TWINE RISC : ARCHITECTURE AND PERFORMANCE EVALUATION STUDY

A Thesis Submitted
in Partial Fulfillment of the Requirements

for the degree of

MASTER OF TECHNGLQOGY

by

. Dhiren Patel

to'thg

DEPARTMENT 0OF COMPUTER SCIENCE & ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR

JULY 1992

CERTIFICATE

It is certified that the work contained in the thesis enti-
tled TWINE RISC : ARCHITECTURE AND PERFORMANCE EVALUATION STUDY,
by DHIREN PATEL (Roll No : 9021101) has been carried out under my
supervision and that this work has not been submitted elsewhere

for a degree.

ot

(Dr. Rajat Moona)
Deptt. of CSE
IIT Kanpur.

28 AUG 1992

JENTRAL L'ZRARY
L

TOKANPUR

tee. No. A)J.A04AL

SE- 1992 -M—-PAT-TWI

ACKNOWL EDGMENTS

I would like to express my deepest gratitude to Dr.
Rajat Moona, my thesis superviéor for his expert guidance and
cohstant encouragement through out the course of this thesis
work. Working with him, in the very cordial atmosphere he
created, has been a special and memorable experience to me.

I am thankful to all my friends, especially Mr. T.
Agrawal, Mr. A. Singhai, Mr. H. Parekh, Mr. D. Gupta, and Mr.
Diﬁesh Rao, who helped me in programming and géve' valuable
suggestions.

I gratefully acknowledge the sponsorship provided by my
institute S.V.Regiocnal College of Engg;'&“Teqh..bﬁurat, Gujarat,
for M.Tech. study.

Finally I would like to thank Hall IV residents who made

my stay at IITK an enjoyable and memorable one.

it

ABSTRACT

As device technology is approaching fundamental lim-
its, =~ future ‘increases in computing' power with improved
cost/performancs ratio will be forced to rely on advances in com-

puter architecture.

e o

Twine RISC is a novel single chip low cost procegégsim

architecture which explaoits instru;tion_level temporal parallel-
vism by its well angineered’RISC'pipeliﬁe énd spatial pafa;lelism
by allowing multiple threads of computation to coexist and exe-
cute in parallel. In this project, a simuléégr faor evaluating
Twine RISC is cdaveloped. Key issues igtgived in design‘of archi-
tecture ére generation and synchronization of threads and supp&rt
for split _phasa transactions faor data transfer to/from glaobal
shared memory. Tzchnological constraints such as available VLSI

technology(which decides chip size) and state of the art memory

technology are =2!so considered.

Chapter

Chapter

Chapter

Table of Contents

1. Introduction and Thesis Organization
1.1 Introduction
1.2 Thesis Organization
2. Background and Related Work
2.1 Introduction and Overview
2.1.2 Dataflow Graphsttt e et e e e et e e
2.2 Dataflow Architectures
2.3 Dataflow/von Neumann Hybrid Architectures
2.4 gnhancement and Support Toward Multithread-
ing e TR o
3. Twine RISC Its Architecture ... _.............
3.1 Introduction and Overview
3.2 Various Building Blocks @ e
3.2.1 Code Memory7...Q..m..;
3:2;2 Dperand*Mémory :.
3.2.%3 Token QUeue e e e
3.2.4 Sequencer .; e
?.2,5 Data‘aueUg e e :
312.69Més§é§e Proﬁéésgf R
.3 The Twine RISC.Stream Pipeline -
3.3.1 Instruction Fetch Unit '
3.3.2 Dperand‘#etch Unit .f.l e e .
3.3.3 Execution Unit S

L

11
18
18
18
18
19
19

s
20
20
21

21

22

22

3.3.4 Result Store Unit

3.%3.5 Continuation Token Unit

napter 4.

Chapter 5.

Chapter 6.

6.2

6.3

Appendix A.

Twine RISC : Softwarg Environment
Introduction and Overview
Instruction Set and Its Coding
Handling Multiple Threads
MFORK Ganération of Multiple Threads
MJOIN : Synchronization of Multi#le Threads
Data Transfer To and From Global,Mgmory

LOAD : Move Data From Global Memory to
Operand Memory

RESM : Synchronise Data Transfer and Resume

STORE : Move Data From Operand Memory to
Global Memaory - ‘

Ingtruction Set Summary

Simulator and Performance Evaluation

Introduction and Overviesw

Simulétor Structure BRI A“T
Inbut Preparation ;.u-.-..;;.l‘ e e e e
1BV - nd UE v 1« Y o TN
Performance Meftrics e

Some Design.Issues

Introduction andxﬂve}view e
Philosophy“'i
Summary afRd Future Work e e

INStruction Set ...t e et et e

............................

......................

............

....................

...............

....................

.......

......

...............................

................................

......................

.........

....................

23
23
25
25
25
26

26

28

29

30

31

32

32

32
32
3%
35

" 35

36
37

37

37

37

40

ppendix

ppendix

Al Instruction Set
A.2 Instruction Execution in TRS Pipeline
A.2.1 Ordinary RISC Like Instructions
A.2.2 Special Instructionsc..c..ao..
A3 Instruction Set Codingot
A.4 Instruction Set SUMMATYt o manennn-

Code Structure faor Simulator

User's Mannual and Test Programs

B
C
C.1 User's Mannual
C.

..............................

2 Test Programs i in it ettt eeaneea

References

...

‘40

40
40
42
48
>1
2
56
26
57

63

0O O 0O O

List of Figures

vDataflow Graph for Expression (a*b)+(e*d) 3
Static Dataflow Architecture e 6
"PE for Tagged Token Dataflow Architecture 8
State Transition Diagram for an I-structure Cell 13
Twine RISC Processor Architecture e e e e 17
Instruction Set v J 24
Instruction Set Wlhas &N0 e e 39a
Twine RISC Processor Architecture 3%b
Instruction Set Coding it i eiaeen. 50
Instruction Set Summary i i e e 51
Sequential and Parallel Control Flows for Loads 58
CMF Fbr Prog.l % 0E ~ . L 29
GMF, TQF, RSF, ROUT for Prog.l e e e - 60.

- Concurrent Loads and Iterations 62

Chapter’'l : Introduction and Thesis Organization

1.1 Introduction

Fine grain multicomputers offer the potential of a signi-
icant increase in maximum computing power with greatly improved
ost/performance ratio. Significant challenges exist in processor

rchitecture for these machines.

RISC processors exploit. instruction level
rarallelism{(Temporal bafallelism) whéfeby an instruétéon pipeline
.s kept busy énd performs more than one operations for various
instructions. A significant amount of easily detectable parallel-
ism actually exists in most general purpose codes. Dataflow
architectures appear to be the most suitablenfor‘exploiting such
parallelism as they support generation and coordination of paral-
lel activities directly 1in hardware and can tolerate long
unpredictable communication delays [(3]. There has been a con-
sistent convergence toward a "practical” architectural framework
for implementing dataflow machines. The dataflow/von Neumann
hybrid architecture is a new phase of evolution in computer

architecture to exploit both temporal as weli as spatial paral-

lelism [27].

The context of this thesis work is to simulate a novel
processor architecture called Twine RISC and to enhance it. Twine
RISC is a low cost single «chip processor architecture which

rexploits instrucfion level parallelism by its well engineered

ﬁISC pipeline and spatial parallelism by allowing multiple

threads of computation to coexist and execute in parallel.

‘1.2 Thesis Organization

" The rest of the thesis is ofganized as follows ; In
ﬁChapter 2. we provide background and related wofk toward "practi-
cal"™ architectural framework for dataflow/von Neumann hybrid
architectures. In chapter 3, architecture of the Twine RISC pro-
cessor is dis;ussed. Chapter 4‘deals with the software environ-
.mént for the Twiné RISC. In chapter 5, simulator to test and
evaluate Twine RISC is discussed. Finally chapter 6 is the cong

cluding chapter of the thesis. It contains a brief summary and

discussion on future work in this area.

[

Appendix A gives complete instruction set vand execution
flow pdlicy for Twine RISC. Appendix B is a condensed specifica-
tion of the simulator. Appendix C describes Input/Output specifi-
cations and User's manual for simulatqr. Some test prdgrams and

performance results are 'also included.

Fig 2-1.L. Dataflow graph for expression (A™B) + (C™D)

Chapter 2. Backgrouﬁd and ;g]ated:WOrk

2.1 Introduction and Overview :

In this chapter we discuss in short the dataflow graphs
and their ébility to represent ﬁaximum avaiiable parallelism in a
'prcgram. There have been several attempts of building maéhines
capable of executing dataflow graphs. We discuss some of them in
Section 2.2. In Section 2.? dataflow/von Neumann hybrid architec—
tures are discusse&. Finally in section 2.4 we discuss enhance-
ments in conventional RfSC architecture for providing support for
multithreading. These include enhanced memory model, split phase

transactions and primitives for multithreading.

