1D 25: Benchmarking Reliability of Deep Learning Models for Pathological Gait Classification

Abhishek Jaiswal, Nisheeth Srivastava

Indian Institute of Technology Kanpur

Routine Walking

- Gait disorders increase from 10% to more than 60% in the elderly between the ages of 60 and 80.
- Gait abnormalities severely affect the Quality of Life (QoF).
- Altered gait could represent a lingering neurodegenerative condition.

Geriatric Gait - At home Needs

- Regular hospital commutes difficult in remote areas.
- Early diagnosis requires detection in home settings.
- Vision based detection is suitable for home settings.

Figure 1:Elderly Gait

Existing Space of Work

- Spatio-Temporal Graph Convolutional Networks (STGCN) are well suited to model human pose
- Many existing models are tested only on a single gait dataset

Benchmarking Study

- Previous evaluations often lack proper validation
- Over-parameterized models like STGCN tend to overfit gait data

Proposed Method

Figure 2:AMSGCN Model

AMSGCN

We present a robust baseline to ensure stable performance on multiple datasets.

- Multi-Stream STGCN network that incorporates global and local joint connection branches
- Consistent validation and test scores across multiple dataset

Table 1:AMS-GCN Input feature comparison - best and worst feature combinations and respective F1 scores.

Method	Worst F1	best F1
Multi-Modal Gait Symmetry Dataset		
1	Acc(56.0)	boneA(86.0)
2	Vel+Acc(55.0)	boneL+boneA(87.0)
3	Joint+Vel+Acc(77.0)	Acc+boneL+boneA(87.0)
4	Joint+vel+Acc+boneL(82.0)	Joint+Acc+boneL+boneA(86.0)
PD-Walk Dataset		
1	Acc(17.0)	$\mathrm{boneL}(87.0)$
2	Vel+Acc(17.0)	boneL+boneA(86.0)
3	Vel+Acc+boneA(83.0)	Acc+boneL+boneA(86.0)
4	Joint+Vel+Acc+boneA(85.0)	Vel+Acc+boneL+boneA(86.0)
Walking Gait Dataset		
1	Joint(41.0)	Acc(62.0)
2	Vel+Acc(54.0)	Joint+Acc(66.0)
3	Joint+boneL+boneA(55.0)	Vel+Acc+boneA(71.0)
4	Joint+Vel+Acc+boneL(63.0)	${\bf Joint+Acc+boneL+boneA(64.0)}$

Performance Insights

Is any one feature more important?

- Weighted feature combination did not provide consistent improvement
- Different individual features shine for different datasets but using more features tapers this gap
- Direct combination performance improvement was visible even with reduced inputs

What Next

Clinical viewpoint on the proposed results Collaborations and Postdoc?

Contact Information

- Web: http://cse.iitk.ac.in/users/abhijais/
- Email: abhi.jaiswal44@gmail.com

