One-Way functions and Polynomial Time Dimension

Satyadev Nandakumar, Subin Pulari, Akhil S, Suronjona Sarma

February 27, 2025

イロン 不同 とくほど 不良 とうせい

1/35

Context and Motivation

Our Results

Proof Outline

Converse

Introduction and Motivation

- Polynomial-time Dimension: Quantifies information density of infinite binary strings. With polynomial-time resource bounds.
- Two approaches:
 - 1. cdim_{P} : Defined using *s*-gales (betting strategies).
 - 2. \mathcal{K}_{poly} : Using time-bounded Kolmogorov complexity.
- Robustness question: Are these two notions equivalent?
- Our Result :

One-way functions \iff Dimension gaps for a "Large" collection of sequences.

イロン 不同 とくほど 不良 とうせい

Polynomial Time Dimension $(cdim_P)$

cdim_{P}

For an infinite binary sequence $X \in \Sigma^{\infty}$, define

$$\operatorname{cdim}_{\operatorname{P}}(X) = \inf_{s} \{ \exists \text{ poly-time } s \text{-gale } d : \limsup_{n} d(X \upharpoonright n) = \infty \}.$$

< □ > < □ > < □ > < 言 > < 言 > こ の < ⊙ 4/35 Polynomial Time Dimension $(cdim_P)$

For an infinite binary sequence $X \in \Sigma^{\infty}$, define

 $\operatorname{cdim}_{\mathrm{P}}(X) = \inf_{s} \{ \exists \text{ poly-time } s \text{-gale } d : \limsup_{n} d(X \upharpoonright n) = \infty \}.$

For a set of sequences $\mathcal{F} \subseteq \Sigma^{\infty}$, define

 $\operatorname{cdim}_{\operatorname{P}}(\mathcal{F}) = \inf_{s} \{ \exists \text{ poly-time } s \text{-gale } d : \forall X \in \mathcal{F}, \limsup_{n} d(X \upharpoonright n) = \infty \}.$

Kolmogorov Complexity approach (\mathcal{K}_{poly})

For a finite string $x \in \Sigma^*$, for a time function t(n),

$$\mathcal{K}_t(x) = \min\{|\Pi| : \mathcal{U}_t(\Pi) = x\}.$$

Length of the shortest description of x from which a t(n)-time algorithm can recover x.

$\mathcal{K}_{\mathrm{poly}}$

For an infinite string $X \in \Sigma^{\infty}$:

$$\mathcal{K}_{\mathrm{poly}}(\mathcal{F}) = \inf_{t \in \mathrm{poly}} \liminf_{n \to \infty} \frac{\mathcal{K}_t(X \upharpoonright n)}{n}$$

(日)

Kolmogorov Complexity approach (\mathcal{K}_{poly})

For an infinite string $X \in \Sigma^{\infty}$:

$$\mathcal{K}_{\mathrm{poly}}(\mathcal{F}) = \inf_{t \in \mathrm{poly}} \liminf_{n \to \infty} \frac{\mathcal{K}_t(X \upharpoonright n)}{n}.$$

For a set of infinite strings $\mathcal{F}\subseteq \Sigma^\infty$:

$$\mathcal{K}_{\mathrm{poly}}(\mathcal{F}) = \inf_{t \in \mathrm{poly}} \sup_{X \in \mathcal{F}} \liminf_{n \to \infty} \frac{\mathcal{K}_t(X \upharpoonright n)}{n}.$$

 Robustness in the Classical Setting

Theorem (Mayordomo, Lutz) For all $\mathcal{F} \subseteq \Sigma^{\infty}$,

$$\operatorname{cdim}(\mathcal{F}) = \sup_{X \in \mathcal{F}} \liminf_{n \to \infty} \frac{K(X \upharpoonright n)}{n}.$$

 $\label{eq:constraint} \begin{array}{l} \mbox{Theorem (Hitchcock , Vinodchandran)} \\ \mbox{For every } \mathcal{F} \subseteq \Sigma^{\infty}, \end{array}$

$$\operatorname{cdim}_{\operatorname{PSPACE}}(\mathcal{F}) = \mathcal{K}_{\operatorname{PSPACE}}(\mathcal{F}).$$

Robustness in the Polynomial-Time Setting ?

► Hitchcock, Vinodchandran [2005] : For all $\mathcal{F} \subseteq \Sigma^{\infty}$,

 $\mathcal{K}_{\mathrm{poly}}(\mathcal{F}) \leq \mathrm{cdim}_{\mathrm{P}}(\mathcal{F}).$

► However, the reverse inequality remains elusive.

