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Abstract

The design of modern embedded systems require automated modeling tools for faster
design and for the study of various design tradeoffs. Such tools put together con-
stitute an integrated environment where the designer can write the high level design
specifications in a language and use these tools for automatic generation of system
specific tools. In this work we have designed a Retargetable Functional Simulator
(Fsimg) for our integrated environment where the Sim-nML language is used as a
base language for writing processor models. Sim-nML is an extension of nML machine
description formalism and is powerful enough to describe a processor at instruction

level.

The Fsimg generates a processor specific function simulator using the processor
models written in Sim-nML. The generated functional simulator helps in the study of
functional correctness of the design. It can also produce the instruction trace which
can be used by the other tools in studying other aspects of the design. As a part of this
work we have specified PowerPC 603 processor in Sim-nML. This specification includes
most of user level instructions present in PowerPC 603 with pipeline, and branch
prediction. We have also developed a Macro Preprocessor (nMP) for processing Sim-
nML macros. This macro preprocessor converts the Sim-nML macros to m4 macros

adding the flexibility that is not provided by the Sim-nML macros.
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Chapter 1
Introduction

In the design of embedded systems the use of automated modeling tools is gaining
momentum. They yield fast turn-around time for the system design and simplify the
process of design changes. In the past most such tools were system specific. However,
with ever increasing complexity of systems and special purpose processors, a strong
need is being felt for generic and modular tools. Such tools replace the system or
processor specific tools and provide a generic integrated environment. Also these tools

help in studying the impact of various hardware-software co-design trade-offs.

In this thesis we focus on tools that deal with the machine language of processors,
such as assembler, disassembler, instruction set simulator etc. For developers of these
tools, it is convenient to model the processor specific part separately and generic part
separately. This is typically achieved by having processor models which tools can
understand and configure themselves for a specific processor. Moreover, it is desirable
to have a single processor model for all the tools. In this work we have designed
a Retargetable Functional Simulator (Fsimg) using Sim-nML[17]| language
which is primarily an extension of the nML|8] language for processor modeling. Sim-
nML is simple and powerful enough to specify a complex processor architecture with
pipeline and timing parameters.

Fsimg takes the specification of the processor in the intermediate representa-
tion'[10] and an executable for the processor in ELF[18] format and generates a
Functional simulator (Fsim) which in turn gives the functional behaviour of the pro-

cessor model for the given program. Optionally, it can also give the instruction trace

'From here onwards we use IR for intermediate representation.



of the program.

1.1 Motivation

Processor models are extensively used in the system design process. The system
design process starts with an application and its implementation. Then the model is
tested for its performance and other aspects. Designers refine the design after analysis
of the performance study to tune the system according to needs. In such a scenario,
an integrated environment is required for the designer where several tools exist like
simulator, assembler, compiler etc. Rewriting the tools after each design change is a
tedious job. Hence automatic generation of these tools is more desirable according to

the design changes.

In this thesis we discuss such an integrated environment where Sim-nML is
the base language for writing processor models. In embedded systems design it is
necessary to study for the functional correctness of the model specified. This is
the motivating force behind our design of Retargetable Functional Simulator which
automatically generates a Functional Simulator. The Functional Simulator can also
be used for the generation of instruction trace which can be used by several other

tools for the study of various aspects of the system design.

1.2 Overview of Related Work

Using automated tools in the system design process has been a long practice. There
are several functional simulation tools available today. Here we will look at some of
these tools and some languages for processor modeling.

Instruction Set Description Language (ISDL)[9] is a machine description language
which is similar to Sim-nML. ISDL provides constructs for specifying instruction set
and other architectural features. A description in ISDL contains the machine word
format used for the instruction assembly, semantics of the instruction, and constraints
such as the valid combination of operations which is useful for tools like assembler to
generate correct code. All theses are captured in a separate sections. Currently an
automatic assembler generator has been developed.

Specification language for encoding and decoding (SLED)[15] is a language for

describing the abstract, binary, and assembly-language representations for machine



instructions. Using SLED a toolkit called New Jersey Machine-Code has been de-
veloped which generates bit-manipulating code for use in applications that process
machine code. Programmers can write such applications at an assembly level of ab-
straction, and the toolkit enables the applications to recognize and emit the binary
representation used by the hardware. SLED is suitable for CISC and RISC type of
machines. SLED deals with the instruction representation only, but not with any
other architectural details. Some tools like retargetable debugger, retargetable opti-
mizing linker have been implemented.

SimOS|[13] is a machine simulation environment designed to study large complex
computer systems. SimOS simulates the computer hardware in sufficient detail and

speed to run existing system software and application programs (figure 1.1). It is

Target Operating System and Workloads
(ex. gcc running on IRIX 5.3)

SIMOS

10 Devices CPU Models Memory Systems

Simulation Host

Figure 1.1: A SimOS System

useful to evaluate the impact of new hardware designs on the performance of the
simulated hardware components. Operating system programmers can develop their
software in an environment that provides the same interface as the target hardware,
while taking the advantage of the system visibility and repeatability offered by a
simulation environment. Currently it is able to model MIPS R4000, MIPS R10000,
and Digital Alpha processor families. Some existing operating systems IRIX v5.3, IRIX
v6.4, and Digital Unix are ported to SimOS environment. Work is going on a port of
Linux for the Alpha.

VMwarel5] is one of the new products which is similar to SimOS. It creates a

3



virtual platform on the host operating system and allows more than one other operat-
ing systems to boot and run concurrently on it. It accomplishes this by transparently
multiplexing all hardware resources into multiple virtual machines, each resembling
the underlying machine. The virtual platform gives the full functional behaviour of

the targeted hardware (figure 1.2). The overhead due to the virtualization is over

Virtua Machines

Virtual Machine 1

Virtual Machine 2

Apps 1

Apps 2

OS1

OS2

-

x86, motherboard,
disks, display, net...

x86, motherboard,
disks, display, net...

VMware Virtual Platform™

Real Machine

= | X86, motherboard, disks, display, net...

Figure 1.2: VMware Virtual Platform

come by it’s dual-mode personality. The virtual machine platform run as a virtual
monitor directly on hardware and a normal application running on top of the host
operating system. For performance monitor personality is used and for device inde-
pendent portions application personality is used. Currently it supports x86 machine
as target hardware and is available for Linux and Windows NT.

vMac[4] is a Macintosh emulator which emulates Motorola 68000 based Apple
Macintosh plus.

Boucs|[1] is also another emulator, which emulates x86 instruction set, related
AT hardware components and BIOS to boot and run various operating systems.
Currently it emulates full x386 and x486 user level instructions. Supports real/virtual
addressing modes, VGA color graphics, floppy and hard drive etc.

There are other small emulators which basically emulate very small environments

like Sega, Nintendo game entertainment system etc. Snes9x[2] is an emulator for
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Super Nintendo Entertainment System. It emulates 65¢816 main CPU, Sony SPC700
sound CPU, DMA channels, some TRQ channels and a few other things.

All these tools try to give the hardware abstraction to the applications. The level
of abstraction vary from each other depending on what kind of applications they are

trying to support.

1.3 Goals Achieved

In this work we aimed at the development of integrated environment for processor
performance modeling using Sim-nML. The development of complete environment
is in progress. Many tools have been developed till now, which we will look at in

Chapter 2. The goals achieved in this work are as follows.

e PowerPC 603 Specification in Sim-nML
As a starting point model for PowerPC 603[19] processor (chapter 3) has
been developed in Sim-nML. Around 237 instructions have been specified with

resource usage model and pipeline.

e Macro Preprocessor for Sim-nML
Sim-nML provides macros which help in writing the specification. A Macro

Preprocessor has been designed and implemented.

e Retargetable Functional Simulator
It has been designed and implemented which takes processor specification and

a executable and generates a Functional Simulator.

1.4 Organization of Report

The rest of the thesis is organized as follows. In chapter 2 we discuss briefly the
integrated environment. In chapter 3 we look at PowerPC 603 architecture and
its specification in Sim-nML. In chapter 4 we look at some aspects of Functional
Stmulation and Trace Generation. In chapter 5 and chapter 6 we discuss the design
and implementation of Macro Preprocessor and Fsimg. Finally we conclude with the
results and future work in chapter 7. In Appendix A and B, we provide the format of

i and the user manuals for tools developed in this thesis respectively.



Chapter 2

Overview of Integrated

Environment

In this chapter we discuss the integrated environment that we work in, the Sim-nML

Language, the IR, and some existing tools.

2.1 Overall Structure

The base language for our environment is Sim-nML, an extension of nML machine
description formalism. Processor models are written in Sim-nML, using which, various
processor specific tools can be generated automatically. To make the tools’ design easy
the model specified in Sim-nML is first converted into an intermediate representation
(IR) (section 2.4). For a tool, intermediate form is simpler and very easier to read
and interpret when compared to a specification in Sim-nML. A tool called irg[10] is
available that takes a Sim-nML specification and converts it to IR. The overall view

of the environment is shown in the figure 2.1.

2.2 Sim-nML Language

nML[8] is an extensible formalism to describe a processor architecture. nML works
at an abstract level hiding implementation details of the architecture. In nML the
architecture is described at instruction level. The instruction set is enumerated as an

attribute grammar in a tree hierarchy capturing the semantics of the instructions at
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Figure 2.1: A View of Integrated Environment

different levels of the hierarchy depending on the class of instructions.

nML defines a fixed start symbol called instruction and two kinds of productions

or-rule, whose syntax is as follows:
Oop nNg = 1ny | Iy | ng ‘
and and-rule whose syntax is as follows

op 1y ((p1: ty, p2:ty, .. )
a; = €1 a9 = €9 ...

where each n; is a non-terminal and each t; is a terminal. FEach a; is a at-

tribute and e; is it’s corresponding definition. p;s are the parameters used in the



attribute definitions. We can specify the addressing modes using mode-rule which is

similar to and-rule. A simple mode-rule looks like following
mode REG_INDIRECT (i: card (5))=R[i]

Above mode-rule defines a register indirect mode. nML grammar predefines three
attributes namely syntaxr which is textual syntax of the instruction, image which is
binary coding of the instruction and action which is the semantics of the instruction.