2.1.2 Dataflow graphs

‘Dataflow graphs are powerful intermediate representations
. for compilers. They are directed graphs in which nodes fepresent
priﬁitive functions such as AbD. suB .. etc., and the arcs
1@presént data dependencies - between functions.: Data?low graphs
specify oqu a partial order for the execution of iﬁstructions
and thus pr&vide opportunities for parallel and pipelined execu-
tion at thé level of 1nd1v1dual instructions. For example, the
dataflow graph for the expressxon [a*b + c*d] only specxfles that
both multlplxcatlons be executed before the addition, however,

the multiplicatioqs can be executed +in any order or even‘ini
paralliel. The %yantage of this fleijility becomes abparent when

we coﬁéider tﬁat the ordér in which a, b, ¢, and d will become

available may not be Known at compile time.

5

This strategy implicitly introduces sequencing bétween
instructions which depend on each éther. but allows instrdctioné
to execute in parallel if there exist no dependenby between them.
So it 1is very clear that if dataflow graphs are executed

directly, the machine can exploit maxihum available parallelism

in computation [3,10].

2.2 Dataflow architectures

Dataflow architectures are language based architectures
in which dataflow program graphs are the base language. Here
dataflow graphs constitute a formal Iinterface between dataflow

‘architectres and user programming languages.

We can view dataflow graphs as a machine language for a
parallel machine where a'node.in a dataflow graph repfesentsfa
machine instruction. Each instruction contains an opcode énd a
liét of destination instrbctioé addresses.

An' instruction or a node may execute whenever
token(operand data) is available on each of 'its input arcs and
that wHen it fires(i.e. .operation ié péfformed on its input
tokens), the input tokens are consumed, a result is computed, and
a result token is produced on each output arc, which may be an
input token for another node in the graph. ‘

This dictates the following bésic instruction cycle :

a. Détect wﬁen-én operation is enabled(when all operands values:
available)
b. Determine the opération toibé performed, i.e. fetch: instrucf-

tion.

e1B8|dwe| A1A[IOV Uy

N# uoiBupseq:

L# uopBuNBeQ

1121Un0) Jusl Bpejmou oy

BB|4 + 1YB|Y purledQ

Ba14+ 1167 pualedo 81n108}140Jy MO|JBIEq OHEIS “T-7'T by

epoodo

= Hun

8b6BI0OIS

weJiboid.
s K et

. eneny
nun Uo|1ONJISU| e un

yoie4 e1epdn

8
NI P3S #3d) | LNO
ylun uopetedQ — P8

{N1)yo1 ms , - {(LNO)YoIIMs

c¢. Compute results

d. generate result tokens

This is the basic instruction cycle of any datafloQ
machine, however, there remains tremendous flexibility on the

details of how this cyﬁle is performed [3].

~

There has been a cosistent convergence toward a M"practi-
cal™ architectural framework for implementing dataflow machines.
Several architectures on dataflow concept have been proposed,
some of which have been implemented in experimental machines [2].

Examples are : |

1. Static Dataflow Machine Projects

- The MIT Static Dataflow Machine [3]

- The NEC Dataflow Machines NEDIPS and IPP [3]

in these machinés. data tokens are assumed tﬁ move »aloég
the arcs-df'thé dataflow program graph to the operator nodes. The
nodel operation gets executed when all its operand data are:
present at the input arcs. Also all output arcs of a node be
empty before that node is enabféd..A token moves to the next unit
only after that unit has signalled that it can accept the token.
Only one token is allowed tao exist on any arc at given time. The"
restriction cannot be enforced at hardware level,hbut its effecﬁ
caﬁvba achieved by executing only graphs thaf have the property
whereby no more than one token can reéide on any érc at any stage
of execution.

Basic model of static dataflow machine architecture is

shown in fig.#2-2-1.

- BUIYOB MoOjjeeq US| pebBel 10} 3

AT AES

I

ueM0o] W10

Bel

WoeW
Boig

yois4
UO|IONJ)ISU|

INndinQ

» 3 4
iejjoljuog | ebeloyg
3d 415-1

UoIEW
—1IBM

~ N

s

ndu|

Dynamic (Tagged Token) Dataflow Machine Projects

- The Manchester Dataflow Machine [17]

SIGMA 1 at Electrotechnical Laboratory, Japan [18]

The MIT Tagged Token Machine [5,7]

|

Monscon : an Explicit Token-Store Architecture(MIT)
1,147

These machines use tagged tokens, so that more than one
oken can exist on an arc. The tagging is achieved by attaching a
a5e1 with each token which uniquely identifies the context of
hat token. A node 1is identified by a pair, code blaock and
nstruction address. Tags have four parts, viz; invocation 1ID,
.teration ID, code block, and instruction address. The iteration
[D distinguishes between different iterations of a particulér
invocation .of a loop code block, while the invocation ID distin--
guishes between different invocations. If the graph 1is c¢cyclic,
the taggfng allows dynamic unfolding of the iterative coﬁpufa-
tions and thereby exploits maximum available parallelism.

Basic processing element architecture mddel of the tagged

token machine .is shown in fig.#2.2-2,
Some defects of these machines are as follows:

1. A circular pipélin; does not work Qell éé a "p;peline" ‘for
less parallei' éxecution. It may - cccur that only one token is’
goiég round the pipeline cycle, and that PE throughput 1is less -
than one per a pipeliné circular'tgmef_ |

2. Simplé'packe£~baéed arcﬁitecture‘cannot exploit registers or

'a',fegisfer file efficiently. As token is always realized as a

packet and each of the packets enter a PE whenever ’pdssible7 it
is nonsence to reserve tokens in registers for the future node
operation. This is one of‘fhe main reason why a fine pitch pipe-
line is difficult to implement in a dataflow machine.

3. For matching hardware and time complexity are heavy.

4. Packet flow traffic is too heavy.

5. It takes much time to eliminate garbage tokens, which are
generated while executing switch operations for conditional com-

putations.

2.3 Dataflow/von Neumann Hybrid Archite;tures

In the previous section we - have reported several
shortcomings of pure dataflow machines. It has been realized
that to overcome these shortcomings following changes in the

design are necessary [11,13,16].

1. Improve machine performance by integrating a packet bgsed
circular pipeline of dataflow machines and "a . register based
adyanced control pipeline of vaon Neumann machines.

2. Use RISC based single chip PE design to simplify architec-
ture, and a direct matching scheme with large register file.

These lead to development of Dataflow/von Newmann hybrid
architectures which can éxploit both conventional von Neumann and
dataflow compiling technhology.

Examples of srchitectures falling in this class are F‘-—n~

.RISC(MIT)[IEJ and EMC-R(Electrotechnical Laboratory, Japan) [16].

P-RISC

evmmaremant—

P-RISC(for Parallel RISC) can be viewied as a dataflow
:hing that can achieve software compatibility with conventional
1 Neumann machine. Distinctive features are RISC like 3-address
structions that opoerate entirély within a processing element,
AD/STORE 1nstructions to move data in and out of the PE, 1-
ructure type storage model. Collection of frames on a PE is
garded as a collection of register sets, a particular register
t being identified by frame pointer. FORK and JOIN are instruc-
ons for thread .initiation and synchronization. The processor

pe and the token queue form a ring around which tokens are cir-

1lated[13].

EMC-R

i

AC-R is a PE for a parallel computer EM-4 built at Electrotechn-'
cal Laboratory, Japan. Distinctive features of EMC-R architec-
ure are strongly connected arc dataflow model, a direct match-
ng scheme and register based sequencing, a RISC based -design,
nd an integration of a packet baséd circular pipeline and . a

egister based advanced control pipelinel[l6].

2.4 Enhancement and Support towards Multithreading :

Two fundamental issues in multiprocessing/multithreading

-

are memory latency and waits for synchronization events. Both are

very expensive on ven Neumann machines{41{6].

Méﬁory latency

Memory latency is defined as the ' time which elapses
between making a request and receiving the associated response
{from memory. In a von Neumann processor, memory{ latency deter-
mines the timg to execute memory'reference instruction, which
finally détermines the maximum instruction processing’ speed.
Most von Neumann processors are likely tévbe "idle" during long
memory references, and such reférehces are unavoidable. In order
to reduce memory latency cost, it is essential that a processor
be capable of issuing multiple overlapped memory requests[73].

A different memory model, I - structure, is wused in a
few dataflow machines to tolerate memory latency thereby incres-
ing overall throughput. The transactions for processor to I-
structure ﬁemory are in terms of messages and are termed as

aplit-phase transactions.

I - structure Memory(2] :

The basic idea behind I-structure storage is toe defer a
data-read if the corresponding location has not been written.

Here each storage cell contains status bits to indicate
that the cell is in one of three possible states.

a. EMPTY : Nothing has been written into the cell since it was
last allocated. No attempt has been made to read the cell. It may
be written as for conventional memory.

b. FULL : The cell contains valid data that can be freely read
as in a conventional memory. In a conventional I-structure
memory, any attempt to write a FULL <cell is signalled as an

error. However, in our model FULL cell can 'be overwritten.