Question

Is it true that, for every sequence $X\in\Sigma^\infty$,

 $\operatorname{cdim}_{\operatorname{P}}(X) = \mathcal{K}_{\operatorname{poly}}(X)?$

(ロ) (同) (目) (日) (日) (の)

9/35

Our Main Results

- We resove this by relating it to the existence of one-way functions.
- One-way functions \implies cdim_P $\neq \mathcal{K}_{poly}$.

Our Main Results

- We resove this by relating it to the existence of one-way functions.
- One-way functions \implies cdim_P $\neq \mathcal{K}_{poly}$.
- ► OWF $\implies \nu \{X : \operatorname{cdim}_{\operatorname{P}}(X) \neq \mathcal{K}_{\operatorname{poly}}(X)\} = 1,$
- (Converse) Dimension gap \implies (infinitetly-often) OWF.

Dimension Gaps from One-Way Functions

Lemma

If one-way functions exist, then for all s<1/2, there exists a set $\mathcal{F}\subseteq \Sigma^\infty$ such that:

$$\mathcal{K}_{\mathrm{poly}}(\mathcal{F}) \leq s$$
 and $\mathrm{cdim}_{\mathrm{P}}(\mathcal{F}) \geq 1/2.$

Proof Ideas: Overview

- Assume one-way functions exist.
- For all s < 1, this implies the existence of pseudorandom generators</p>

$$(\mathsf{PRGs}) \ \{ G_n : \Sigma^{sn} \to \Sigma^n \}_{n \in \mathbb{N}}$$

running in polynomial time.

• We use these PRG's to construct a *short seed map* $\varphi: \Sigma^{\infty} \to \Sigma^{\infty}.$

Construction of g

Figure: Illustration of g(X).

Proof Ideas: Overview

• We use these PRG's $G_n : \Sigma^{sn} \to \Sigma^n$ to construct a *short seed* map

$$g:\Sigma^{\infty}\to\Sigma^{\infty}.$$

We show :

1. $\mathcal{K}_{\text{poly}}(\mathcal{F} = g(\Sigma^{\infty})) \leq s.$

 For any s' ∈ (s, 1/2), exists an s'-gale d that succeeds on F ⇒ exists a distinguisher A that breaks the PRG

 $\therefore OWF \implies \operatorname{cdim}_{\operatorname{P}}(\mathcal{F}) \ge 1/2.$

The PRG {G_n}_n is broken if there exists A polynomial-time algorithm A (Distinguisher) such that for infinitely many n and some constant c:

$$\left|\Pr_{x \sim U_{s,n}}[\mathcal{A}(G_n(y)) = 1] - \Pr_{r \sim U_n}[\mathcal{A}(r) = 1]\right| \geq 1/n^c.$$

Breaking the PRG via gales

- We have an s'-gale d that succeeds on all $Y \in g(\Sigma^{\infty})$.
- Using standard techniques, convert *d* into a martingale *d* such that for all Y ∈ g(Σ[∞]):

$$\widetilde{d}(Y \restriction 2^{n+1}) > 2^{(1-\widetilde{s})2^n} \widetilde{d}(Y \restriction 2^n),$$

for infinitely many n and some $\tilde{s} \in (2s', 1)$.

The Distinguisher Algorithm

Construct a polynomial-time distinguisher A:

1. On an input w of length 2^n , randomly choose $r \in \Sigma^{s \cdot 2^n}$.

- 2. Compute w' = g(r).
- 3. Output 1 if

$$\widetilde{d}(w'w) \geq 2^{(1-\widetilde{s})|w|} \cdot \widetilde{d}(w'),$$

and output 0 otherwise.

Performance of A on PRG Outputs

 Use Borell-Cantelli Lemma to get a uniform bound over a positive measure-subset.

$$\nu(\mathcal{F}) = \mu(g^{-1}(\mathcal{F})).$$

$$\nu(g(\Sigma^{\infty})) = 1.$$

Borel Cantelli:

 $\nu(\{Y : \widetilde{d}(Y \upharpoonright 2^{n+1}) > 2^{(1-\widetilde{s})2^n} \widetilde{d}(Y \upharpoonright 2^n)\}) \ge 1/n^2.$

Borel Cantelli Lemma

Define

•
$$f_n(Y) = 1$$
 iff $\tilde{d}(Y \upharpoonright 2^{n+1}) > 2^{(1-\tilde{s})2^n} \tilde{d}(Y \upharpoonright 2^n)$.
• $A_n = \{Y : f_n(Y) = 1\}$