Following is a nML description for simple processor with two instructions add and sub.

mem AC [ 1, card (16 ) ]
mem PC [ 1, card ( 16 ) |
mem REG [ 4, card ( 16 ) |

mode REG_INDIRECT (i: card (2)) = REG [i]
syntax = format ( “%d”, 1)
image = format ( “%2b”, 1)

op instruction ( x : instruction_action )
syntax = format ( “%s”, x.syntax )
image = format ( “%s”, x.image )
action = {
PC = PC + 1;

x.action;

op instruction_action = add | sub

op add ( x : REG_INDIRECT )
syntax = format ( “add %s”, x.syntax )
image = format ( “7100000%s”, x.image )
action = { AC = AC + x; }

op sub ( x : REGINDIRECT )

syntax = format ( “sub %s”, x.syntax )



image = format ( “100001%s”, x.image )
action = { AC = AC + x; }

The add instruction adds the contents of a register to register AC and stores
the result in the AC. Similarly the sub instruction does the subtraction. PC is the

program counter.

nML allows type declarations, constant declarations and macros which aid in writ-
ing clear specification. nML lacks in the control constructs and ability to specify
inter-instruction dependencies. Moreover, specification of timing of operations is not
possible. Therefore nML is not very useful for performance evaluation. It is difficult
to specify and study a newer architecture having features like pipelines, out-of-order
execution, branch prediction etc. Sim-nML[17] is an extension of nML which includes
the timing of various operations and a resource usage model. The main idea behind
the resource usage model is that, as an instruction executes it holds a set of resources
like functional units, registers etc. Capturing this model helps in the study of the

performance of the processor.

In Sim-nML resources are declared with the resource construct which looks like

following.
resource fetch_unit, execution_unit, retire_unit

A new attribute wuses has been added which describes the resource usage pattern
and timing parameters' for the instruction. The specification for the previous exam-
ple with the resource use model looks like the following.

reg AC[1, card (16) |
reg PC |1, card (16) |
reg REG [ 4, card (16 ) |

mode REG_INDIRECT (i: card (2)) = REG [i]
syntax = format ( “%d”, i)

image = format ( “%2b”, 1)

resource fetch_unit, execution_unit, retire_unit

'Refer [17] for more detailed information.



op instruction ( x : instruction_action )
uses = fetch_unit : preact #{1}, x.uses, retire_unit #{1} : action
syntax = format ( “%s”, x.syntax )
image = format ( “%s”, x.image )
preact = { PC = PC + 1; }

action = { x.action; }
op instruction_action = add | sub

op add ( x : REG_INDIRECT )
uses = execution_unit & AC #{1}
syntax = format ( “add %s”, x.syntax )
image = format ( “7100000%s”, x.image )
action = { AC = AC + x; }

op sub ( x : REG_INDIRECT )
uses = execution_unit & AC #{1}
syntax = format ( “sub %s”, x.syntax )
image = format ( “100001%s”, x.image )
action = { AC = AC + x; }

The above specification says that all instructions use the fetch_unit for one time
unit, the ezecution_unit for the time specified by the instruction and the retire_unit
for one time unit. The add and sub instructions use the ezxecution_unit for one time
unit. The action attribute at the end of the uses definition specifies that after using
the given resources for the mentioned duration of time, the specified function has
to be performed. Sim-nML gives more constructs like declaration of exceptions? etc.

which help in describing branch prediction and out-of-order execution.

2.3 Macro Preprocessor

nML provides macros to aid the specification writing. A typical macro definition looks

2Refer [17] for more information.
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like,
macro name ( py, Py, ... ) = €Ipr

where p; is a parameter and ezpr is an nML expression. The above syntax is not
very flexible because the macro body allows only one nML expression. We have re-

laxed this restriction so that macros can be used extensively. The new syntax looks
like,

macro name ( pi, ps, ... ) = macro-body

where macro-body is sequence of characters ending with a new line. If the macro def-
inition needs to span multiple lines then each line should end with a reverse slash(\)
except the last line which should end with a new line. For this purpose we have
designed and implemented a macro preprocessor nMP?3. The Sim-nML description
containing macros is given as input to nMP which translates the macros into m4/[16]
macros. m4? is a generic macro processor in traditional Unix systems. It is available
on most platforms. The output from m4 is Sim-nML description without macros. This
is given as input to irg. nMP does not do any syntax checking on the macro-body since
it is done by irg[10]. This macro processing phase appear in between Sim-nML Spec.
and IR generator in the figure 2.1. We will discuss its design and implementation in

section 5.1.

2.4 Intermediate Representation

Specification written in Sim-nML contains many constructs for the clarity and un-
derstanding. Tools using this specification need to parse and interpret the contents.
Such an effort can be avoided if parsed Sim-nML specification is represented in an
intermediate form that is easily understand by a program. IRG[10] converts Sim-nML

specification into an IR.

3Refer Section 5.1
“man m4 or info m4 gives detailed information on using and writing macros in m4.
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2.4.1 Structure of IR

The information in the Sim-nML specification is captured into a set of tables in IR.
Each table consists of fixed or variable size records representing a particular type
of information. For example all the mem type declarations i.e, variables are put
into MEMORY TABLE. Each record in this table give the information such as type,
size etc., of a variable. In the remaining tables a variable is referred by its index in
the MEMORY TABLE. In this way it is easy to extract out the information needed.
Finally to figure out the number of tables, no of records in each table and their
location inside the IR, a special table is added called META TABLE, whose records
provide information about the other tables in the IR. META TABLE is always the first
table in the IR while other tables can be any where inside the IR. Information about

various tables and their structures can be found in Appendix A.

2.5 Existing Tools

Following tools have been implemented till now in our environment.

Instruction Set Simulator Generator [17] takes Sim-nML specification and gen-
erates a performance simulator, which in turn takes a binary for that processor

and gives the performance based results.

Disassembler [10] takes Sim-nML specification and a binary in ELF format and

gives out the disassembly of the binary.

Compiler Back-End Generator [14] takes nML specification and generates a LCC
machine description which can used to generate a LCC compiler for the specified

processor.

12



Chapter 3

PowerPC 603 Specification in
Sim-nML

In this chapter we present a brief overview of PowerPC 603 architecture and discuss
the PowerPC 603 specifications in Sim-nML, and some issues in writing specifications

in general.

3.1 Overview of Architecture

PowerPC 603][19] is a 32-bit implementation of PowerPC architecture|[7] which con-

sists of following components.

e PowerPC user instruction set architecture - This includes the base user-
level instruction set, user-level registers, programming model, data types, and

addressing modes.

e PowerPC virtual environment architecture - This describes the memory
model that can be assumed by software processes and includes descriptions of
the cache model, cache-control instructions, address aliasing, and other related

issues.

e PowerPC operating environment architecture - This includes the struc-
ture of the memory management model, supervisor-level registers, and the ex-

ception model.

13



The 32-bit portion of PowerPC architecture provides 32-bit effective address, integer
data types of 8, 16, and 32 bits, and floating-point data types of 32 and 64 bits.
The PowerPC 603 is a super-scalar processor capable of issuing and retiring as many
as three instruction per clock. Instructions can execute out of order for increased

performance; however, PowerPC 603 makes completion appear sequential.

g8 FExecution Units

The PowerPC 603 consists of five execution units - an integer unit (IU), a floating-
point unit (FPU), a branch processing unit (BPU), a load/store unit (LSU), and a
system register unit (SRU) (figure 3.1). The PowerPC 603 has the ability to execute
five instructions in parallel. Most of the integer instructions execute in one clock
cycle. The FPU is pipelined such that a single-precision multiply-add instruction
can be issued every clock cycle. It provides two independent on-chip 8-Kbyte, two-
way set-associative, physically addressed caches for instructions and data and on-chip
instruction and data memory management units (MMUs). MMUs contain translation

look aside buffers (TLBs) for virtual memory support.

The IU contains a fetch unit, instruction queue, dispatch unit, and BPU provides
the centralized control of instruction flow to the execution units. The IU determines
the address of the next instruction to be fetched based on information from the sequen-
tial fetcher and from the BPU. The IU fetches the instructions from the instruction
cache and places them in the instruction queue. The BPU extracts branch instruc-
tions from the fetcher and uses static branch prediction on an unresolved conditional
branch to enable IU continue fetching instructions from predicted target while the
conditional branch is evaluated. The instruction queue holds as many as six instruc-
tions and loads up to two instructions from IU in a single cycle. The instructions are
dispatched to their respective execution units from dispatch unit at a maximum rate
of two instructions per cycle. The completion unit tracks instructions from dispatch
through execution, and then retires or completes them in program order. For this
purpose a first in first out (FIFO) queue of five completion buffers is used. At the
time of dispatching an instruction a completion buffer is allocated to that instruction.
If no buffer is available then the instruction dispatch stalls until a completion buffer
is available along with other resources needed for the dispatch. A maximum of two

instructions per cycle are completed in order from the queue.

14
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B Registers

The PowerPC 603 contains 32 user-level, general-purpose registers (GPRs). These
registers are 32-bit wide. The GPRs serve as the data source or destination for all
integer instructions. The PowePC 603 also contains 32 user-level, 64-bit floating-
point registers (FPRs). These serve as the data source or destination for floating-
point instructions. FPRs can contain data objects in either single or double precision
floating-point formats. Apart for the GPRs and FPRs, PowerPC 603 also contains

some conditional registers, segment registers and a few special-purpose registers.

B Instruction Set

All PowerPC 603 instructions are encoded in 32-bits. Various types of instruction
formats are consistent, permitting efficient decoding to occur in parallel with operand

accesses. The PowerPC 603 instruction set is categorized into the following categories.
e Integer instructions - These include computational and logical instructions.

e Floating-point instructions - These include floating-point computational in-

structions.

e Load/store instructions - These include integer and floating-point load and

store instructions.

e Flow control instructions - These include branch instructions and other

instructions that affect the instruction flow.

e Processor control instructions - These instructions are used for synchroniz-

ing memory accesses and management of caches, TLBs and segment registers.

e Memory control instructions - These instructions provide control of caches,

TLBs, and segment registers.