[|e0) ©4n}onJis-| U J0} we.bBl1Q ,co_:mc.m; e181S "1-%' 0 mE

Bl1UM

pgel

c. DEFERRED : Nothing has been written into cell, but at least

one attempt has been made to read it. When it is written, all

deferred reads must be satisfied.

Qells change state in the obvious ways when presented
with requests.

In fact, reads and writes may even get out of order in
communication networks. Synchronization of reads and writes ' is
performed for each cell of the structure, so that thefe is no
problem when a read preceds the write to a cell. In such-arcase,
a deferred read state is created whereby the read is put aside on
a list with a promise to fulfill the read request when the cell
is written. This synchronization is implehented using two bits to
indicate whether a cell is in empty, full or deferred state. A
pointer to the deffered read list, if one exists, is kept in the
empty cell of the structure until the point Qhen the expecfad

write takes place.(fig.# 2:-84-1)

Split Phase Transactions : A v

It is a method by which synchrony between the I - struc-
ture request and reply is maintained. A request token is sent to
I - structure unit(potentially across the communication network)
and the processor is then free to continue executing other
instructions while the request is being delivered and handled.

This will never cause the processor pipeline to stall.

Threads

Threads are defined as small processes that operate

almost entirely on local data and rarely interact. They are the
basic blocks/units of computation in to which programs are decom-
posed for parallel execution. Threads can be created dynamically
during computation and die after having produced and consumed
data. Threads can be in one of three states : ready to
execute(queued locally or globally), executing, suspended(waiting

for synchronization sighal).

Following modifications are required to a conventional
RISC to make it suitable for exploiting the fine grain parallel-
ism of dataflow execution, while still retaining the effecient

contraol mechanism of von Neumann computing[l5,167].

1. Modify the RISC processor implementation to make it mul-
tithreading. |

- Implement more than one PEs on a single chip.

-~ Include primitives MFORK and MJOIN for generafing and
synchronizing multiple threads of computation.
2. Augment the RISC processor with I - structure like storage

with split phase transactions.

The Twine RISC architecture implants the fallowing
features.
1. Loads(memory reguest) are sblit phase transactions. There-
fore, responses can come back in any order{
2. The processor’switches automatically to another thread of“j
computation if it exists rather than being idle.
3. The processor supports multiple threads.

4. The pipeline ié kept full as long as token queue is not

empty.

5. Simultaneous execution of various threads is possible and is

carried out within the processor.

01N108)1Yoly 10886001d OSId ouIM] *T-¢-Big

leouenbeg
I
AIOWBW |BQO|D
woiy = Y _!l‘villlllllJ
]
Alowen 18909 jun 10 yun sy 1
10880001d rl.lu ==
i
oBBS8B N ! _]
1 —)
1 — —
_ A i
“ ; Hun X3 [
] pNoONY
" . I
! | |
“ _ *
" | |
| ” Hun 40 r4|
Al
. |
, - !
_
Z# WBOeNG OFIY BUIM] | Hun 41 epoy
A | Lo enene i
T wwosry oo — - ——

251y il

eneny .

uexoyl

18

Chapter 3 : Twine RISC : Its Architecture

3.1 Introduction and Overview

In this chaptef we discuss complete processor architec-
ture of the Twine RISC. We adopt a RISC architecture for the
Twine RISC for its simplicity and execution efficiency. Instruc-
tion levelvparallelism is exploited in the confext of sequential
thread executing in a well engineered RISC pipeline. Multithread-
ing 1is exploited by providing more than one streams of execution
pipeline on single chip. These st?eaﬁs are called Twine RISC
Streams(TRS). . In Section 3.2 we discuss various blocks of Twine

RISC viz., Code Memory, Operand Memory, Token Queue, Sequencer,

Data Queue, and Message Processor. The Twine RISC processor also.

supporfs split phasé transactions between memory and processor
through Message Processor and Data Queue. We also discuss this
mechanism in Section 3.2. Instruction pipeline in a TRS is dis-
cussed in Section 3.3. Various stages in this pipeline include

Instruction Fetch Unit, Dperahd Fetch Unit, Execution Unit,

Result Store Unit and Continuation token generation Unit.(5€e£‘35'

3.2 Various Building Blocks

R]
~

2.1 Code Memory (CM)

r

Code memory holds instructions. Each TRS has an access to
a CM outside the chip. These Ciis are read only memories for TRSs.
A separate host processor is used to initialize the CM by loading

a Twine RISC progarm chunck.

3.2.2 Operand Memory (OM)

[t is a register file of 64 registers each 32 bits wide.
Operand memory is shared by all TRSs. All TRSs can simultaneously'
write to'this OM at different locations and read operands from it
simultaneously. As «clear by the instruction pipeline, each TRS
has requirements of 2 reads and 1 write per cycle. As the Twine
RISC processor can have more than one TRS to support spatial

parallelism, the Operand Memory has 2N read ports and N write

ports for N TRSs.

2.2.3 Token Queue (TQ)

Token Queue feeds TRSs with the . continuation tokens. A
continuation token is formed with two pointers, viz; a frame
pointer(FP) and an instruction pointer(IP). IP 1indicates the
location of instruction ta be executed in the Code Memory. While
FP is a base pointer to the set of oﬁerands in data memory(OM)
analogous to the base address of an activation frame for a pro-
cedure invocation. By using frame relative addressing- the same
che block can have multiple active invocations. Since.
the continuation tokens generated by any of the TRSs correspond
only to the start address of different threads, they can be

picked up by any other TRS in the Twine RISC processor.

4

2.2.4 Seguencer =

The continuation tokens generated in the system are
stored in the TQ through a Sequencer. The Sequencer samples con-

tinuation tokens generated by various TRSs and stores them in TQ.

As these tokens generated by TRSs are independent of each other,
the sequence in which they are stored in the TQ is irrelevant and
a program works independent of any sequencing scheme forced by
the system. This makes the design of the Sequencer relatively

simple.

3.2.5 Data Queue (DQ)

It is an alternate operand memory for special instruction
RESM. RESM does not refef OM, instead it reads data from DQ and
treats them as operands. DQ is an inevitable hardware which
enables OM to be loaded. whenva memory operation LOAD/LOADX is
issuéd. upon completion of the operation a message is returned to
the Message Processor by the external memory controller. This
message contains a value, continuation token and destination
registér. These data are written in the DQ. When RESM instructi;n
is executed data is finally moved from DQ to OM and the thread.

reinitiates.

3.2.6 Message Processor (MP)

MP handles message traffic between the processor and

external memory. It also implants split - phase transactions§

i
i

where the requests for read/write to global I-memory areé
dispatched from all +RSS through MP. The MP receives read/writej
requests from various TRSs in the processor and forwards them to§
the external interface for global I-structure memory controller-;
In case of a read request, the MP eventually receives a messagef

from the external interface containing wvalue, operand memory

location and continuation token}vuﬁon receiving such a message,
the MP writes data into DQ and genep#tés a continuation token
CFP.0>. This is essential as the MP éan't store data in OM.
Correspondihg instruction RESM(at location 0 in CM) takeé this

data from DQ and stores it in OM, besides generates the continua-

tion token.

3.3 The TRS Pipeline

The TRSs in a Twine RISC processor essentially capture

N~

spatial parallelism between different threads of computation.

Within a TRS the various stages are instruction fetch unit(IFU),

operand fetch unit(OFU), execution unit(EXU), result store
unit(RSU) and continuation token unit(CTU). All these units
operate asynchronously with hand shake signals. There is a buffer

between two successive units.

3.3.1 Instruction Fetch Unit (IFU) :

Initially it fetches new token' address from TQ .and
fetches instruction from CM. It determinés whether thelnext

instruction to be fetched from subsequent location or not. For

instance in the case of various arithmetic/logic instructions,

the mext instruction comes from subseguent location. i.e IP -> IP
+ 1. However in case ofﬁbranch instructions the lo;ation:of next

instruction is not determined at IF stage so IFU fetches a con-

tinuation token from the TQ and starts another thread.

« Instruction set is organized in such a way that by loqk~

ing at the first bit of opcode IFU can determine whether the next

22

instruction is to be fetched from IP + 1 or a new thread is to be

started. | ' N

To prevent race between MJIOIN instructions IFU also .
detects MJOIN instruction and stalls other TRS pipelines for
MJDIN instructions by setting MJOIN lock line. This way, the
MJOIN instruction is execgted in atomic and exclusive manner.

Opcode for MIOIN is chosen to be 111111 so that the detection

hardware at IF Unit is simplified.

Finally IFU prepares a packet
<6 bit opcode,.6 bit R1,6 bit R2,6 bit R3>
and sends it to OFU through buffer between IFU and OFU.

