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Introduction and Motivation

▶ Polynomial-time Dimension:
Quantifies information density of infinite binary strings.
With polynomial-time resource bounds.

▶ Two approaches:

1. cdimP : Defined using s-gales (betting strategies).
2. Kpoly: Using time-bounded Kolmogorov complexity.

▶ Robustness question: Are these two notions equivalent?

▶ Our Result :
One-way functions ⇐⇒ Dimension gaps for a “Large”
collection of sequences.
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Polynomial Time Dimension (cdimP)

▶ s-gale : d : Σ∗ → [0,∞) such that

d(w0) + d(w1) = 2s · d(w).

▶ Poly-time s-gale : d : Σ∗ → Q such that

d(w) runs in time |w |k .

cdimP

For an infinite binary sequence X ∈ Σ∞, define

cdimP(X ) = inf
s
{∃ poly-time s-gale d : lim sup

n
d(X ↾ n) = ∞}.
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Polynomial Time Dimension (cdimP)

For an infinite binary sequence X ∈ Σ∞, define

cdimP(X ) = inf
s
{∃ poly-time s-gale d : lim sup

n
d(X ↾ n) = ∞}.

For a set of sequences F ⊆ Σ∞, define

cdimP(F) = inf
s
{∃ poly-time s-gale d : ∀X ∈ F , lim sup

n
d(X ↾ n) = ∞}.
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Kolmogorov Complexity approach (Kpoly)

For a finite string x ∈ Σ∗, for a time function t(n),

Kt(x) = min{|Π| : Ut(Π) = x}.

▶ Length of the shortest description of x from which a t(n)-time
algorithm can recover x .

Kpoly

For an infinite string X ∈ Σ∞ :

Kpoly(F) = inf
t∈poly

lim inf
n→∞

Kt(X ↾ n)
n

.
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Kolmogorov Complexity approach (Kpoly)

For an infinite string X ∈ Σ∞ :

Kpoly(F) = inf
t∈poly

lim inf
n→∞

Kt(X ↾ n)
n

.

For a set of infinite strings F ⊆ Σ∞ :

Kpoly(F) = inf
t∈poly

sup
X∈F

lim inf
n→∞

Kt(X ↾ n)
n

.
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Robustness in the Classical Setting

Theorem (Mayordomo, Lutz)

For all F ⊆ Σ∞,

cdim(F) = sup
X∈F

lim inf
n→∞

K (X ↾ n)
n

.

Theorem (Hitchcock , Vinodchandran)

For every F ⊆ Σ∞,

cdimPSPACE(F) = KPSPACE(F).
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Robustness in the Polynomial-Time Setting ?

▶ Hitchcock, Vinodchandran [2005] : For all F ⊆ Σ∞,

Kpoly(F) ≤ cdimP(F).

▶ However, the reverse inequality remains elusive.

Question
Is it true that, for every sequence X ∈ Σ∞,

cdimP(X ) = Kpoly(X )?
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Our Main Results

▶ We resove this by relating it to the existence of one-way
functions.

▶ One-way functions =⇒ cdimP ̸= Kpoly.

▶ OWF =⇒ ν {X : cdimP(X ) ̸= Kpoly(X )} = 1,

▶ (Converse) Dimension gap =⇒ (infinitetly-often) OWF.
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Dimension Gaps from One-Way Functions

Lemma
If one-way functions exist, then for all s < 1/2, there exists a set
F ⊆ Σ∞ such that:

Kpoly(F) ≤ s and cdimP(F) ≥ 1/2.
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Proof Ideas: Overview

▶ Assume one-way functions exist.

▶ For all s < 1, this implies the existence of pseudorandom
generators

(PRGs) {Gn : Σsn → Σn}n∈N
running in polynomial time.

▶ We use these PRG’s to construct a short seed map

g : Σ∞ → Σ∞.
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Construction of g

0..0

Figure: Illustration of g(X ).
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Proof Ideas: Overview

▶ We use these PRG’s Gn : Σsn → Σn to construct a short seed
map

g : Σ∞ → Σ∞.

▶ We show :

1. Kpoly(F = g(Σ∞)) ≤ s.

2. For any s ′ ∈ (s, 1/2),
exists an s ′-gale d that succeeds on F =⇒
exists a distinguisher A that breaks the PRG

∴ OWF =⇒ cdimP(F) ≥ 1/2.
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Breaking a PRG

▶ The PRG {Gn}n is broken if there exists
A polynomial-time algorithm A (Distinguisher) such that
for infinitely many n and some constant c:

∣∣∣∣ Pr
x∼Us.n

[A(Gn(y)) = 1]− Pr
r∼Un

[A(r) = 1]

∣∣∣∣ ≥ 1/nc .