B Addressing Modes

The PowerPC architecture supports at least two simple addressing modes for load

and store instructions.

1. Register indirect with immediate index
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2. Register indirect with index

Addressing modes available in PowerPC 603 implementation are as follows. The load

and store instructions have the following three categories of addressing modes.

1. Register indirect with immediate index - The effective address is calcu-

lated by adding one register value and an immediate value in the instruction.

2. Register indirect with index - The effective address is computed by adding

two register contents specified in the instruction.

3. Register indirect - The effective address is provided in the register specified

in the instruction.
Branch instructions have the following three categories of addressing modes.

1. Immediate - The effective address is calculated using the immediate value
from the instruction. Branch relative and branch absolute modes fall in this

category.

2. Link register indirect - The target address is provided in a special register
called link register (LR).

3. Count register indirect - The target address is provided in a special register
called count register (CTR).

3.2 Overview of Specification

We have specified the PowerPC 603 in Sim-nML. The specifications consist of user
level instructions which includes integer, floating-point, load/store, flow control in-
structions, and user level instructions in processor control category. Branch predic-

tion, pipelines, resource usage, and instruction timing have been included.

The description of instruction hierarchy is as follows. Top level node is instruction,
and all the instructions are partitioned into two categories, branch and non-branch
instructions. The branch instructions are further categorized into conditional and
unconditional branch instructions. The unconditional branch instructions are of three
types, PC relative, absolute, and branch and link. Branch and link instructions are

used for procedure calls and save the return address in a register (this is called linking)
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before branching to the target address. The conditional branch instructions test the
branch condition on bit-fields in the condition register. These conditional branch
instructions can be speculated or non-speculated depending on the availability of
condition register at the time of the branch resolution. The resource usage model

handles this speculation part.

The remaining instructions fall into non-branch instructions. The load and store
instructions cover integer and floating-point load and stores for loading and stor-
ing byte(8-bits), half word(16-bits), and word(32-bits) of integer types and single
precision(32-bits) and double precision(64-bits) of floating point data types. Inte-
ger instructions include integer arithmetic and logical instructions. Floating-point
instructions include floating-point arithmetic, multiply-add, compare, and move in-
structions. Flow control instructions include instructions to set bit-fields in the con-
dition register on which branch instructions test for a particular condition. Processor
control instructions have instructions for moving to and from special purpose regis-
ters. About 235 instructions in the PowerPC 603 have been specified in its Sim-nML

specifications.

3.3 Some Issues in Writing Specification

g Bit Fields

Sim-nML gives bit-range operator to select arbitrary bit fields of memory structures.

The syntax of this operator is as follows.
memory-name (lsb..msb)

The Isb is the least significant bit and msb is the most significant bit. In Sim-
nML the bits of memory locations are numbered from right to left starting with
0 (little-endian). Following example copies a least significant byte from half word

memory location to a byte memory location.
mem REG1 [ 1, card ( 16 ) |

mem REG2 [ 1, card ( 8) ]
REG2 = REG1 (0..7);
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In the above example if msb and [sb are interchanged (i.e. REG2 = REGI
(7..0);) then the bit-field is reversed and put into the destination. This brings the
issue of writing specification for a big-endian processor, where the bits in memory
locations are numbered from left to right. In such cases the specification writer
has to convert the bit numbering to Sim-nML numbering and use the corresponding
numbers in the specification. This is needed since tools follow Sim-nML conventions.
The above example for a big-endian processor without conversion looks like the

following.
REG2 = REG1 (15..8);

This expression extracts the most significant byte, reverses it and puts in the
destination. This is not what exactly we wanted. So the specification writer has to

convert theses bit numbers for the correct interpretation by a tool.

g Instruction Hierarchy

The specification of the instruction set should strictly follow a tree structure, i.e. it
should not contain any cycles. Cycles imply that there are different paths in the
hierarchy to reach an instruction from top level node, which is not correct. This

causes tools to report errors.

B Program Counter and Current Instruction Pointer

The semantics of incrementing the program counter (PC) should not appear in the
action part of any instruction. Only branch instructions should modify the PC in
the action part. The task of incrementing the PC will be taken care of by the tools
(e.g. simulator). Tools increment the PC before the instruction is executed. If the
instruction uses the current instruction address then it can not use PC, since it is
already incremented. If the instruction set contains such instructions then another
variable say OLD_PC can be used for keeping track of the current instruction address

in the action part.

19



Chapter 4

Functional Simulation and Trace

(Generation

Repeated performance analysis and testing is an essential part of a system design
phase. Performance analysis tools play major role in this phase. The complexity of
modern processors is due to the performance enhancement techniques they use. This
makes the simulation a time consuming process. The simulator is of no use if it is
unable to simulate at a speed close to that of the real processor. It is not a easy task
to make the simulator to run at that speed. Several techniques have been developed

to speed up the simulation.

4.1 Simulation Methods

The existing simulation methods can be classified into two categories depending on

the technique they employ.

4.1.1 Based on Resource Management

Simulation is done by managing various resources between all the instructions. A
resource can be a register-file, functional unit, pipeline stage etc. There are two
primary methods in this category. First one is Cycle Based in which the resources are
managed between instructions each cycle analogous to a processor clock. The second

one is Fvent Based in which the resources are managed between instructions based
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on the events happening like release of a resource by an instruction etc.

4.1.2 Based on Instruction Sequence

Simulation is done by the dynamic execution sequence of instructions. There are
two primary methods in this category. First one is Fzecution Driven in which the
actual functionality of instruction is simulated along with pipeline etc. Simulation
of functionality gives the dynamic sequence of instructions. The second one is Trace
Driven in which the dynamic sequence of instructions is obtained earlier, then the
simulation of pipelines etc. is done on using this sequence. It is clear that trace driven

simulation is faster than the execution driven simulation.

In our environment we have an instruction set simulator[17] which uses cycle based
simulation method. The speed of this simulator is, however, low. A trace driven
simulator is a choice for improving the speed of simulation. Trace driven simulator
requires a dynamic instruction sequence. A trace generator is needed for obtaining
the instruction sequence. This is one of the reasons behind our design of retargetable
functional simulator which can also produce dynamic instruction sequence or the

instruction trace.

4.2 Functional Simulation

Simulation of functionality of the instructions is called functional simulation. This
includes keeping track of registers contents, memory contents etc. Generally the
functional simulation is very fast, due to the fact that the complex simulation of the
pipelines and other architectural features is not done. The functional simulation of
a program should produce the same results as of the program running on the actual
processor. This is very helpful in verifying the design of the instruction set of the
processor, it can also be used for the generation of instruction trace of a program

which is used by various other tools like trace driven simulator etc.

4.3 Trace Generation

Traces are of two types. One is the instruction trace which is a sequence of addresses

of instructions executed, and the other one is the memory trace which is a sequence of
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addresses of memory locations the program refers to while executing. Memory traces
are used to simulate caches and memory systems. Here in this work we generate only

the instruction trace.

4.3.1 Issues in Trace Generation

The difficulties in getting the complete program trace comes from the high cost of
recording every instruction and data address as the application program executes
and from the large size of resulting trace file. A simple tracing system examines
every instruction as a program executes. This approach is inefficient and makes the
program run slowly. A 10-million-instruction-per-second (MIPS) processors produces
nearly up to 70 megabytes of trace per second of execution. This makes the trace for

long time execution of the program difficult to store.

4.3.2 Trace Generation Methods

Generally the computational overhead in tracing can be reduced by modifying the
computer hardware along with the computer application software to record address.
Although such approaches can reduce computational overhead in tracing, the size of
the trace remains a big problem. Even if the traces can be compressed using standard
compression utilities by a factor of about 10, trace size remains large. Some tracing
systems avoid the storage of trace by sending the trace directly to the consuming
tool. This is called on-line-tracing. The difficulty with this method is that traces are

not sharable.

An efficient tracing system should reduce the tracing time as well as the trace
size. This can be achieved by recording minimal number of events while tracing the
program. One such technique was given by Ball and Larus[6]. A tool called qpt[12]
has been implemented using this technique combined with another technique called
abstract execution[11] for the MIPS 2000 system. This technique uses compiler-based
techniques. Tracing of a program is done in two phases. In the first phase a compiler-
style analysis is done on the program which helps in reducing the information to
collect during the program’s execution. This phase identifies a small subset of a trace
that suffices to reproduce the full trace. Only the events in this subset, called the trace
record, is recorded while the program runs. In the second phase a trace regeneration

process produces the full trace from the trace records.
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This is achieved by analyzing the program and instrumenting it to generate the
token records. The instrumentation is done in such a way that less number of token
records are generated when the program is executed. Then the program is executed
to get these token records. The full trace can be obtained form these token records

using trace regenerating tool.

4.3.3 Our Approach

All the existing methods require modification in the compiler, or the program, or
some other application, or the hardware to produce the trace, and the methods are
dependent on the system. For a retargetable system, such an approach is not possi-
ble. Therefore, we generate traces by functional simulation of the program. In our
approach, the functional simulator, fsim, can generate traces for any program. Since
the fsim itself is generated using Sim-nML model for a processor, our set of tools are

retargetable. The trace generated, however, is not compressed.
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Chapter 5

Design and Implementation

In this chapter we discuss the design and implementation of the Macro Preprocessor
(nMP) and Retargetable Functional Simulator (Fsimg).

5.1 Macro Preprocessor (nMP)

As we discussed in section 2.3 that nMP is not really a macro processor but a macro
translator, which translates the Sim-nML macros into m4[16] macros. This decision
was made to simplify the design and implementation of nMP by making use of widely
available powerful macro processor m4. Moreover, by this approach we can also use
the features available in m4 such as macro calls within macros, recursive macros etc.