-

3.2.2 Operand Fetch Unit (OFU) :

This Qnit recognizes instructions partially by decodihg 3
bits of opcode and decides the number of operands to be fetched
from operand memory. This unit also decodes RESM instruction in
which case it fetches operands from DQ. It then génerates a
packet 5

<6 bit opcode, 32 bit left operand, 32 bit right operand, 6 bit
destination register>

which is sent to the EX% through its input buffer. Once the
fetch is done, the handshake signal from OFU to IFU causes IFU tqr'

resume its operation. ‘ _ ' . AR

2.3.3 Execution or Functional Unit (EXU)

This unit is identical to conventional ALU except that it

23

generates continuation tokens for branch and other special
instructions for thread instantiation. It prepares a packet

<32 bit result value, 6 bit destination register>

and forwards it through buffer to RSU. It also prepares token
<FP.IP> for CTU and forwards it through buffer gqueue. For split -
phase transactions{(for memory read/write) EXU sends request mes-

sage to MP and continue. It implements the handshake signal with

OFU.

3.3.4 Result Store Unit (RSU)

This i1s the only stage which can write in to shared OM.
It writes the result value in destination register. It releases

MJOIN line set by IFU in case of MJOIN instruction.

3.2.5 Continuation Token Unit (CTUD

It forwards new thread token (FP.IP) to Sequencer.

Both RSU and CTU implement handshake signals with EXU.

24

18g uoponuisu; “F-74-Biyg
SPe6IY) 8|d[][NW JO UO[]1BZ|UCIJOUAS NIOPWN | UoUAS pUS
Speeliy] e|d[]|nW JO UD|1B18UBH MHOIN | 'ueb peeuy |
x . X34Ol1Ss
18)STBBT/IND WOI] AToWsW [EUIBTRS 0} BI0I8 JHOIS| Asowsew
18181081/ Q 01 G WoJ] BIEp 6AOW WS3d 0}/Wod}
‘ " . XAvO1 | Jejsusl)
1818|681/NQ O] AJOWeW [eUIBIXE Wolj pEO] avol :3):7¢|
(0] |BNDB 10 UB Y] wwma 0.6Z JO BA[18BBU U0 gun] ZNP
(O] [ENGB 10 UBYY I8168I5) 0I5 1D BATITS00 UL gu] 7
) {UBY] 161861B] BA[}[500 U0 gWwn] I7
(O} 1BNDB] 016Z U0 gdwn| 20 yousug
awn 198e1ip dWP ‘
WUBIT 1J1Us g13s
1J8T1]IUs 1Ld
HOX 88|m]1iq HOX
HO ©S8iM)iq q40 01607
ANV B8EBIM]IQ ANy pug
10B11GN8 18B8]Uu] 8NS5 | ol1sWyiipy
PPE J6BBIU] ddy
uoflovy uofjonuisu| | AioBeipp

25

Chapter 4. Twine RISC Its Software Environment

4.1 Introduction and Overview

In this chapter we diséuss software support available in
Twine RISC and details of its implementation. In section 4.2 we
provide the insruction set of Twine RISC. Twine RISC supports
multiple threads of execution. We discuss the support for creat-
ing and synchronizing multiple threads in Section 4.3%. In Section
4.4 instructions that supports memory references hetween Twine
RISC and outside shared global memory are discussed. Section 4.5

summarizes the software environmeht of Twine RISC.

4.2 Instruction Set and its Coding

The instruction set of a Twine RISC is intended to be a
simple extension of the RISC model. There are totally 19 dif-
ferent instructions, each of which is capable of being executed
in a single clock cycle. Instructions.are broadly classified into
two classes viz: Ordinary RISC like instructions and special
instructions. Special instructions are to support generation and
synchronization of multiple threads and to handle external memory
references as split phase transactions. With these special
instructions it is possible to simulate the fine grained, asyn-

chronous parallelism of dataflow execution.

The instruction set of Twine RISC is coded in a way that
by decoding minimum number of bits, instructions are recognized

at various units of TRS pipeline. (See Appendix A). For example

26

IFU decodes only one bit of instruction opcode to determine the
next instruction fetch, whether it should be from code memory or

from token queue.

The instructions available in Twine RISC are given in

table#.Fig.4.2-1.

4.3 Handling Multiple Threads

To implement concurrent threads Twine RISC supports instructions
MFORK and MJOIN. MFORK creates multiple threads while MJOIN syn-

chronizes them.

4.3.1 MFORK : Generation of multiple threads

MFORK instruction is a method of spawning parallel
threads of caomputation from within an executing thread. By using
this instructions upto a maximum of 5 threads are created. One of
these threads is the parent thread with continuation <FP.IP + 1>.
Addresses of new threads to be generated are kept in a 32 bit
operand. Each address is relative to the address of MFORK
instruction and is specified in 8 bits. Thus upto 4 addresses are
stored in a single 32 bit operand. Execution of this instruction
causes continuation token <FP.IP + byte offset> to be generated
for each non zeroc vzlue of offset. The number of threads thus.
created is stored in a location which can later be wused by

MFORK's dual instruction MJOIN for synchronizing execution.

4.3.2 MJOIN : Synchronization of multiple threads

MIOIN instruction aliOWS‘multfpie fhfeads to synchronize.
~ontent of the OM location specified in’MJOIN‘insfruction is
decremented by 1 for each execution of MJﬁIN. This location is
set by MFORK instruction to the number of threads. As each thread
calls MIOIN exactly once, the only thread which finds this loca-
tion equal to zero after decrementing is the lasfkthread execut-
ing MIJOIN. It is allowed to continue and all other threads die.

The MJOIN instruction generates continuation token <FP.IP 4+ 1>

for the last thread and thus execution is synchronized.

As code 1s systematically compiled from dataflow graphs
and processor is multithreaded, instructions from unrelated
threads will not compete for the same location of OM. There will
always be an adequate number of MJOINs to prevent races between
normal instructions. The exception is that there can still be a
race between two or more MJOIN instructions competing faor the
same 1ocati§n. Each MJOIN instruction reads OM location, tests
it, and writes it back, this must be atomic. To handle such a
race condition, MJOIN is executed in exclusion. This is done in..
the following manner.

If the IF unit fetches MJOIN instruction and MJQIN lock
is set thenthe inmstruction is not passed to OFU else IFU sats the
global MJOIN lock and passes MJOIN instruction to the OFU. TFhe
MJOI& lock thus prevents any othey TRSs-to execute MJOIN as:next
instruction. As all Qnits operate asynchronously with handshgke
signals other TRS pipelines are stalled whenever they fetch MJOIN
instruction. However the penaing instructions in the pipeline can

still continue to execute. After MJOIN is being executed

23

atomically, RS unit unsets the MJOIN lock line after updating the

OM location.

4.4 Data tranfer to and from global memory

Twine RISC model assumes the shared @emory address space
accessed by all TRSs. This memory is conceived as an l-structure
like global memory. Any memory reference arising in a Twine RISC
processor is sent out as a split phase transaction to I-structure
memory controller. To support this there are L0OAD/STORE/RESM
instructions with hardware suppért of message processor and data
queue. When a memory reference(LOAD/LOADX) is issuéd, the thread
suspends; upon completion of the operation a value is sent from
memory, a RESM instruction is executeq and the thread reini—

tiates.

4.4.1 LOAD/LOADX : Data transfer from global memory 1o cperand

memory

LOAD instruction takes two parameters;'the first parame-
ter specifies the OM location containing global memory address
whereas the second parameter specifies the OM location where the
data read 1is to be stored. In response fo this instruction read
request is sent to the memory controller of I - structure global
memory through MP and thread is guspended,.IFU picks up another
thread from the token queue and continue execution: The Read
request format is shown below.

<Read gma, ct, dr>

where

27

gma - address of global memory location
ct =~ continuation token

dr - destination register

When this Read request is satisfied by I-structure memory
controller, it responds by reading content of location gma, say
v, and sends a message

{Store v,ct,dr>

to the MP.

MP upon receiving return message inserts the values
v,ct,dr in Data Queue and sends a continution token <FP.0> to

Sequencer. The address 0 in CM stores RESM instruction.

Initially at power-on time OM is uninitialized and can be
initialized through RS unit only. The LOADX instruction is used
to initialize OM location.

Format of the instruction is LOADX a, x

Where

a - address of location in global memory (limited to 6 ©bits
only)

In all respects LOADX is similar to LOAD instruction.

4.4.2 RESM : Complete data transfer and Resume

This is an extention of LOAD/LOADX instruction. The RESM
“\) .
&étruction is stored in location 0 of CM. Upon completion of the
memory read requust a value is sent to Data Queue and a continua-

tion token <FP.0> inserted in the Token Queue. When token with.

thread address 0 is picked up by any of the TRSs, RESM;

instruction is executed. Upon execution of this instructian, a

tuple <v,ct,dr> is read from Data Queue.

Value v is stored in register dr and thus data movement
from global memory to OM is completed. Also new thread token <ct>

is inserted in TQ so thread continue exactly from the location

next to LOAD/LOADX instruction.

4.4.3 STORE/STOREX : Move data from operand memory to global

memory

Write request is sent to the memory controller of I -
structure global memory through MP and thread is continued. The
Write request format is shown below

Write value, gma>
value - data to be stored

gma - address of global memory location

Memory controller on receiving Write message stores value
in location gma. If location gma has deferred list of pending
LOADs then it sends messages

{Store value,CT,6A>

to MP.