We have :

- ► For all $Y \in g(\Sigma^{\infty})$, $\exists^{\infty} n \text{ s.t } f_n(Y) = 1$.
- $\triangleright \ \nu(\limsup A_n) = 1.$

• Borel Cantelli :
$$\sum_n \nu(A_i) = \infty$$
.

$$\exists^{\infty} n \text{ s.t } \nu(A_n) > 1/n^2.$$

Performance of A on PRG Outputs

Let *n* be such that $\nu(A_n) > 1/n^2$.

$$\Pr_{x \sim U_{s,2^n}} [\mathcal{A}(G(x)) = 1] = \Pr_{x \sim U_{s,2^n}} \Pr_{r \sim U_{s,2^n}} [\tilde{d}(w'w) \ge 2^{(1-\tilde{s})|w|} \cdot \tilde{d}(w')]$$
$$= \nu(\{Y : \tilde{d}(Y \upharpoonright 2^{n+1}) > 2^{(1-\tilde{s})2^n} \tilde{d}(Y \upharpoonright 2^n)\})$$
$$\ge 1/n^2.$$

 $\exists^{\infty} n \text{ s.t } Pr_{x \sim U_{s.2^n}}[\mathcal{A}(G_n(x)) = 1] \geq 1/n^2.$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q () 20 / 35

Performance of A on random inputs

Kolmogorov inequality : For any $w' \in \Sigma^{2^n}$, the number of $w \in \Sigma^{2^n}$ such that $\tilde{d}(w'w) \ge 2^{(1-\tilde{s})|w|} \cdot \tilde{d}(w')$ is less than $2^n/2^{-(1-\tilde{s})|w|}$

$$\forall n$$
, $\Pr_{y \sim U_{2^n}}[\mathcal{A}(y) = 1] \leq 1/2^{(1-\tilde{s}).2^n}$.

OWF's and roboustness

There exists infinitely many n such that

$$\Pr_{x \sim U_{s,2^n}}[\mathcal{A}(G(x)) = 1] - \Pr_{y \sim U_{2^n}}[\mathcal{A}(y) = 1] \ge 1/n^2.$$

Thus if ∀F ⊆ Σ[∞], cdim_P(F) = K_{poly}(F),
⇒ PRGs {G_n : Σ^{sn} → Σⁿ} do not exist
⇒ OWF's do not exist.

Main Theorem

Theorem

Suppose that one-way functions exist. Then, for every $s < \frac{1}{2}$, there exists a short seed polynomial-time samplable distribution ν over Σ^{∞} such that:

1. For every $s' \in (s, \frac{1}{2})$ and every polynomial-time ν -approximable s'-supergale d,

 $\nu(S^{\infty}(d))=0.$

Furthermore, this implies the existence of infinitely-often one-way functions.

イロン 不同 とくほど 不良 とうほ

Definition (Polynomial Time Samplable Distribution)

A measure ν over Σ^{∞} is *short seed polynomial time samplable* if : there exists a Turing machine M that uses s.n random bits, where s < 1, such that for every n and $w \in \Sigma^n$,

$$\operatorname{Pr}_{r\sim\Sigma^{q(n)}}[M(1^n,r)=w]=\nu_n(w).$$

イロン 不同 とくほど 不良 とうほ

24 / 35

OWF's and roboustness of sequences

We now extend the result to sequences :

OWF's and roboustness of sequences

We construct an (almost) Universal polytime-gale .

Poly-time gale combination :

Theorem

There exist a $t(n) \cdot n \log(n)$ -time s-gale d s.t for all t(n)-time s-gales d', there exist a constant $c_{d'}$ s.t

$$\forall X \in \Sigma^{\infty}, n \in \mathbb{N}, \quad d(X \upharpoonright n) \ge c'_d \cdot d(X \upharpoonright n).$$

Corollary : There exists a poly-time s-gale d that succeeds on a ν -positive measure subset of $g(\Sigma^{\infty})$.

Converse

Theorem

If, for some s < 1, there exists a polynomial-time samplable distribution ν over Σ^{∞} such that:

- The number of random bits used by the sampler for ν on input 1ⁿ is at most sn.
- 2. For every $s' \in (s, \frac{1}{2})$ and every polynomial-time ν -approximable s'-supergale d,

$$\nu(S^\infty(d))=0.$$

Then infinitely-often one-way functions exist.