This encourages the use of macros in an extensive manner.

nMP recognizes only the macro definitions in the given Sim-nML input. The macro
calls are not considered because nMP does not do any macro expansion. nMP works
in two modes. The first one is the passive mode. In this mode nMP looks for the
macro definitions in the input and copies simultaneously the input to the output. By
default nMP works in the passive mode. The second mode is the active mode. nMP
switches to the active mode when ever it finds a macro definition in the input. In the
active mode nMP stores the macro definition in its internal data structures. When
the macro definition is completed the Sim-nML macro is translated to the m4 macro

and nMP switches back to the passive mode.

nMP is written using flexz and bison in about 500 lines of code. nMP takes input file

with macros as a command line argument and writes the output (Sim-nML description
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with m4 macros) to the file whose name is derived by suffixing “.m4” to the input
file name. If no file name is given, nMP reads its input from the standard input and
writes its output to the standard output. A shell script has been provided for running

m4 on nMP generated output to get the Sim-nML specification without macros.

5.2 Retargetable Functional Simulator (Fsimg)

Fsimg takes as input, the processor description in an intermediate form and a program
in ELF (section 6.1) executable format and generates a functional simulator (Fsim)
for this program. The code generated for Fsim is a C code. First we look at the
overall process of Fsim generation, then the basic structure of Fsim and details on

Fsim generation.

5.2.1 Overview of Fsim Generation

The action attribute in the Sim-nML specification captures the semantics of the in-
structions. Fsimg converts all instructions semantics into respective functions by
flattening the hierarchical description of action attribute. The Fsimg then decodes
the instructions from the program, extracts the parameters for the instruction and
generates a call to the respective function with these parameters. All these calls to
functions are captured into a table called function-pointer-table whose entries are ba-
sically a set of parameters and a function pointer pointing to the respective function.
The entries in this table are in the order of the instructions in the program. The simu-
lation starts by calling the function for the first instruction along with its parameters.
The called function return the index of the next instruction into the function-pointer-
table. In this way simulation continues till the program is terminated. Along with this
table Fsimg generates data structures for the memory, registers and other memory el-
ements in the processor, and a driving routine for the simulation which initializes the

memory and registers. The driving routine calls the first instruction of the program.

5.2.2 Fsim Structure

Fsim has the following five components (figure 5.1).

1. A set of functions one for each instruction in the processor description.
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2. A function-pointer-table corresponding to instructions in the program.
3. The memory image of the program.
4. Data structures for registers and other memory elements.

5. The driving routine.

Memory Image Registers etc.
memory.img Vars.h
Functions for Function Pointer
Instructions Table
Instr.c Funcs.c

Driving Routine _
_ Fsm
Main.c

Figure 5.1: Fsim Components

The function-pointer-table is an array of structure whose members are an array of
parameters and a pointer to a function. The C declaration of function-pointer-table

is as follows.

struct func_ptr {
uint64 p [MAX_PARAMS];
int (+func)(uint64 x);

b
struct func_ptr Func_Pointers [MAX_POINTERS] = {

{{13, 0, 388}, Fun38},
{{13, 13, 41916}, Fun146},
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b

The function pointed to by the function pointer take a pointer to the parameters
and return the index of the next instruction. When the simulation starts the driver
routine initializes the conceptual program counter (PC), stack pointer (SP), and mem-
ory. At this point PC points to the first instruction of the program. The index of
this instruction into the function-pointer-table is calculated differently for a processor
with fixed instruction length and processor with variable instruction length. For a

processor with fixed instruction length, the index calculation is as shown below,

index = ( PC - CODE_BASE ) / INSTR_LEN;

where CODE_BASE is the address of the first instruction in the program’s code
segment and INSTR_LEN is the length of the instruction in bytes. Each entry in the

function-pointer-table represents an instruction with parameters.

In the case of a processor with variable instruction length, the index calculation
is not possible in this manner. In our simplistic approach each entry in the function-
pointer-table for such a processor represents only one byte of the instruction. That
is for a three byte instruction three entries are used in which first one represents the
instruction and the remaining two are not used. With this kind of function-pointer-

table the index calculation is as shown below.
index = (PC - CODE_BASE);

The following example shows the function pointer table for a variable length pro-
cessor where the length of the first instruction is two bytes and that for the second is

three bytes.

struct func_ptr Func_Pointers [MAX_POINTERS] = {
{{2}, Fun190},
{{}, Dummy Cisc},
{{4100}, Fun78},
{{}, Dummy Cisc},
{{}, Dummy Cisc},
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b

After computing the index, the driver routine calls the function at this index with the
parameters. The function called performs the semantic action associated with the in-
struction and returns the next instructions index to the driver routine. The function
calculates this index as described earlier using the program counter (PC), the length
of the instruction, and the base address of the first instruction. The driver routine
uses this index to call the function at that index. In this way the instructions get
executed (simulated) until the program terminates. The code for the driver routine

looks like the following.

index = (MAIN_ENTRY — CODE_BASE) / INSTR_LEN;

while((index = Func_Pointers[index].func(Func_Pointers[index].p)) = -1);

5.2.3 Code Generation for Fsim

p Extracting instructions and Hashing

At first Fsimg tries to find out the information about the instructions in the de-
scription. All the tables in the IR are read into the memory and syntax and image
attributes for all instructions are extracted. Syntax attributes contain the informa-
tion about the parameters. Image attributes are used to decode the instructions in
the program. For this image masks are computed for each image as described here.
Generally some of the bits in the image are fixed and others come as parameters.
Image mask is basically a bit string that has ones for the fixed bit positions and zeros
in the parameter bit positions. In order to decode an instruction, we and it bit-wise
with each instruction mask and compare the result with the image attribute in the
IR. This process of decoding is, however time consuming. To improve the decoding
performance the images are hashed into a hash table.

First a global mask is computed by bit-wise anding all instruction masks. The
global mask therefore represents the opcode field of the instructions. First level
hashing is done based on the opcode field. However it is not very useful because
instructions may not have distributed evenly to all the buckets. It may result in

one bucket having large number of instructions while some other buckets having no
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instructions. For this reason instructions in each bucket are further hashed based on
the remaining fixed fields of those instructions. This comes from the observation that
when we hash on opcode all instruction of particular type say integer instructions
gets hashed to same bucket. Now these instruction have additional fields to identify
different instructions amongst them self. These fields are called sub-opcodes. In this

way hashing is done several levels until single instruction is hashed to a bucket.

i Generating Functions for instructions (Action Flattening)

After instruction hashing, Fsimg generates the functions for the instructions in the
description. The semantics of an instruction are captured in the action attribute,
which is hierarchically spread over the path from the top level node to the instruction.
A set of dot-expressions[10] in the IR provides the information about this path for each
instruction. Starting at the top node till the instruction, the definition in the action
attributes is captured as a C function. All the attribute definitions are available in the
PREFIX ATTRIBUTE DEFINITION table in the IR. The definitions are in the prefix
notation which are converted in to the infix notation during the code generation. Sim-
nML operators like bit-field, left and right rotate, bit-concatenation etc., are converted
into library calls (see 6.3.1).

In the definition of action attributes the operands of the instruction may appear.
The image got from the IR provides the method to find this information. These
statements may also contain calls to other attribute definitions. In this case the
definition of that attribute is substituted in that place. Before generating the code
for the attribute, a unique label is placed so that if the definition recursively calls the
same attribute then it can be converted to a goto statement. This situation may arise
because Sim-nML lacks loop constructs and the specification writer may need a loop
while describing a instruction like load string bytes!. This can be written by calling
an attribute recursively on a condition. The generated functions take pointer to

parameters and returns the index of next instruction into the function-pointer-table.

oad string bytes instruction loads n consecutive bytes from a memory address, where n and
memory address are operands of this instruction.
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g Instruction Decoding and Function Pointer Table Generation

The Fsimg reads the required information from the given program which is in ELF
format into the internal data structures. Depending on the processor type number of
function-pointer-table entries are calculated. If it is a processor with fixed instruction

length, then the calculation is as follows.
no-of-entries = text-section-size-in-bytes / instruction-length

If it is a processor with variable instruction length, then the calculation is as fol-

lows.
no-of-entries = text-section-size-in-bytes

Now the decoding of the instructions in the program is done using the hash table
created earlier. Omnce a instruction is recognized the operand values are extracted
from the instruction and a function-pointer-table entry is generated with these val-
ues and the corresponding function for the instruction. In case of a processor with
variable instruction length, number of entries generated are equal to the length of
the instruction in bytes. In this manner all the instructions in all text sections of the
program are decoded and function pointer table is generated. If an instruction gets
unrecognized then a dummy entry is created in that position of the function-pointer-
table. If the control reaches this entry during the simulation, then it generates an
error message and simply returns the index of next instruction to the driving routine.
This may lead to incorrect results and unpredicted behaviour of the Fsim. To avoid

this the specification has to cover all the instructions needed for running the program.

p  Generation of Types and Memory Image

The Sim-nML types are converted into corresponding C types, like unsigned int for
card and int for int etc. But the problem comes with the sizes of these declarations.
Sim-nML allows the declaration of variables of arbitrary bit sizes. Consider the

following Sim-nML declaration.

mem TEMP [ 1 int (4) |
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This declares TEMP as a memory location of type integer and size 4 bits.
We have to allocate exactly 4 bits for the correctness of the value held by this
location. For this the C feature of bit-fields inside the structure declaration is used.

For the above declaration the code generated is as follows.
typedef char intS;

typedef struct {
int8 val:4;
} Int4;

Tnt4 TEMP;

Whenever TEMP occurs in any attribute definition, TEMP.val is generated in
that place. Thus whenever a variable is declared which is not a multiple of 8 bits,
nearest C-data structure larger than the one being used in Sim-nML, for example, a
12 bit variable in Sim-nML is declared using int16 type.

Fsimg composes the memory image for Fsim by combining all the data sections
and text sections of the program and is written to a file. When Fsim starts it loads
this memory image in to its memory. All memory references are redirected relative
to the location where it is loaded.

