.t.:

» Run Z(w)
> If (f(Z(w)) # w):
» OQutput 0
» Else:
> Run A(w)
> Output 251"l A(w)
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Conditions for v-approximation

) Mis Mis .
Mis Correct Wrong Mis
Correct Correct

v V77

» Condition 1. If v(w) =0 = w & supp(v,)
— 7 doesn’t invert f = M outputs 0
= {w: M(w) ¢ [c-d(w),d(w)]} C supp(vy)

» Condition 2. [IRS] = A approximates v,
= M approximates d w.p. >1— 0 (%)

n9

— Vn, v{w: M(w) & [c- d(w),d(w)]} < O(n9)

Therefore, machine M v-approximates d. [Contradiction]
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Conclusion and Future Work

» We showed that (i.0) One-way functions exist <=

dimension gaps for a “Large” collection of sequences.

» Future Directions:

» Dimension separation from milder assumptions.
DistP # DistNP = cdimp # Kpoly?
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Thank You!

Questions?
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