Where

CT - corresponding continuation token

A - corresponding destination register in OM

Similar to LOADX, STOREX is used to store data in a fixed block

of first 64 words in I - structure memory. It takes two parame-

3
ters. The first parameter specifies the 6 bit addfess'of location

in global memory and the second parameter specifies the value to

ne stored in there.

4.5 Instruction Set Summary

Instructions ADD,SUB,AND,OR,XOR,SFTL,SFTR,STORE,STOREX do not
generate new thread token. The execution continues from the sub-
sequent location. i.e IP <-- IP + 1. In other wofds. the thread

continues.

MFORK generates upto 4 new thread tokens and the parent
thread also continues.

For jump like instructions, the next location can not bé
determined bZ N N sl ‘the execution is complete. Hencé
JMP,JZ,3P,JPZ,INZ generate new thread token and thé parent thrgad
dies. i.e. IP is set to new thread fetched from TQ.

LOAD,LOADX generate new thread token with thread address
‘O‘and consume one. |

RESM generates new thread token and consumes one.

MIOIN may/may not generate new token and consumes one.

Thus once TQ and CM is loaded Twine RISC itself gene{ates
and consumes threads and extract parallelism(spatial) by allowing.
i

more than one TRSs to be active and executing different threads.;

With a very little compiler effort Twine RISC can execute thready

in parallel.(See AppendixCE)

Chapter 5. Simulator and Performance Evaluation

5.1 Introduction and Overview

In this chapter, we discuss the simulator for Twine RISC.
The simulator provides a useful toollfor the dévéiopment of its
architecture and has been used to modify 1its original design.r
Various parameters of the architecture are dependent on the
currently available VLSI technology which form the input to the
simulator.

The rest of the chapter is organized as follows. In sec-
tion 5.2 we discuss the structure of the simulator.‘lnput and
output interface of the simulator is also discussed in thfs sec-
tion. Metricgs for the performance and performance evaluation
aspects are discussed in secfion 5.3. In section 5.4, we discusé
the usefulness of this simulator and discuss how it had been used

to enhance the design. Finally we conclude this chapter in sec-

tion 5.5.

2.2 Simulator Structure

Simulation is divided into two parts viz; preparation of

input data and execution.

5.2.1 Input Preparation

A program written in conventional language is first con- -
verted to its equivalent dataflow graph. This dataflow graph is
then converted into machine language program of Twine RISC. Simu-

lator requires 3 files viz; GMF, CMF, TGF as its input. Here GMF

33

file contains the initial global memory image. CMF file contains
the program code in binary. TQF file contains the initial tokeg
queue image. These files are prepared as follows

All immediate data are seperated from instructions as
instructions only refer OM locations for operand values. These
initial available data with other input data are put into file
GMF(global memory file) at appropriate locations. These values
moved to OM through LOADX instructions.

We provide Twine RISC instructions to the simulator. The
code in current model of execution is fed manually. This can how-
ever be done through a compiler at a later stage. The instruc-
tions to the simulator are fed using mnemonics. This mnemonic
instruction code is converted to machine level binary eduivalent
code by code converter. Binary coded instructions are stored iﬁ
code memory image file CMF. A compiler can directly generatev CMF
file to use the simulator.

By looking at the CMF explicit threads are distiguished.

Such thread addresses are kept in TQF(token queue file).

5.2.2 Execution

Simulator program(Main()) asks user to enter GMF, CMF and

TAF file names. This can also be given as command line arguments

to the simulator. Programs stores data from GMF into global I -

structure memory simulated by it. It stores instructions fpom CMF

into Code Memory and data(thread addresses) from TQF is inserted

into Token Queue. After this initialization is done, Simulator

enters the function Execute() with Do-While loop.

Initially all TRSs are inactive. They are given priority
according to their tag no., i.e. TRS#1 has highest priority over
others for fetching new thread address from TQ. Otherwise }all
TRSs simultaneously attempt to read TQ creates problem.

At simulated global clock tick #T, TRS#1.IFU() reads TQ
and fetches instruction from CM. It also setsIP to IP + 1 if
thread is strictly sequencial. Also it raises its status bit in
active state(l). When TRS pipeline is empty this bit is turnéd to
inactive gstate(0). l

At clock tick #T+1, TRS#1.0FU() reads buffer, fetches
operands from OM and writes data packet into buffer. At same
instant, TRS#1.IFU() reads another instruction andk writes data

packet into buffer. Thus TRS#1 pipeline strats filling.

At the same time, If TQ is not empty(separate status bit

is provided), TRS#2.IFU() reads thread address from TQ, fetches

instruction from CM and start executing new thread. Thus under
favourable conditions, after clock tick #T+4, all four TRSs are
active, executing different threads of computation.

In case of just starting address is kept in TQ, TRS#1
continues execution of thread and generates new coentinution
tokens which fill TQ.

Execute()~loop is terminated when following conditions
are satisfied.

1. TQ is empty.
2. All TRSs are inactive.
Then program(Main()) asks user to enter global memory

addresses where output data are stored and then displays computed

results and stores it into Result File.

Simulator organization and code structures are included

in Appendix B.

5.3 Performance Metrics

" -

Simulator is written on the base of architectural assump-
tions we made. Since it is difficult to time various units pre-
cisely we cannot compare performance of the Twine RISC architec-
ture with other processors. Basically it is targeted for checking
the performance of architecture in exploiting available parallel-
ism as claimed previously.

Several program codes have been implemented in Twine
RISC's native graph representations and run on the prototype
simulator. The measured performances shows that Twine RISC indeed
can execute dataflow graphs with its software environment which:
requires very little compiler efforts. Also in the codes tested
on Twine RISC Simulator, the number of instructions requirgd was
nearly equal to that for conventional control flow processor. The
Twine RISC processor's ability to exploit parallelism is evident
when four diagnostic loops were run together and pipelines are
kept full.

Sample programs and results are reported in Appendix [o

2.4 Some Design Issues

We had started with writing simulator on architectural
and software support assumptions made in [12]. But it was quickly

found that proposed architecture and its software environment

>6
does not support each other.e.g. MFORK. That lead us to make
changes both in software constructs and in architecture design.
Initialization of OM came into picture when prototype simulator
was ready. Which lead us to include LOADX instruction and also to
maintain. To avoid a complex OM implementation, Data Queue inclu-
sion was deemed right. Finally Token Queue management and expli-
cit thread generation and synchronization requirement lead us to
put RESM instruction at fixed location 0 in Code Memory and some
change in instruction's format. |
As simulator writing was in progress need for precise
specifications arose. That lead us to develop suitable instruc-
tion set with its very careful coding to have minimum hardware at
various stages to decode instructions. Also size of the various
blocks are considered with available VLSI technology and state-

of-the-art memory design.e.g. Operand Memory(Register File), Data

Queue, Messege Processor, Buffers, Token Queue etc.

5.5 Summary

Simulator writing has provided us lot of feedback in mak -
ing major changes in the architecture to make it foolproof. Per-
formance evaluation shows that Twine RISC is able to fulfill its
goals of executing dataflow graphs efficiently with economical

architectural framework.

Chapter 6. Discussion, Conclusion and Future Work

4

6.1 Introduction and Overview

In this chapter, the basic philosophy that motivated our
work is stated. The overall results of this work are summarized.

To conclude, we suggest future research work needed to support

our work.

6.2 Philosophy

Twine RISC processor design is targeted for enhancing.the
performance by exploiting both temporal and spatial parallelisms.
Basic architectural framework was already there with essential
software environment directives.[12]. Before going for its
hardware implementation simulation was needed to detect design

eErrors.

6.3 Summary

We have implemented the simulator for one Twine RISC
Stream on SUN 3/60 under SUN 0S using C. The simulator is based

on event driven model and provides the time trace of a simulator

run.

The instructions for Twine RISC simulator can be provided
in mnemonics which are then converted to their binary equivalent

using a code converter developed through this work.

Synchronization in pipeline is also observed through some

test programs written in Twine RISC assembly language and run on

the simulator. Through the simulator runs it is clear that the

architectural assumptions of Twine RISC exploiting maximum avail;

able parallelism is true.

6.4 Scope for Future Work

Simulator writing has provided us substantial feedback ir
making major changes in the deciagn. The simulator however does
not provide precise timing analysis, This can be 1ncorperated for

performance evaluation of the architecture.

Currently the input to the simulator 1s provided througt

hand coded mnemonics. A compiller interface can be developed for

this purpose.

Ac Twine RISC pracessars can be used to build high per:-
formance parallel computer, an exact protoco! to do so need to be
developed.

There is a tremendous flexibility in hardware design thail
depends largely on available technology. This can also bg
explored, for example, one more write port to Operand Memoré
helps in its 1nitialization which at present is deone by a numbeé

of LOADX instructions.