Finally code for the driver routine is generated which consists of the code that
initializes the PC, SP, and memory and the code for the simulation as we have seen

earlier.
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Chapter 6

External interface to Fsimg and

Fsim

6.1 Executable and Linking Format (ELF)

ELF was originally developed and published by UNIX Systems Laboratories (USL)
as part of the Application Binary Interface (ABI). The Tool Interface Standards
committee (TIS)[3] has selected the evolving ELF standard as a portable object file
format that works on 32-bit architecture environments for a variety of operating

systems.

There are three main types of ELF object files.

e Relocatable file - This type of ELF file holds the code and data for linking

with other object files to create an executable or a shared object file.

e Executable file - This type of ELF file holds a program suitable for program

execution. This file specifies how to create the program’s process image.

e Shared Object file - This type of ELF file holds the data suitable for linking.
Linking is done in two ways. The static linking done by the link editor (I1d) re-
quires processing of several relocatable and shared object files to create another
object file. The dynamic linking involves the combining of an executable file

with other shared object files to create a process image.
Object files participate in program linking and execution. The object file format has
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different views in these two different contexts. The file starts with a machine inde-
pendent header called ELF header which describes the remaining file organization.
A linking view has a set of sections which provide the information needed for linking
such as instructions, data, symbol table, relocation information etc. A section header
table gives the information related to these sections. An execution view has a set of
segments and a program header table which provides the information about how to

create a process image.

6.2 Dynamic Library Calls

ELF executable files are two types depending on the way they are linked with the
library. A dynamically linked executable file contains references to the library func-
tions which reside inside the shared object files. The dynamic linker resolves these
references while creating the process image for this executable. This enables the shar-
ing of same library by many programs. A statically linked executable contains all the

code including the library functions and its size may be very large.

Simulation of interactive programs is very difficult because interactive programs
interact with the operating system, devices etc. Typically programs use standard
library functions for interaction. These library calls can be diverted to the simulator
host’s library calls for simulating interactive programs. For this dynamically linked

executables are more suitable as they are easy to identify in the code.

6.2.1 Handling Dynamic Calls

The Fsimg has the capability to identify the dynamic calls in the program and gener-
ates code for Fsim which diverts these calls to the host system’s library calls. Fsimg
achieves this through the external interface. The list of dynamic calls that may be
used by the program can be specified through a configuration file. In this file, for each
dynamic function to be diverted, a corresponding user function with the parameters
and their size is specified. These user functions substituted for the diverted dynamic
calls are linked with Fsim. Fsimg passes the parameters to user functions by refer-
ence. The user function extracts the parameters and call the host library function.
The return value of the host library function should be modified and returned by

the user function to Fsim. The handling of the return value is also specified in the
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configuration file.

The issues of endianness is also important. The simulated processor may have
different endianness than the simulating host. In such cases the parameters which
are passed to the user function are converted to reflect the simulating host endianness
and return value has to be converted back from host endianness to the simulating
processor’s endianness. Fsimg detects this mismatch of endianness in parameters and
generates code for changing the endianness of parameters before passing to the user
function. Similarly return value is also converted. For this Fsimg needs to know
the sizes of the parameters and return value which are optionally specified in the
configuration file.

In addition Fsimg needs to know the various instructions through which the sim-
ulated program may call dynamic library functions. This information can be given
through command line options. The call instructions typically modify the PC and
save the old PC. Using the destination address of the call instructions, Fsimg gener-

ates code for diverting the calls.

6.2.2 Specifying Dynamic Calls

The configuration file has following syntax given in yacc style grammar. A terminal
symbol starts with a upper case letter and a non-terminal symbol start with a lower

case letter.

function_definitions :

| function_definitions function_definition;
function_definition : Lib_Function => user_function;

user_function : return_variable = Function_Name ( parameters )

| Function_Name ( parameters );

return_variable : Name
| Name [ expr ]
| Name : Size

| Name [ expr ] : Size;
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parameters

| parameter_definition , parameters;

parameter_definition : parameter

: parameter : size_info;

parameter : Name

| Name [ expr 1;

size_info : parameter_size

| parameter_size $ size_info;
parameter_size : No_Of_Elements - Element_Size;

expr : Name
| Name [ expr ]
| Constant
| expr + expr
| expr - expr
| expr * expr

| expr / expr;
Where,

Name : [a-zA-Z_][a-zA-Z0-9_]%*

Constant : [0-9]+

Size : [0-9]+

No_0f _Elements : [0-9]+

Element_Size : [0-9]+

Lib_Function : [a-zA-Z_][a-zA-Z0-9_]*
Function_Name : [a-zA-Z_][a-zA-Z0-9_]*

The grammar specifies that configuration file is a sequence of function definitions.

Each function definition starts with the name of the dynamic function (the function
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called in the binary executable file being simulated) followed by a token “=>”. The
dynamic function is diverted to the user function specified on the right side of “=>".
The number of parameters to the dynamic function as well as to the user function is
the same. All parameters are specified at the right side. According to grammar the
return value specifications need not be given if the user function does not return any
value (or, value is to be discarded). The optional size information for a variable can
be given after the variable name followed by a “:” token. All parameter specifica-
tions to the user function are given within “(” and “)”. If the function does not take
any parameters, the parameter information can be left out. A parameter is given
by its name followed by optional size information. Since Fsimg passes parameters
by reference, passing of structures is also possible. When passing structures the size
information gives the number of structure elements and their respective sizes. The

following example explains this.

myfunc =>
R[O] : 4 = usr_myfunc ( M[SP] : 1-4 $ 1-2 § 2-4, M[SP+14] : 1-4)

The above example depicts that a user function called “usr_myfunc” should be called
instead of simulating a call to a dynamic function “myfunc”. The user function takes
two parameters from the stack. The return value should be placed in register RO
whose size is 4 bytes. The first parameter of the user function is a structure starting
at address given by the register SP in the processor being simulated. The structure
has four members with their respective sizes being 4, 2, 4, and 4 bytes. The syntax
x-y stands for x number of elements each of size y bytes. The $ in the specification
separates these element declarations. Basically $ separates the different size member
declarations. If all members of a structure are of the same size then it can be given
by a single x-y declaration, for example, 4-2 stands for four members of two bytes
each.

The parameter size information is used by Fsimg to generate code for changing
the endianness of the parameters before passing them to the user function if the
endianness of the simulating processor is not same. If no size information is given
Fsimg does not generate the code to change the endianness of the parameters. A

sample configuration file for PowerPC 603 is shown below.

printf =>
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GPR[3] = lib_printf( GPR[3], GPR[4], GPR[5],
GPR[6], GPR[7], GPR[8], GPR[9] )

memcpy =>

GPR[3] = lib_memcpy( GPR[3], GPR[4], GPR[5] )
open =>

GPR[3] = 1lib_open( GPR[3], GPR[4] )
read =>

GPR[3] = 1ib_read( GPR[3], GPR[4], GPR[5] )

The parameters to the functions are passed through registers from GPR3 onwards
and the return value is put in GPR3. The size information for parameters is not given

so Fsimg does not generate any endianness change code for parameters.

In general if the parameters are passed through the registers then there is no
need for endianness change. This is because the registers are simulated in simulator
memory. The load instructions take care of endianness while loading them properly
so there is no need for endianness change. Whereas the parameters in the memory
(e.g. stack) needs the endianness change, because the memory image which is loaded

from file is in the endianness of the processor being simulated.

6.3 Fsim Library

The Fsim library contains functions that are needed by the Fsim. They are implemen-
tation of certain Sim-nML operators corresponding operators for which is not present

in C. There are also a few other miscellaneous functions.

6.3.1 Sim-nML Operators

Following are the functions for Sim-nML operators present in the library. These opera-
tors are for integer data types only. In the current implementation of the library, these
operators do not work with floating-point arguments. In general bit-level operators

are rarely used on floating-point data types.
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e OpLeftRotate - This function implements the Sim-nML left rotate operator

("

e OpRightRotate - This function implements the Sim-nML right rotate operator

N

e OpBitField - This function implements the Sim-nML bit-field select operator
“(Isb..msb)”.

e OpSetBitField - This function implements the Sim-nML bit-field operator on

the left size of expression for setting selected bits.
e OpExp - This function implements the Sim-nML exponentiation operator “xx”.

e OpBitConcat - This function implements the Sim-nML bit-concatenation op-

erator “meml :: mem?2”.

e OpSetBitConcat - This function implements the Sim-nML bit-concatenation

operator on the left side of the expression.

6.3.2 Miscellaneous Functions

There are a few miscellaneous functions needed by Fsim. The first one is InitMem
which initializes the memory before start of the simulation. The second one is En-

dianChange which is used for changing the endian of data.

If the Sim-nML specification contains any canonical functions then the user has to
provide those functions also in the library.
6.4 Input Information

The Fsimg needs some information regarding the specification to generate code for

Fsim. This information is given through command line options.

B Stack Size and its Direction of growth

The stack size for the program is given through the command line option ‘—S size’.

Where size is in kilo-bytes. The default direction of stack growth is from higher
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address to lower address. This can be changed by giving the negative value to size.

If this option is not given default stack size and direction are used.

8 Program Counter, Stack Pointer and Current Instruction Pointer

The program counter (PC) is the variable name used in the Sim-nML description for
the program counter of the processor. The stack pointer (SP) is the variable name
used for the stack pointer. Some processors do not have any special register for stack
pointer. In such cases compiler uses one of the general purpose register as a stack
pointer. In that, case the variable name of the register as stack pointer should be
given. The current instruction pointer is a dummy program counter used for branch
instructions which use the current instruction address as described in the section 3.3.
This information is needed for correct code generation. This information can be given
by the following command line options.

—Pp program_counter_name
—s stack_pointer_name

—P current_instruction_pointer_name

p Call instructions and Configuration file

The information about the call instructions can be given with option ‘—f call-instruction-
node’. Where call-instruction-node is the top and or or-rule node for call instructions
in the specification. The configuration file for dynamic functions can be given with
‘—c file’ option.