15 / 35



Breaking the PRG via gales

▶ We have an s ′-gale d that succeeds on all Y ∈ g(Σ∞).

▶ Using standard techniques, convert d into a martingale d̃ such
that for all Y ∈ g(Σ∞):

d̃(Y ↾ 2n+1) > 2(1−s̃)2n d̃(Y ↾ 2n),

for infinitely many n and some s̃ ∈ (2s ′, 1).
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The Distinguisher Algorithm

▶ Construct a polynomial-time distinguisher A:

1. On an input w of length 2n, randomly choose r ∈ Σs·2n .

2. Compute w ′ = g(r).

3. Output 1 if
d̃(w ′w) ≥ 2(1−s̃)|w | · d̃(w ′),

and output 0 otherwise.
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Performance of A on PRG Outputs

▶ Use Borell-Cantelli Lemma to get a uniform bound over a
positive measure-subset.

ν(F) = µ(g−1(F)).

ν(g(Σ∞)) = 1.

Borel Cantelli:

ν({Y : d̃(Y ↾ 2n+1) > 2(1−s̃)2n d̃(Y ↾ 2n)}) ≥ 1/n2.
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Borel Cantelli Lemma

Define

▶ fn(Y ) = 1 iff d̃(Y ↾ 2n+1) > 2(1−s̃)2n d̃(Y ↾ 2n).

▶ An = {Y : fn(Y ) = 1}

We have :

▶ For all Y ∈ g(Σ∞), ∃∞n s.t fn(Y ) = 1.

▶ ν(lim supAn) = 1.

▶ Borel Cantelli :
∑

n ν(Ai ) = ∞.

∃∞n s.t ν(An) > 1/n2.
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Performance of A on PRG Outputs

Let n be such that ν(An) > 1/n2.

Pr
x∼Us.2n

[A(G (x)) = 1] = Pr
x∼Us.2n

Pr
r∼Us.2n

[d̃(w ′w) ≥ 2(1−s̃)|w | · d̃(w ′)]

= ν({Y : d̃(Y ↾ 2n+1) > 2(1−s̃)2n d̃(Y ↾ 2n)})
≥ 1/n2.

∃∞n s.t Prx∼Us.2n
[A(Gn(x)) = 1] ≥ 1/n2.
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Performance of A on random inputs

Kolmogorov inequality : For any w ′ ∈ Σ2n ,

the number of w ∈ Σ2n such that d̃(w ′w) ≥ 2(1−s̃)|w | · d̃(w ′)

is less than 2n/2−(1−s̃)|w |

∀n, Pry∼U2n
[A(y) = 1] ≤ 1/2(1−s̃).2n .
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OWF’s and roboustness

There exists infintely many n such that

Pr
x∼Us.2n

[A(G (x)) = 1]− Pry∼U2n
[A(y) = 1] ≥ 1/n2.

▶ Thus if ∀F ⊆ Σ∞, cdimP(F) = Kpoly(F),

=⇒ PRGs {Gn : Σsn → Σn} do not exist

=⇒ OWF’s do not exist.
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Main Theorem

Theorem
Suppose that one-way functions exist. Then, for every s < 1

2 , there
exists a short seed polynomial-time samplable distribution ν over
Σ∞ such that:

1. For every s ′ ∈ (s, 12) and every polynomial-time
ν-approximable s ′-supergale d,

ν(S∞(d)) = 0.

Furthermore, this implies the existence of infinitely-often one-way
functions.
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Polynomial Time Samplable Distribution

Definition (Polynomial Time Samplable Distribution)

A measure ν over Σ∞ is short seed polynomial time samplable if :
there exists a Turing machine M that uses s.n random bits, where
s < 1, such that for every n and w ∈ Σn,

Prr∼Σq(n) [M(1n, r) = w ] = νn(w).
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OWF’s and roboustness of sequences

We now extend the result to sequences :

▶ If ∀X ∈ Σ∞, cdimP(X ) = Kpoly(X ),

=⇒ PRGs {Gn : Σsn → Σn} do not exist

=⇒ OWF’s do not exist.
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OWF’s and roboustness of sequences

We construct an (almost) Universal polytime-gale .