18Q uoponiisul TV m.,a_

SpeeJy) s|dnnu jo co:,mNEoEoc\/w NIOPW | YoUAG pUB
Speely) ejdj|nW Jo UO|jBJouUBh MHO AW | 'ueb peelyy
; ; X3IYOLS
18181be1/INO WoI] AJoweWw [BUJIBIX6 0] BI0S JHO1S AJowew
18181081/W0O 0] ©Q Wod) BlEP BADW WS3Y 0}/wol)
. . XavOol | Js8jsuelj
183)8|b8l1/INO 0} AJoWeWw |BUiBIXB woJlj peOj| avol BlEQ
(0} |enD® 10 UBYY SEB8|) 0J6Z J0 ,m>:mmmc uo dwnl] ZNM
(0} [END® JO UBYY J6JE6I6] 0167 10 BA[1]500 U0 Jwn] 2dPl
(ueBY) iejeslb] eA[})s0d Uo duin] dar L
(0] [enD86) 016z UDb dwn] 70 cwcmﬁm
awni .Bm::u dnp
4B 1J1US gris
1Jel 1jiys 1LdS
"d0OXx .esimiiq "dOX
g0 8SIMIIq =1e) 01607
ANV ©88I1m11q ANV pue
1oB11gNS 18bBBejul gns | 2liewylily
PpB Jebeju] aagyv
uonoy uoponaisu] | Alobeie)

8JN10211Y0J1Y J0SS8001d OSIY SUIMLT-g - b1d

‘ 1eouenbeg

Alowew 18Q0I1D 1
wol4)
AJowew 18GQ019 iU : i
o] === un 10 1lun Sy
JOSSBO0IY
obBsssew
S e —
1un X3)
Bnenp enenp
Alowew B18(Q uey0L
pueledQ
S
1N 40 i
AJOwew

1un 41 : epoy -

40

Appendix A : Instruction Set

This appendix consists of four sections. Section A.l

gives instruction set of Twine - RISC. Section A.2 describes

instruction flow in TRS pipeline. Section A.3 gives coding of
instruction set. And finally A.4 gives the short summary of

instruction set.

A.1 Instruction Set

The instruction set of a Twine RISC processor is intended
to be a simple extension of the RISC moaei. There are totally 19
different instructions, each of which is capable of being exe-
cuted in a single clock cycle{(Except MFORK instruction). Instruc-
tions are classified in four major categories viz. Arithmetic &
Logic, Branch, Memory references and Generation and synchroniza-

tion of multiple threads.(Fig A-\-\)

A.2 Instruction Execution in TRS pipeline

A.2.1 Ordinary RISC like instructions

a. ADD, SUB, AND, OR, XOR

All these instructions fetch two operands from OM and store
one result back to OM.

Syntax of these instructions is

opcode rl r2 r3

rl - left operand source register

r2 - right operand source register

r3 - destination register

4l

e.g. consider opcode ADD
~OFU fetches two operands [FP.rl] and [FP.r2], EXU adds them as.
[FP.r13 + [FP.r2] --> value and passes <value, r3> to RSU. RSU

stores value in [FP.r33. Execution continues from next

locationCi.e. IP + 1),

b. SFTL, SFTR

As we are operating on 32 bit operands we can shift it by at
most 32 bits. The shift count is stored in the instruction in §é
bits anly. Thus we need to fetch only one operand from OM and

store result back to OM.

'Syntax of the instructions is

opcode a r2 r3

a - value specifies how many bits to be shifted(stored in
instruction)

rl - operand source register

r3 - destination register

e.g. consider SFTL a, r2, r3 instruction.

OFU fetches one operand [FP.r2], EXU operates and computes the
"result value as [FP.r2] << a --> value and passes <value, r3> to

RSU. RSU stores value in [FP.r3]}. Execution continues from IP +

1.

c. JMP

This instruction supports direct jump up to 18 bit range. As
jump address is directly specified in 18 bits in the instruction,
there is no operand fetch from‘DM.

Syntax of this instruction is

42
IMP x
x = 18 bit value specifies jump address
OFU does not fetch any thing from OM. x i{s treated as one
operand. EXU generates continuation token <FP.x> and passes it to

CTU. CTU forwards this continuation token to Sequencer which then

inserts it into TQ. No result is written to OM.

d. JZ, JP, JPZ, JNZ

These instructions support conditional jump up to 12 bit
offset range. As jump offset is directly specified in 12 bits in

instruction, we need to fetch only one operand(in which condition

value is stored) from OM.

Syntax of these instructions is

JCOND rl1 x

rl - condition operand source register

x - 12 bit value specifies jump offset

OFU fetches one operand [FP.rl], x 1is treated as »another
operand, EXU. tests the condition [FP.rl] and if condition is true
EXU generates continuation <FP.IP + x> else <FP.IP + 1> is Qen—
erated. EXU passes this continuation token to CTU. CTU forwards
this continuation token to Segquencer which then inserts 1t 1into

TQ. No result is written to OM.

A.2.2 Special Instructions
These instructions are extension of the RISC model.

a. MFORK

The MFORK instruction is a method of spawning parallel threads

of computation from within an executing thread.
New thread offsets are organized as nl,nz,nB;nA each 8 ©bits.

Which then grouped in a 32 bit number stored in OM. Thus oniy one

fetch from OM is required.

Syntax of this instruction is

~ MFORK r2,r3

r2 - operand source register which contains a grouped number
from which new thread offsets are derived.

r3 - destinatidn register

OFU fetches one operand [FP.r2] from OM, EXU interprets
[FP.r2] as four blocks of 8 bits each.

For each byte if byte value is“nonzero then wvalue 'is con-
sidered as an offset. EXU prepares a continuation tokén <FP.IP +
offset value> and passes it to CTU. CTU forwards these continua-
tion tokens to Sequencer. :

One continuat{on <FP.IP + 1> is always there. .

Number of new threads generated is derived as follows

Bytes ' No. of new threads
#1 #2 #3 . #4 (value)
NZ - X X X >
z NZ X X 4
Z Z NZ X 3
Z YA z NZ 2
Here

Byte #1 is the most significant byte
NZ - nonzero value

Z - zero

X - don't care

EXU passes <value,r?> to RSU.

RSU stores value in [FP.r33%

44

b. MJDIN

The MJOIN instruction allows multiple threads to synchronize
execution. Only one fetch from OM is required. This instruction
decrements the content of the location specified by one and write
back the result in the same location.

Syntax of this instruction is

MJOIN r2,r2

r2 - operand source register contains number aof threads to_ be
synchronized

r2 - destination register

OFU fetches one oaperand ([(FP.r2] from OM, EXU decrements
[FP.r2] by 1 and tests it. If result value is zero then continua-
tion <FP.IP + 1> is passed to CTU else thread dies. EXU also
passes <result wvalue,r2> to RSU. RSU stores value in register
(FP.r23. |

If continuation token <FP.IP + 1> is generated then it is for-

warded to Sequencer by CTU.

c. LOAD, LOADX
These instructions are used to send a request to move data
from global I - structure memory to OM.

Syntax of these instructions are

1. LOAD a x

a - operand source register contains address of global memory
location
x - destination register

OFU fetches one operand [FP.al from OM, EXU sends a read

request to MP which then forwards it to memory controller of I -

45

structure memory and thread dies. The request format is

<{Read [FP.al, FP.IP + 1, x>

[FP.al - address of glabal memory location
FP.IP + 1 - continuation token
x - destination register in which data is to be moved

2. LOADX a x
a - 6 bit value specifies address of global memory location in
instruction itself
x - destination register
OFU does not fetch any operand from OM, a "is treated as an
operand. EXU sends a read request to MP which‘then forwards it to

memory controller of I - structure memory and thread dies. The

request format is
<Read a, FP.IP + 1, x>
a - address of global memory location

FP.IP + 1 - continuation token

% - destination register in which data is toc be moved
When this read message is processed by I - structure memory
controller, it responds by reading contents of the location and

sends a message to MP. The message format is

{(Store v, FP.IP + 1, x>

v - data value |
! Upon receiving a return ﬁessage from memory controller the MP
inserts the values v, FP.IP + 1, x in Data Queue and sends a con-
tinuation token <FP.0> to Sequencer. Here continuation token

<FP.0> corresponds to instruction-RESM in CM.

46

d. RESM

When a memory operation LOAD/LOADX is issued, upon completion
of the operation a wvalue 1is sent to Data Queue, and a RESM
instruction is executed to move data from Data Queue to OM and
the thread reinitiates. This is the only instruction fetches

operands from Data Queue.
Syntax of this ihstruction is
RESM
OFU fetches data
<v, FP.IP + 1, x> from Data Queue instead of OM.

v and FP.IP + 1 become two operands and x the destination

register.

EXU passes <v,x> to RSU.

EXU also prepares a continuation token <FP.IP + 1> which is
then forwarded to CTU.

RSU stores v in register [FP.x] and finally data is moved into
oM.

CTU sends <FP.IP + 1> to Sequencer which then inserts it into
TQ.