6.5 Constraints

Fsimg has certain limitations, due to which it puts some restrictions on writing spec-

ifications for Fsimg.
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6.5.1 Writing Specification for Fsimg

Sim-nML gives many features for specification writes which are some times difficult

to implement. Here we discuss the restrictions in writing Fsimg.

g Data Types

1. In Sim-nML the specification writer can use data types of any length. The
Fsimg allows only maximum length up to the size supported by the simulating
host. For example, if one declares an integer of 128-bits, and the simulating

host supports only 64-bit integers then the Fsimg would not allow this.
2. Bit operations are not allowed on floating-point data types.

3. Enumerated data type of Sim-nML is not supported.

g Operators

The sizes of the operands to the bit-concatenation operator when it is used on the left
side of the expression should be the natural size of the simulating host data types.
That is if the machine supports 8, 16, 32-bit integers then the arguments should only
any of these sizes.

The Fsimg disallows the use of bit-field operator and bit-concatenation operator
at the same time on the left side of the expression. The following code shows the

situation which is not allowed by Fsimg.
mem VAR1 [ 1, card (8 ) |
mem VAR2 [ 1, card (16 ) ]
mem VAR3 [ 1, card (16 ) |

VAR2 (0 .. 7) :: VAR1 = VARS3;

g Aliases

The Fsimg allows use of aliases in a restrictive manner. Only byte level aliases are

supported. In other words, size of an alias should be of a multiple of 8-bits (8,
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16 etc.) and the location to which it is aliased should be byte aligned. Following

example shows the various possible methods of aliasing.

reg AC[1, card (32) ]
reg BX [ 1, card ( 20 ) |

mem ALIAS_ 1|1, card (8) ] alias=AC [ 7]
mem ALIAS 2 [ 1, card ( 8) | alias = AC [ 11 |
mem ALTAS 3|1, card (4 )] alias = AC [ 3]
mem ALTAS 4 [ 1, card (8) ] alias=BX [ 7]

In the above example two registers AC and BX are declared with sizes being
32-bits and 20-bits respectively. Four variables are declared which are aliased to
these registers. ALIAS_1 is a valid alias definition because its size is one byte and
it is aliased to the least significant byte of AC who’s size is multiple of byte size.
ALIAS_2 is not a valid alias definition because it is aliased to a location that is not
byte aligned. ALIAS_3 is also not valid because its size is 4-bits and is aliased to
invalid position. ALIAS_4 is also not valid because it is aliased to BX who’s size is

not multiple of byte.

B Load and Store Instructions

The main memory used in the Sim-nML description is typically byte addressable.
However, Sim-nML allows accessing multi-byte items with a given address. Following
example explains this.

type byte = int ( 8 )

mem M | 2%%16 , byte |

reg REG [ 1, int (16 ) ]

mem EA [ 1, card (16 ) |

M [ EA | = REG;

Although M is a byte addressable according to its declaration, the effect of
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the above statement is storing the REG’s contents in two consecutive bytes starting
from EA. This brings in the issue of endianness even in the specification. The Fsimg
does not support this feature currently. Hence the specification writer has to write

the code for storing these bytes separately.

The registers of any machine are always big-endian, but the memory endianness
depends on the machine. The endianness has to be changed when ever a multi-byte
item is loaded from memory to a register or stored to the memory from a register.
In general this can be done at two places, when the simulation is done the simulator
dynamically converts, or in the specification itself where the simulator would not
bother about the conversion. The first method is a big overhead on the simulator. It
has to keep track of may things and has to do the conversion for each memory access.
The second method removes this overhead form the simulator. Since the specification
writer knows the endianness of the processor he can take care of endianness while
writing specification for load and store instructions. Fsimg requires the specification
writer to take care of endianness. This can be achieved by using byte level aliases or
bit operators. For floating-point load and store instructions use of aliases is the only

possibility.

B Program Termination

To terminate the simulation gracefully, the simulated program has to call exit() at
the end. Further the behaviour of exit() should be specified in the configuration
file. In absence of call to exit() library function, Fsim produced exhibit unpredicted

behaviour.
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Chapter 7

Results and Conclusions

In this chapter, we discuss a few performance based results of the functional simulator

(Fsim) and conclude this thesis.

7.1 Results

Fsimg has been tested for its retargetability for two different processors PowerPC
603 and Motorola 68HC11. Fsim has been tested for its functional simulation and
performance. The functional simulation as well as the performance depends on the
description. If the description is erroneous then the functional simulation can not be
correct. Further even if the description is correct but the instruction semantics are

specified in an inefficient manner then the performance gets affected.

g Test Setup

The simulation results have been taken on two different machines with following

configurations.

e Machine I: Intel P-II 233MHz, a little-endian processor with 32MB RAM
running GNU-Linux Kernel 2.0.32.

e Machine II: Sun Ultra SPARC II 250MHz, a big-endian processor with 512MB
RAM running SunOS 5.5.1.
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The PowerPC 603 processor description written as a part of this work has been used
for the testing. Following are the test programs written in C. The PowerPC 603 ELF

binaries were created using a GNU cross-compiler.

e mmul.c : Matrix multiplication program. This program initializes two integer

matrices of 100x100 size and multiplies these two.

e bsort.c : Bobble sort program. This program initializes an array of 1500
integers in descending order and sorts them to ascending order using bubble
sort algorithm.

e ¢s.c: Quick sort program. This program initializes array of 1,00,000 integers in

descending order and sorts them to ascending order using quick sort algorithm.

e fmmul.c : Matrix multiplication for floating-point numbers. Initializes and

multiplies two floating point matrices of size 100x100.

e nqueen.c : This program finds all the possible ways that N queens can be
placed on an NxN chess board so that the queens cannot capture one another.
Here N is taken as 12.

All these programs were tested for the functional correctness on both the machines.
Here we present some performance based results for the above programs on these two
machines. The table 7.1 gives the total number of dynamically executed instructions

during the simulation for each of these programs.

Program | Total No. of Instructions

mmul.c 91,531,966
bsort.c 60,759,034

gs.c 80,773,862
fmmul.c 92,131,966
nqueen.c 204,916,928

Table 7.1: Total number of instructions simulated for test programs.

The functional simulator Fsim is compiled using a GCC compiler. The performance
results are taken by compiling Fsim with optimization (optimization level 3 i.e -O3)

and without optimization. In an unoptimized mode GCC tries to reduce the cost of
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compilation with out doing any optimizations on the generated code. In an optimized
mode it tries to optimize the code for reducing the code size as well as execution speed

at a higher cost of compilation.

Machine I:
With no optimization | With optimization level 3
Program | Total time | Instructions | Total time | Instructions
(seconds) | per second | (seconds) | per second
mmul.c 65.7 1,393,181 59.8 1,503,635
bsort.c 102.3 593,930 97.6 622,531
gs.c 111.7 723,132 108.7 743,090
fmmul.c 66.5 1,385,443 60.0 1,535,533
nqueen.c 265.2 772,688 262.4 780,933
Table 7.2: Performance Results on Machine I
Machine II:
With no optimization | With optimization level 3
Program | Total time | Instructions | Total time | Instructions
(seconds) | per second | (seconds) | per second
mmul.c 68.4 1,338,187 52.1 1,756,851
bsort.c 96.0 632,907 75.6 803,691
gs.c 105.7 764,180 84.4 957,036
fmmul.c 72.1 1,277,836 48.9 1,884,089
nqueen.c 261.2 784,521 234.7 873,101

Table 7.3: Performance Results on Machine 11

8 Analysis of Results

The results of test programs from tables 7.2 and 7.3 shows that three of these pro-
grams are simulated at 0.5 MIPS (million instructions per second) to 0.9 MIPS. But
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the mmul.c and fmmul.c are simulated at above 1 MIPS. After careful analysis of the
instructions executing for all these programs we found that the simulator is spending
variable amount of time in the library functions corresponding to Sim-nML operators.
The simulation speed differs due to the varying number of calls to such library func-
tions. The matrix multiplication programs have fewer number of instructions which
in turn call these library functions. This number is higher in the other three programs

which made them to slowdown.

An experimental setup has been used for finding the simulation timings of various
individual instructions. We found that different instructions are having different
simulation timings and the instructions having greater simulation time are having
more calls to the library operators. The mix of instructions which are having greater
simulation time is more in the programs whose simulation speed is less.

The conclusion we can make from this is that infrequent use of Sim-nML oper-
ators in the description can result in faster simulation. Further a better and faster

implementation of Sim-nML operators can further improve the simulation.

g Trace Results

The table 7.4 gives the approximate trace sizes for the test programs. Since the trace
generated is not compressed and for each instruction executed a four byte address is

generated, the trace size is four times the number of instructions executed.

Approximate trace size
Program (mega bytes)
mmul.c 349
bsort.c 232
gs.c 308
fmmul.c 351
nqueen.c 782

Table 7.4: Approximate trace sizes for test programs.

46



7.2 Conclusions

In this thesis we have discussed the Sim-nML language for modeling processors at
instruction level. It is powerful enough to specify any modern processor with pipelines,
branch prediction, etc. at the instruction level. We have also discussed the integrated
environment where automatically tools (assembler, simulator, compiler, etc.) can be

generated using Sim-nML processor models.

As a part of this work we have specified PowerPC 603 processor in Sim-nML.
Around 237 instructions have been specified with resource usage model and pipeline.
These instructions cover most of the user level instructions of the PowerPC 603 in-
struction set. We have implemented a Macro Preprocessor (nMP) for processing
Sim-nML macros. nMP converts Sim-nML macros into m4 macros there by making
the task of macro expansion simple. We have also designed and implemented a Re-
targetable Functional Simulator (Fsimg). The Fsimg takes a processor description in
an intermediate form and an executable in ELF format and generates a function sim-
ulator (Fsim). The Fsim simulates functionally executable program for the desired
processor. It can also generate the instruction trace of the program which is useful

for other tools in studying various other aspects of the design.