ν -approximable supergale

Let $d: \Sigma^* \to [0,\infty) \cap \mathbb{Q}$ be an *s*-supergale and ν be any probability distribution over Σ^{∞} .

d is t(n)-time ν -approximable if for $\forall k \exists$ probabilistic t(n)-time machine *M* and constant c < 1, s.t $\forall n$,

► {
$$w \in \Sigma^n : M(w) \notin [c \cdot d(w), d(w)]$$
} ⊆ supp(ν_n)
► ν_n { $w \in \Sigma^n : M(w) \notin [c \cdot d(w), d(w)]$ } ≤ n^{-k} .

Proof Overview:

<ロト < 回 > < 注 > < 注 > < 注 > 注 の Q (~ 28 / 35

Proof: Construct gale d s.t. $\nu(S^{\infty}(d)) = 1$

Let there be ν such that condition (1) and (2) holds.

Construct supergale: $d(w) = 2^{s'|w|}\nu(w)$ **Property:** From (1), we have, $\nu_n(w) \ge \frac{1}{2^{|w| \cdot s}}$ $\implies d(w) \ge 2^{|w|(s'-s)} \dots(*)$

Claim:
$$\nu(\mathbf{S}^{\infty}(\mathbf{d})) = \mathbf{1}$$

Proof: $\forall X \in supp(\nu)$
 $(*) \implies d(X \upharpoonright n) \ge 2^{n(s'-s)} > 1$
 $\implies \lim_{n \to \infty} d(X \upharpoonright n) = \infty$

$$\{X : \lim_{n \to \infty} d(X \upharpoonright n) = \infty\} \supseteq supp(\nu) \implies \nu \{X \in \Sigma^{\infty} : \limsup_{n \to \infty} d(X \upharpoonright n) > \nu \{supp(\nu)\} \infty\} = 1.$$

\neg i.o. OWF \implies

Let S be a machine s.t.
$$\forall n \ \forall w \in \Sigma^n$$
,

$$\Pr_{r \leftarrow U_{n^{c'}}} [S(1^n, r) = w] = \nu_n(w)$$
Let $f(w) = S(1^{|w|^{c'}}, w)$

 \neg i.o. OWF \Longrightarrow

▶ Inverter for sampler f: *f* can be inverted by \mathcal{I} w.p. $\geq 1 - O\left(\frac{1}{n^q}\right)$ for any q > 1

• Approximating algo for ν_n : \exists PPT algo \mathcal{A} and c < 1, s.t. $\Pr_{w \sim \nu_n}[c \cdot \nu_n(w) \leq \mathcal{A}(w) \leq \nu_n(w)] \geq 1 - O\left(\frac{1}{n^q}\right)$. [*IRS*]

▲□▶▲□▶▲臣▶▲臣▶ 臣 のなび

Lemma from [IRS'22]

Theorem

Assume i.o. one-way functions do not exist. Let $\mathcal{D} = \{\mathcal{D}_n\}$ be a poly time samplable distribution and $q \ge 1$. Then, $\exists PPT$ algo \mathcal{A} and constant c < 1 such that $\forall n$,

$$\Pr_{x \sim \mathcal{D}_n}[c \cdot \mathcal{D}_n(x) \leq \mathcal{A}(x) \leq \mathcal{D}_n(x)] \geq 1 - O\left(\frac{1}{n^q}\right).$$

Use inverter \mathcal{I} and approximating algo \mathcal{A} to ν -approximate d

Construct M(w) s.t.:

Conditions for ν -approximation

► Condition 1. If $\nu(w) = 0 \implies w \notin \operatorname{supp}(\nu_n)$ $\implies \mathcal{I}$ doesn't invert $f \implies M$ outputs 0 $\implies \{w : M(w) \notin [c \cdot d(w), d(w)]\} \subseteq \operatorname{supp}(\nu_n)$

▶ Condition 2. [IRS] $\implies \mathcal{A}$ approximates ν_n $\implies M$ approximates d w.p. $\ge 1 - O\left(\frac{1}{n^q}\right)$ $\implies \forall n, \nu\{w : M(w) \notin [c \cdot d(w), d(w)]\} \le O(n^{-q})$

Therefore, machine $M \nu$ -approximates d. [Contradiction]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Conclusion and Future Work

We showed that (i.o) One-way functions exist dimension gaps for a "Large" collection of sequences.

Future Directions:

Dimension separation from milder assumptions. DistP ≠ DistNP ⇒ cdim_P ≠ K_{poly}?

Thank You!

Questions?

<ロト < 回 > < 注 > < 注 > < 注 > 注 の Q (~ 35 / 35