Here <FP.IP + 1> is not <FP.1> as RESM is at <FP.0> but this

continuation token is read from Data Queue.

e. STORE, STOREX ‘
These instructions are used to send a request to move data
from OM to global I - structure memory. ‘
Syntax of these instructions are

1. STORE x, a

x - operand source register contains address of global memory

47

location
a - operand source register from which data is to be moved to
global memory
OFU fetches two operands [FP.x] and [FP.al from OM, EXU sends
a message to MP which is then forwarded to memory controller of I
- structure global memory énd thread continue. The message format
is
Write [FP.al, [FP.x1>
[FP.x] - address-of global memory location
{(FP.al - value to be written
‘Memory controller upon receiving Write message stores value
fFP.a] in location [FP.xJ. If location [FP.x] has deferred list
of pending LOADs then memory controller sends store messages to
MP. The message format is |

{Store v, CT, A>

v - data value
CT - corresponding continuation token
A - corresponding destination register

2. STOREX x, a
x - 6 bit value specifies address of global memory location in

instruction itself

a - operand source register from which data is to be moved to
global memory ‘

OFU fetches one operand [FP.al from OM, x is treatgd as other
operand.

EXU sends a message to MP which is then : forwarded to.'@emdry

controller of 1 - structure global memory and thread continue.

48

The message format is
MWrite [FP.al, x>
x - address of global memory location
[FP.al —‘value to be written
Memory controller upon receiving Write message stores value
[FP.al in location x. If location [FP.x] has deferred list of

pending LOADs then memory controller sends store messages to MP.

The message format is
{Store v, CT, A>
v - data value

CT - corresponding continuation token

Execution continues from IP + 1.

A.3 Instruction Set Coding

The instruction set of Twine RISC is coded in such a way
that by decoding minimum number of bits at various units of the
pipeline instructions are recognized. There afe 19 instructions
in the instruction set sparsed over 6 bits of opcode. ‘

IFU : IFU decodeé the first bit of the opcode and decides the
location of next instruction whether: it comes for subsequent
location, i.e IP + 1 or not. In the later case, new thread
address 1is taken up from:Token Queue for execution. If first bit
is 0 then IP is-ingrementéd to IP + 1 else new thféad address is
.fetcﬁed from TQ.

Also we need to identify MJOIN instruction at this stage oniy-
This is needed for seting the global MJOIN lock and thus provid-

ing MJOIN execution in exclusion. Opcode for MJOIN is 111111 (all

49

1's) which can be decoded with minimum hardware support.

OFU : Here we need to recognize whether OFU has to fetch two
operands, one operand or no operand from OM. Alsoc it identifies
the RESM instructioﬁ for which the operands are fetched from Data
Queue. By decoding last two bits of aopcode this can be done as

00 - two fetches from OM

01 - fetch from DQ

10 - no fetch from OM

11 - one fetch from OM

Ih some instructions, second operand is specified in the
instruction itself. This is implemented by decoding yet another
bit.

a. last 12 bits are treated as second operand or not, i.e. for
conditional jumps and other instructions in one fetch catégory

like SFTL,SFTR,MFORK etc.

b. last 18 bits are treated as an operand or not, i.e. for IMP
and LOADX in no fetch category.

EXU » By looking af fifsé '5, bits all .instfuctions can - be

decoded.

Coding of instruction set is given in table#.FWg. A-3-1

Summary of instruction set is given in table#.ng-A”sdz-

50

- BuIpOg 189G UOIIONNISU| "F-¢ Y+ 6rg

NIOFW

WS3d LLLL

avol OLLlL
XAvO'l 1oLl

dWI ooLlL

/NP L 1Ol

Zdr SINe]!

dar KelolN

0 0001
X3d01S JHO1S LLLO
AHO AW gOX OLLO
5135 g0 010
ES aNv 0010

L 1LOO

0L00

ans L1000

aav 0000

usrer i) || {gorey ou] O [uoisy od) [O | (Ud1es 2} OO0 gSw

51

o busevey 4 4 -

P, P

9 RE. . - . " ,.
uwﬁmﬂﬁio,” oo iy

vopfe v

Arswwng 164G co:o.ztwc_.w-m.d.mi

. (B 2'2'V MHOLW ©88) 016ZUOU $U ‘BU U LU - [2.)
pejeJsUed SPEBIY) MEU JO Jequinu S| A - [I,]
eneny BjBJ WOJ) P8I d+dl'd4 - [0.]

£

BuUoOU 88|16 d+dl'dD

,,,,, ueu) O = [24°d4] J| [20dd] « | - [2'dd] | €421 NIOPW
GU+dIdd <BU+dIdP
lllll ‘@U+dldd ‘urdldDh (L] [eddd]) < A

[C.] ‘dedldD [2rdd] | &4 24 MHOINW
;;;;; [0.]d+dTd P ———== We3y
X Te'd4d] 811dnz d+drda» | 0 === B X X34HO1S
X g4l e d 4] eriian d+did [e'dd] T dd] B X JHOLS
X +didd B pesw row ey K- ¥ B X B XAvO'l
X l+di'dd [B'dd] PE6Y] — [B'dd] X B QYO
xxxxx Tad+gdidd 10 gl dD FEEREED X 11 gNOOFP
..... Xdd ——— X dAT
xxxxx d+didd | [e7d4] < B« [gl'dd] | €4c¢deydldsS
... d+did= | [€7dd] < B »[eidd] [&I F 1148
..... +dTdDd | [897dd] < [e7dd] - (Idd] | €4 &7 11 50X
,,,,, d+didd | [67dd] « (e dd] T dd] g4 ¢l 14 5O
..... d+dlida | [85dd] « [e1dd] ® [1dd] &4 ¢4 L4 ANV
::::: d+dliid | [€5d4] - [eidd] - [11°dd] g4 ¢4 14 gns
..... dedidp | [€7dd] « [eidd] + [11'dd] g4 ¢l 14 adyv

sebessey BulobBINO suOlIBNUIIUOD suol}eted) suwrl4 JBW IO

Appendix B : Code Structure for Simulator

This appendix gives basic code structure for Simula

tor.

B.1 Structure of Simulator

maind()
{
input();
initialization():
do §
execution();
} while (condition#1);
output();
}
input ()
C
read GMF , CMF,TQF;
}

initialization(
{
load global memory;:
load code memory;
load token queue;
set status of TRSs =.0;'

set status of all buffers = 0;

execution(?

{
TRS#1 () ,TRS#2 (> ,TRS#3() ,TRS#4();
}
output
{
ask for gm éddresses;
display resluts:
store results to RF:
}
TRS#1 ()
{
read TQ;
set TRS#1.status = 1;
do { |
IFUC)
OFU
EXUCO);
RSU(> ,CTUC) ,SEQO) ;
} while(condition#2);
set TRS#1.status = 0;
}
IFUO
{

fetch instruction from CM;
decode opcode:

set IP;

forward datas to buffer#l;:

}
OFUO
{
read buffer#l;
set buffer#l.status = 0;
decode opcode;
fetch operands:
forward data to buffer#2;
}
EXUO)
{
read buffer#2;
set buffer#2.status = 0;
decode opcode ;
operate on'daté;
forward result to buffer#3,
forward continuation to buffer#4;
}
RSuU O
{
read buffer#3;
set buffer#3.status = 0;
send handshake to EXU;
store data in OM;
3

CTu®

read buffer#4;
set buffer#4.status = 0O;

forward continuation to SEQ;

SEQO

insert continuations into TQ:

5¢

Appendix C : User's Mannual and Test Proarams

This appendix consists of two sections. Section (.l

gives directives to run the Twine RISC simulator. Section C.2
shows how Twine RISC extracts parallélism from programs. Two sim-
ple example programs are considered. For simplicity multiplica-

tion instruction is included in the instruction set.

C.1 User's Mannual

Simulator is written using 3 files.

[func.c] contains all functions used in main file.

i

fa.c] is main file, calls functions.

[global.h] contains global variables and data struc-
tures used in simulator.

Executable file [sim] is to be generated wusing Makefile
specifically written for this simulator.

To run simulator give command

sim gmf cmf tqf rsf

Before running the simulator files gmf,cmf,tqf, and rsf
are to be prepared. |

[gmf] file contains initial global memory image. It con-
tains global memory locations and data valﬁes.

- Temf] %ile contains code memory image. It contains CM
locations and instructions. To prepare this file first one has to
preparé temp file consists of locations, mnemonic instruction
code. A code converter converts this temp file to machine level

binary equivalent file. For that [convert] is written.

57

[tgf] file ~contains explicit thread addresses Kknown

before hand.

Lrsf] file contains global memory locations from where
result values can be stored after computation.

Simulator generates butput file [routl, which contains

global memory locations given in [rsf] and values computed in

program.

All these image files are given for test program 1. (see

fig#C. -2 5,8)

C.2 Test Programs

Program 1.

Compute X,Y,Z.