7.3 Future Work

Following points can be considered as an extension to this work.

e Removing the restrictions which Fsimg is imposing on the specifications writ-
ing. These include supporting aliases, allowing the use of bit-field and bit-
concatenation operators at the same time on the left side of an expression,
allowing operands of any size for bit-concatenation operator, supporting data

types of any size, and supporting Sim-nML enumeration data type.

e Current bit-operator library supports only integer data types. This can be
extended to floating-point data types also.

e The trace produced by Fsim is not compressed. It makes it difficult to handle
and process trace files. Producing the compressed trace is one of the improve-

ments that can be achieved.
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e Simulation speed is one of the important issue generally we look for. Improving
Fsim’s speed by possibly rewriting a better and faster operator library and by

changing the logic of the driving routine can be another future work.

e Although it may not be an extension to this work, Retargetable Trace Driven
Simulator can be designed that can use the trace generated by Fsim for the

performance study of processors.
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Appendix A

File Format of Intermediate

Representation

In this appendix, we will discuss the layout of the file for the intermediate representa-
tion. The file consists of various fixed or variable size tables where the name of each
table is fixed. A table, named as META TABLE, is always the first table in the file. All
other tables can reside anywhere in the file and can be located using the META TABLE.
The following are the tables available presently in the IR.

e META TABLE

e CONSTANT TABLE
e ATTRIBUTE TABLE
e RESOURCE TABLE

e IDENTIFIER TABLE
e MEMORY TABLE

e AND RULE TABLE

e OR RULE TABLE

e SYNTAX TABLE

e IMAGE TABLE
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e STRING TABLE
e INTEGER TABLE

e PREFIX ATTR DEF TABLE

Each table consists of an array of records. Each record in a table constitutes of
various fields. For each table, all the fields of first records are written first in the
file. Then all the fields of second record are written and so on. We have used the
word record and entry interchangeably. The fields might be stored either in little-
endian encoding or big-endian encoding depending on the processor on which the file

is created.

e Convention : Each table is described by defining its record format. We have
used a C-like struct definition to describe a record. For each record, fields are
written from top to bottom in the file. In describing the record, following data

types are being used. Size is in bytes.

Type Size Purpose
Byte 1 Unsigned Byte
Word 2 Unsigned Word
Dword 4 Unsigned Double Word
SByte 1 Signed Byte
SWord 2 Signed Word
SDWord 4 Signed Double Word
String - Null terminated array of SBytes
Address 4 Dword
Offset 4 Dword

A.1 Meta Table

The Meta table holds the table of contents for all the tables which are present in the
file. Each record of the META TABLE stores the information to locate a table. Each

record has the following format.
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typedef struct{
String table_name;
Dword table_size;
Address table_offset;
Dword total_record;
Dword record_size;

}Meta_Record;

table_name :  This field stores the fixed name of a table which is a 32 byte null
terminated string. Name of all the tables are written earlier.
table_size . This field holds the size (in bytes) of a table.

table_offset : 'This field holds the starting offset (in bytes) of a table in the file.

total_record . This field holds the number of record stored in a table. For the
string table, it holds the value 0.

record_size  : This field holds the size of a record (in bytes) of a table. If a
record for a table is variable in size, then this field contains the
value 0.

The data encoding of the IR is dependent on the processor on which it is created
i.e. data encoding can be little-endian or big-endian depending on the processor.
A tool can figure out the endian-ness of the IR by reading the table of contents
irrespective of the type of the machine on which the tools is running. First record of
the table represent the META TABLE entries itself. Therefore the no-of-rec contains
the total number of tables including the META TABLE, size-of-rec contains the size
of each record in the meta table and size-of-table contains the total size of the meta
table including the first record. A tool can read these values and check if the following
equation is satisfied.
no-of-rec * size-of-rec = size-of-table
If this equation is not satisfied, then the endian-ness of the IR and the machine on
which the tool is running are not the same, otherwise they are the same. In the
former case, this equation must be satisfied after the endian-ness conversion of the

fields values.
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A.2 Constant Table

Each record of the CONSTANT TABLE holds the informations about the constants in

the following format.

typedef struct {
Offset id_name;
Dword val_typ;
SDwor dvalue;

}Const_Record;

td_name : This field holds the index into the STRING TABLE. As discussed
earlier, STRING TABLE holds null terminated strings. Thus this
field represents a reference to the constant name.

val_typ : This field indicates type of the value associated with the constant
(0 for integer type or 1 for a string type).

value . If the wval_typ field represents integer, then this field holds the
corresponding signed integer value. If the val_typ field represents
string, then this field holds the unsigned integer index into the
string table from where a null terminated string value can be

retrieved.

A.3 Resource Table

Each entry of this table holds the information about a resource. Each resource is
assigned a unique integer key by which it is referenced at other places. Each record

has the following format.

typedef struct{
Offset res_name;
Dword res_key;

}Resource_Record;

res_name : This field holds the index into the STRING TABLE. In the
STRING TABLE, the name of the resource is stored at this in-
dex.

res_key . This field holds the key value assigned to the resource.
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A.4 Identifier Table

This table holds the informations about all the identifiers used in the processor spec-
ification file (other than those specified in the CONSTANT TABLE and the RESOURCE
TABLE). Each identifier is assigned a unique integer key which is used to refer to the

identifier at other places. Each record has the following format.

typedef struct{
Offset id_name;
Dword id_typ;
Dword id_key;

}Identifier_Record;

td_name : This field holds an index into the STRING TABLE. The STRING
TABLE holds a null terminated string at this index which is the
name of the identifier.

wd_typ . This field indicates the type of the identifier and may have one
of the following values.

Undefined Identifier

Name of a memory Variable
Name of an or-rule of mode type
Name of an and-rule of mode type
Name of an or-rule of op type.

Name of an and-rule of op type.

DD Ot = W N = O

Name of an Exception

others : Unspecified
td_key : 'This field holds the key value assigned to the identifier.

A.5 Attribute Table

Each entry of this table holds the name of an attribute. Each attribute is assigned a

unique integer key to refer to it at other places. Each record has the following format.
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typedef struct{

Offset attr_name;

Dword

attr_key;

}Attribute_Record;

attr-name : This field holds an index into the string table. The STRING

attr_key

Note :

TABLE holds a null terminated string at this index which is the
name of the attribute.
This field holds the key value assigned to the attribute.

For mode specification, one new attribute ,_val_, is defined to store the

optional expression associated with =.

A.6 Memory Table

Each entry of this table holds the information about a memory variable specified

with reg or mem specification construct of Sim-nML language. Each record has the

following format.

typedef struct{

Dword
Dword
Dword
Dword
Dword
Dword
Dword

Dword

id_key;
siz;
tot_attr;
mem_reg;
data_typ;
valuel;
value?2;

attr_list_index;

}Memory_Record;

1d_key

812

This field stores the key value associated with the identifier
name of a memory variable. The key value is assigned in the
IDENTIFIER TABLE.

A memory declaration defines a memory base i.e. a set of mem-
ory locations accessible under a name and an index. This field

specifies the number of such locations.
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tot_attr

mem_req

data_typ
valuel

value2

attr_list_inder

A memory declaration may also define values for some predefined
attributes. This field specifies how many attributes are defined
for the memory variable.

This field holds a value 0 if the memory identifier is declared
using Reg specification. It holds 1 if the memory identifier is
declared using mem specification. Both type of identifiers are
similar in nature except that first type of identifiers refer to pro-
cessor registers and second type of identifiers refer to memory

locations.

A memory location might hold values of different data types.
The data type is encoded in a tuple <data_typ, valuel, value2>
First field, data_typ, specifies what type of values can be stored
in a memory location. Second and third field stores the value
according to the data_typ field. Table A.1 shows the possible
values for these field.

If the tot_attr field has a value 0, then this field is ignored and
should be 0. Otherwise it specifies an index into the integer
table. At this index, three integers are stored for each of the at-
tributes. Therefore, the total number of integers are 3xtotal _attr.
Each integer triple indicates <attr_key, offset, len> where the
attr_key, is the key corresponding to attribute name assigned in
the attribute table. The second field of triple, offset, is the
starting tuple number into the PREFIX ATTRIBUTE DEFINITION
TABLE where definition of the attribute is stored in prefix nota-
tion. Third field of triple, len, is the number of tuples for its
attribute definition.

A.7 And-Rule Table

This table holds the information about all the and-rules (mode and op type). It

includes the information about sub-rules and attributes. The sub-rules of an and-rule

are numbered from 0 to n and parameters are numbered as 0 to m from left to right.

Each record has the following format.
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‘ Data Type ‘ data_typ ‘ valuel ‘ value? ‘
bool 0 0 0
card(n) 1 n 0
int(n) 2 n 0
fix(n, m) 3 n m
float(n, m) 4 n m
range[n..m)| 5 n m
enum(id_1...id-m) | 6 0 m—1

Table A.1: Encoding of data types

typedef struct{

Dword and_key;

Dword id_key;

Dword total_sub_rule;
Dword total_para;
Dword total_attr;
Dword attr_list_index;
Dword para_list_index;

}And_Rule_Record;

and_key : This field holds an integer which is a unique key assigned to an
and-rule. This key is used later to refer to the and-rule.
1d_key : This field holds the key value which is assigned to the identifier

name of the and-rule in the identifier table.

total_sub_rule : 'This field holds the number of sub-rules generated by flattening
of the and-rule.

total_para . This field holds the number of parameters taken by the and-rule.

total_attr . This field specifies the number of attributes defined for the and-
rule.

attr_list_indexr . If total_attr field has value 0, then this field is ignored and has a
value 0, otherwise it specifies an index into the integer table.
At this index, three integers are stored for each of the attributes.
Each integer triple indicates <attr_key, offset and len> similar
to the one described in the memory table. There are two excep-

tions here. If attr_key refers to a syntax or image attribute,
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para_list_index

then offset field contains the starting index in the SYNTAX TABLE
or the image table and len field contains the total number of
syntax or image records corresponding to the and-rule.