Poly-time gale combination :

Theorem
There exist a t(n) · n log(n)-time s-gale d s.t
for all t(n)-time s-gales d ′, there exist a constant cd ′ s.t

∀X ∈ Σ∞, n ∈ N, d(X ↾ n) ≥ c ′d · d(X ↾ n).

Corollary : There exists a poly-time s-gale d that succeeds on a
ν-positive measure subset of g(Σ∞).
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Converse

Theorem
If, for some s < 1, there exists a polynomial-time samplable
distribution ν over Σ∞ such that:

1. The number of random bits used by the sampler for ν on
input 1n is at most sn.

2. For every s ′ ∈ (s, 12) and every polynomial-time
ν-approximable s ′-supergale d,

ν(S∞(d)) = 0.

Then infinitely-often one-way functions exist.
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ν-approximable supergale

Let d : Σ∗ → [0,∞) ∩Q be an s-supergale and ν be any
probability distribution over Σ∞.

d is t(n)-time ν-approximable if for ∀k ∃ probabilistic t(n)-time
machine M and constant c < 1, s.t ∀n,

▶ {w ∈ Σn : M(w) ̸∈ [c · d(w), d(w)]} ⊆ supp(νn)

▶ νn{w ∈ Σn : M(w) ̸∈ [c · d(w), d(w)]} ≤ n−k .

M is
Correct

M is
Correct

M is
Correct

M is
Wrong
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Proof Overview:
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Proof: Construct gale d s.t. ν(S∞(d)) = 1

Let there be ν such that condition (1) and (2) holds.

Construct supergale: d(w) = 2s
′|w |ν(w)

Property: From (1), we have, νn(w) ≥ 1
2|w|·s

=⇒ d(w) ≥ 2|w |(s
′−s) ....(∗)

Claim: ν(S∞(d)) = 1
Proof: ∀X ∈ supp(ν)
(∗) =⇒ d(X ↾ n) ≥ 2n(s

′−s) > 1
=⇒ limn→∞ d(X ↾ n) = ∞

{X : limn→∞ d(X ↾ n) = ∞} ⊇ supp(ν)
=⇒ ν {X ∈ Σ∞ : lim supn→∞ d(X ↾ n) > ν{supp(ν)}∞} = 1.
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¬ i.o. OWF =⇒

Let S be a machine s.t. ∀n ∀w ∈ Σn,
Pr

r←U
nc

′
[S(1n, r) = w ] = νn(w)

Let f (w) = S(1|w |
c′
,w)

¬ i.o. OWF =⇒
▶ Inverter for sampler f: f can be inverted by I w.p.

≥ 1− O
(

1
nq

)
for any q > 1

▶ Approximating algo for νn: ∃ PPT algo A and c < 1, s.t.
Prw∼νn [c · νn(w) ≤ A(w) ≤ νn(w)] ≥ 1− O

(
1
nq

)
. [IRS ]
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Lemma from [IRS’22]

Theorem
Assume i.o. one-way functions do not exist. Let D = {Dn} be a
poly time samplable distribution and q ≥ 1. Then, ∃ PPT algo A
and constant c < 1 such that ∀n,

Prx∼Dn [c · Dn(x) ≤ A(x) ≤ Dn(x)] ≥ 1− O

(
1

nq

)
.
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Use inverter I and approximating algo A to
ν-approximate d

Construct M(w) s.t.:

▶ Run I(w)
▶ If (f (I(w)) ̸= w):

▶ Output 0

▶ Else:
▶ Run A(w)
▶ Output 2s

′|w |A(w)
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Conditions for ν-approximation

M is
Correct

M is
Correct

M is
Correct

M is
Wrong

▶ Condition 1. If ν(w) = 0 =⇒ w ̸∈ supp(νn)
=⇒ I doesn’t invert f =⇒ M outputs 0
=⇒ {w : M(w) ̸∈ [c · d(w), d(w)]} ⊆ supp(νn)

▶ Condition 2. [IRS] =⇒ A approximates νn
=⇒ M approximates d w.p. ≥ 1− O

(
1
nq

)
=⇒ ∀n, ν{w : M(w) ̸∈ [c · d(w), d(w)]} ≤ O (n−q)

Therefore, machine M ν-approximates d . [Contradiction]
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Conclusion and Future Work

▶ We showed that (i.o) One-way functions exist ⇐⇒
dimension gaps for a “Large” collection of sequences.

▶ Future Directions:

▶ Dimension separation from milder assumptions.
DistP ̸= DistNP =⇒ cdimP ̸= Kpoly?
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Thank You!

Questions?
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