[A*B] + [CxD3J;
[A*D] - [B*C3J;
[(D*C] - Ec+AJ;

[{I

X
Y
z

Here it is evident that once A,B,C, and D are available,
X,Y, and Z can be computed concurrently. Also A,B,C.,D cah be
moved to - operand memory registeré' by dfspatching concurrent
LOADs. Parallel control flow for LOADs is done with the help of
MJOIN instruction, which allows‘execution to continue only after
A.B,C, and D are moved into OM. As these LOADs afe explicitly
known, their addresses are inserted in TQ before execution.
X,Y.and i is computed simultaneously “with the help.of MFQORK
instrucfion, whicﬁ generates parallel threads of computatiaon for
X;Y,‘ and Z. X,Y., and Z then can be synchronizeq for further com-
putations. As this program does not have any iterations frame

pointer FP is same(i.e.=0) for all instructions.

1

. N LOADX A |LOAD)(B LoADX C 1 LCADX D
. LOADX D L l 1 J
~L’ . ~ \ —~
~N \ / -
LOADX C . SO) T

\\ \ / —
|

& f“l‘f‘ﬁm'om |
LOADX D

Y ' T

20

3 b
—

| I O o B v]
o~ > W ;3

») B
[wa N

recs

losdn 11
jmp 12

igagdy 2 2
ime 12

lozdy 3 3
jmp 12

loadx 4 4
jmp 12

loads § 5
jme 12

lozdx 6 6
mjoin 1
mfork 6 7
mul 2 3 10
mul 4 3 11
add 10 11 12
imp 23
mul 52 12
mul 3 4 14
sub i3 14 IS
jmp 25

mul 53 14
add 4 2 17
sub 16 17 18
micin 7
storex 12 12
storex 15 19
storex 18 18

/#vesume instruction at location Qw/

/=#load mioin register | (for synchronizing loadys)e/
/#jump to synch 1/

/smove A to OM register 2=/

/#jump to =

/¢move B to register 3x/

J#jump %o synch 1/

/smove C to register 4w/

/#jump to synch iz/

f=move D ic register Ss/

/#jump to synch 1%/ »

/xload mfork register & {for generating new threads)s/
/ssynch 1=/

/#new threads aenerateds/

J#thread #1 parents/

/#jump to synch 2z/
/sthread #2x/

/=jump to synch 2s/
/xthread #3%/

/#synch 2%/

/#store X in global memory location#i2sx/
/estore Y in global memory location®iSx/
/#store I in global memory location#18s/

cwf ¢ code memory image file (mnemonic code) for prog.l

(:iE? . C-2.2

location data value

1 4 /#mjoins/

2 10 lebx/

3 5 /%Bs/

4 & /uCz/

5 2 /€Dx=/

b 2309 /smferk #n1=S, Hn2=9%/

A. gnf : global memory image file

Fp.IP

el ool N
N N .
— a0~ LA Y

1

b, taf : initial token queue image

location

12
15
18

C. rsf i result locations file

location data value

12 62 JeX={AxB)Y+{CxD)=/
13 -10 /%Y={AxD)-(BxC) =/
18 -4 f21=(D%B) - (C+A) %/

D. rout : result output file

Files for program |

él

Program 2.

Compute vector inner product.

for i=1 to n
S =85 + A[iJ*B[i];

Here parallelism is exetracted in two Qays.
1. A[li] and B[Li] is simultaneocusly loaded.
2. For different i, A[i]*B[i] computed concurrently and then are
added.
To compute all iteration codes in éarallel, we have to
provide different frame pointers FP for each i. So that with same
code block in instruction memory execution is performed on dif-

ferent operand register sets.(see fig# (.2:-4)

However, the programs stand "apparently" sequential, much
parallelism 1is exploited by Twine RISC architecture -- all index

calculations, loads and multiplications can be done in parallel.

L+ e

Concurrent loads ancl ttevations.

ATl > . app A Ai

© LOAD Ar Aix

{

I

J

) —

F\\Z’ . C»oz"q"

e

[13

21

(31

[43

£33

61

(7]

£3

References

t .
D. Alpert, A. Averbuch, and 0. Danieli. Perfarmance Compari-
sion of LOAD/STORE and Symmetric Instruction Set Architec-

tures. In Proc. 17th Int. Symp. on Computer Architecture,

‘Seattle, Washigton, May 1990. Pages 172-181.

Arvind, S. Brobst. The Evolution of Dataflow Architectures.
from Static Dataflow to P-RISC. Technical Report, CSG Memo

316, MIT Lab for Computer Science, August 1990.

Arvind, D. Culler. Dataflow Architectures. In Annual Réviews
‘in Computer Science, VYol 1, Annual Reviews Inc., Palo Alto,

CA, 1986. Pages 225-253.

Arvind, D. Culler. Managing Resources in a Parallel Machine.
In Proc. IFIP - TC 10 Working Conference on Fifth'Generation
Computer Architectures, Manchester, England, July 1985.

Pages 103%-121.

Arvind, D. Culler, R. Iannucci; V. Kathail, K. Pingali, and
R. Thomas. The Tagged Token Dataflow Archiecture. Technical

Report, MIT Lab for Computer Science, October 1984.

Arvind, R. Iannucci. Two Fundamental Issuses in Multipro-
cessing.‘ln'Proc.'DFVLR Confarence on Paralleerrocessing in

Science and Engineering, Bonn, W. Germany, June 1987.

Arvind, R. Nikhil. Executing a Program on the MIT Tagged

Token Dataflow Architecture. In Proc. PARLE. Eindhoven, The

£el

£s71

[101]

[113]

[121

L1313

[14]

[153

¢t

Netherlands, Springler-Verlag LNCS 259, June 1987.

M. Beck, R. Johnson, and K. Pingali. From Control Flow to

Dataflow. Journal of Parallel and Distributed Computing 12,

1991. Pages 118-129.

D. Culler, G. Papadopoulos. The Explicit Token Store. CsG

Memo 312, MIT Lab for Computer Science, June 1990.

K. Hwang, F. Briggs. Computer Architecture and Parallel Pro-
cessing. McGraw Hill, Computer Science Series, Int. Edition,

1985.

R. Iannucci. Toward a Dataflow/von Neymann Hybrid Architec-
ture. In Proc. 15th Int. Symp. on Computer Architecture,

Honolulu, Hawaii, June 1988. Pages 131-140.

s

R. Moona., S. Nandy, V. Rajaraman. Twine RISC : An Architec-
ture for Simultaneous Execution of Multiple Threads. [Per-

sonal Communications].

R. Nikhil, Arvind. CanlDataflow.SubsuMe von Neumann Comput-
ing? In Proc. 16th Int. Symp. on Computer Architecture,

Jerusalem, Israel, June 1989. Pages 262-272.

G. Papadopoulos, D. Culler. Monsocon : an Explicit Token
Store Architecture. In Proc. 17th Int. Symp. on Computer

Architecture, Seattle, Washington, May 1990. Pages 82-91.

G. Papadopoulos, K. Traub. Multithreading ," A Revisionist

View of Dataflow Architecturés.fln‘Proc. 18th Int. Symp. on

[16]

[17]

(183

£5

Computer Architecture,. Toronto, Canada, May 1991. Pages

342-351.

S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama, and T. VYuba.
An Architecture of a Dataflow Single Chip Proéessor. In

Proe. 16th Int. Symp. on Computer Architecture, Jerusalem,

Israel, June 1989. Pages 46-53.

I. Watson, J. Gurd. A Practical dataflow Computer. Computer

15¢2>, 1%82. Pages 51-57.

T. Yuba, T. Shimada, K. Hiraki, and H. Kashiwagi. SIGMA - 1
A Dataflow Computer for Scientific Computation. Technical

Report, Electrotechnical Laboiatory, Japan, 1984.

	00000001.tif
	00000002.tif
	00000003.tif
	00000004.tif
	00000005.tif
	00000006.tif
	00000007.tif
	00000008.tif
	00000009.tif
	00000010.tif
	00000011.tif
	00000012.tif
	00000013.tif
	00000014.tif
	00000015.tif
	00000016.tif
	00000017.tif
	00000018.tif
	00000019.tif
	00000020.tif
	00000021.tif
	00000022.tif
	00000023.tif
	00000024.tif
	00000025.tif
	00000026.tif
	00000027.tif
	00000028.tif
	00000029.tif
	00000030.tif
	00000031.tif
	00000032.tif
	00000033.tif
	00000034.tif
	00000035.tif
	00000036.tif
	00000037.tif
	00000038.tif
	00000039.tif
	00000040.tif
	00000041.tif
	00000042.tif
	00000043.tif
	00000044.tif
	00000045.tif
	00000046.tif
	00000047.tif
	00000048.tif
	00000049.tif
	00000050.tif
	00000051.tif
	00000052.tif
	00000053.tif
	00000054.tif
	00000055.tif
	00000056.tif
	00000057.tif
	00000058.tif
	00000059.tif
	00000060.tif
	00000061.tif
	00000062.tif
	00000063.tif
	00000064.tif
	00000065.tif
	00000066.tif
	00000067.tif
	00000068.tif
	00000069.tif
	00000070.tif
	00000071.tif
	00000072.tif
	00000073.tif
	00000074.tif
	00000075.tif