If total_para field has value 0, then this field is ignored. Other-
wise it specifies an index into the integer table. At this index,
three integers are stored for each of the parameter. Initially, all
parameters triples of first sub-rule are written, then all parame-
ter triples of second sub-rule are written and so on. Thus if we
have n sub-rules and m parameters, then there will be n*m such
integer triples. Each integer triple indicates <data_typ, valuel,

value2> i.e. the data type of parameter. Table A.2 shows pos-

sible values for fields of the triples.

Data Type

data_typ ‘ valuel ‘ value? ‘

bool

card(n)

int(n)

fix(n, m)

float(n, m)

range[n..m|

enum(id_1...id_m)

SII I |3 |33 | @

-1

and-rule

N[O | W IO

and_key

Table A.2: Parameter Type for and-rule

A.8 Or-Rule Table

This table holds the information of all or-rules (mode or op type). Each entry de-

scribes the children nodes of an or-rule. Each record has the following format.

typedef struct{
Dword or_key;
Dword id_key;
Dword total_child;
Dword child_list_index;
}0r_Rule_Record;
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or_key : This field holds an integer which is a unique key assigned to

an or-rule.

1d_key . This field holds the key value associated with the identifier
name of the or-rule in the identifier table.

total_child : This field holds the integer number which indicate number of

children generated by the flattening procedure for the or-rule.
child_list_index : 'This field holds the index into the INTEGER TABLE where a list
of and_key values are stored. Number of such and_key values
is given by the value of total_child. These and_key are uses to

refer to the and-rule (assigned in the and-rule table).

A.9 Syntax Table

This table holds the syntax records associated with the syntaz attribute definition of

all and-rules. Each record has the following format.

typedef struct{
Dword syn_key;
Dword dot_expr_len;
Offset dot_expr_offset;
Dword syn_expr_len;
Offset syn_expr_offset;
}Syntax_Record;

syn_key : This field holds an integer which is a unique key assigned to
a syntax record. In the and-rule table, the key is used to
get the attribute information of syntaz attribute.

dot_expr_len . This field holds the length of a character string, named as
dot-expression.

dot_expr_offset : This field holds the offset in bytes into the STRING TABLE
where actual dot-expression is stored as a sequence of charac-
ters.

syn_expr_len : This field holds the length of the character string, named as
syntaz-string of the instruction.

syn_expr_offset . This field holds the offset in bytes into the STRING TABLE

where the syntaz-string is stored as a sequence of characters.
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A.10 Image Table

This table holds the image records associated with the image attribute definition of

all and-rules. Each record has the following format.

typedef struct{
Dword img_key;
Dword dot_expr_len;
Offset dot_expr_offset;
Dword syn_expr_len;
Offset img_expr_offset;

}Image_Record;

mg_key : This is the unique integer assigned to each image record. In
the and-rule table, this value is used to get the attribute
information of image attribute.

dot_expr_len : This field holds the length of the character string, named as
dot-expression[10].

dot_expr_offset . This field holds the offset in bytes into the string table
where actual dot-expression is stored as a sequence of charac-
ters.

syn_expr_len : This field holds the length of the character string, named as
image-string of the instruction.

syn_expr_offset : This field holds the offset in bytes into the STRING TABLE

where the image-string is stored as a sequence of characters.

A.11 String Table

This table holds null terminated character sequences, commonly called strings. These
strings are referred to by an index into the string table. The first byte at index
zero always contains a null character. Similarly, the last byte also contains a null
character, ensuring null termination for all strings. A string whose index is zero
specifies either no name or a null name depending on the context. We show one
example of the string table of size 30 bytes in table A.3 and the strings associated

with various indices in table A 4.
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null i dl| e n t i f e
r null | P | C | null | null | i n t
r u c |t i 0 n | null null

Table A.3: Example of the String Table

‘ Index ‘ string

1 identifier
12 pPC

16 instruction
18 struction

0 null

Table A.4: Interpretation of the String Table

A.12

This table holds list of unsigned integer values (Dword type). These integers represent
different meanings in different contexts. The integers are referred to by an indez into
the integer table. The first entry always stored in this table contains 0. The index
refers to the starting entry and not the starting offset. The offset can be found by

Integer Table

multiplying the index and the the size of Dword.

A.13 Prefix-Attribute-Definition Table

This table holds various attribute definitions in prefix notation. All attributes ex-
cept the syntazr and image are converted into the prefix notation and stored in this

table. Each item of the prefix expression is stored in the following record of type

Tuple_Record.

typedef struct{
Word typ;
SDword value;

}Tuple_Record;

typ : 'This field holds an integer value to indicate the type of tuple i.e.
an operator tuple or operand tuple. If tuple is of operand type,

then this field also encodes the type of operand.
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value

values of typ field and corresponding interpretation of value field. If the typ field holds
the value 0, then the tuple is operator tuple, otherwise the tuple is operand tuple. If
the tuple is of operator type, then value field holds an integer which indicates operator

name and arity. Table A.6 shows all possible values for this field and corresponding

This field holds a integer value which will be interpreted accord-

ing to the value of typ field.

An attribute definition is stored in the and-rule table and in the MEMORY TABLE
with the starting index into the PREFIX ATTRIBUTE DEFINITION table and the num-
ber of items in the prefix notation of the definition. Table A.5 shows the possible

arity of the operator.

Type of the tuple ‘ typ field ‘

value field

Operator 0 operator number (see table A.6)

Fixed constant 1 signed integer value of
operand

Card constant 2 unsigned integer  value of
operand

Binary constant 3 Offset into the STRING TABLE

Hex constant 4 Offset into the STRING TABLE

String constant D Offset into the STRING TABLE

Memory variable 6 key of the identifier as assigned in
the MEMORY TABLE

Attribute type 7 key of the attribute name as as-
signed in the ATTRIBUTE TABLE

Parameter type 8 parameter number (left most is
assigned number 0).

Resource type 9 key of the resource name as as-
signed in the RESOURCE TABLE

Exception type 10 Key of the identifier as assigned

in the IDENTIFIER TABLE

There are as many operands available as needed for an operator. Since the arity for
an operator is fixed, the number of arguments is implicit. For example, an expression
PC = PC+2is = PC+ PC?2 in prefix notation and it has 5 items. The first item is
an operator '=". Second is a memory variable with value field being the index into the

memory table. Third item is again an operator '+’. The last field is a fized-constant

2.

Table A.5: Interpretation of the tuple used in Prefix Notation
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‘ value ‘ Name of Operator ‘ Symbol ‘ Arity of Operator
0 Addition + Binary
1 Subtraction - Binary
2 Multiplication * Binary
3 Division / Binary
4 | MOD % Binary
5 EXP ok Binary
6 Greater than > Binary
7 Less than < Binary
8 Equal to == Binary
9 Not equal to = Binary
10 | GEQ >= Binary
11 | LEQ <= Binary
12 | Logical AND & Binary
13 | Logical OR | Binary
14 | Logical XOR ) Binary
15 | AND && Binary
16 | OR I Binary
17 | Left Shift << Binary
18 | Right Shift >> Binary
19 | Rotate Left <<< Binary
20 | Rotate Right >>> Binary
21 Dot . Binary
22 | Concatenation = Binary
23 | Indexing ] Binary
24 | Assignment = Binary
25 | Statement Separator ; Binary
26 | Unary Addition + Unary
27 | UNOT OPERATOR ! Unary
28 | Unary Subtraction - Unary
29 | Bitwise NOT - Unary
30 | Bit Range " Ternary
31 | IF if then else Ternary
32 | Function canonical function | n-ary
33 | Switch switch n-ary
34 | default Expression default 0-ary
35 | NULL nothing 0-ary
36 | Hash # Binary
37 | Comma , Binary
38 | Condition {} Unary
39 | Colon : Binary

Table A.6: Operators Used in Prefix Attribute Definition
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For detailed description of each operator, read the Sim-nML specification given

in Appendix A. There are some special cases which are described here.

e The first case is for Bit Range operator which has the infix notation as
opdl < opd2..opd3 >.
Equivalent prefix notation used is as follows.

(operator, bitrangeoperator, opdl, opd2, opd3).

e The second case is for “if then else”. If there is no operand in else part, then
NULL operator (0-ary) (see table A.6) is being used.

e The third case is when there is a no attribute expression for an attribute. We

have used NULL operator to denote it.

e The fourth case is that of a switch operator. General infix notation for this is

switch (expr)

{
case Expr_1 : Sequence_1 ;
case Expr_2 : Sequence_2 ;
default : Sequence_i ;
case Expr_.n : Sequence_n ;
b

The corresponding pre-fix notation is as follows :

(operator, switch)

(n, expr,
Expr_1, Sequence_1,
Expr_2, Sequence_2,

DEFAULT OPERATOR, Sequence_i,

Expr_n, Sequence_n)
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The first item is an operator with operator name as switch. Then next item is
a simple operand tuple of Card constant type and value as n. After that, expr
will be again written in prefix notation. It will be followed by n-operands where
each operand is an expression in prefix notation and sequence of statements in
prefix notation. Default operator is a 0-ary operator so it can be taken as a

pre-fix expression.

The fifth case is that of a canonical function. General notation for this is as
follows.

“function name” (Argl, Arg2, Arg3, ......... , Argn)

where each argument is again an expression. The corresponding pre-fix notation

is as follows.

(operator, function)
(length of name, "function name" string,

n, Argl, Arg2,........ Argn)

The first item is a function operator. Second tuple is a string constant type (typ
= String constant, value = byte offset into the string table where function name
is written). Next item is a simple operand tuple with typ as Card constant and

value as n. Then each argument is represented in prefix notation.

There is one special case with function operator where the function name is
coerce. This function takes first argument as a data type. In the IR, we con-
vert data types to the basic data types and represent them using three num-
bers, data_type, valuel and wvalue2 as described in table A.1. Thus, the data
type parameter for the coerce function is converted to three integers internally.
Therefore, we have two extra parameters for this function. Thus number of

parameters are increased by two.
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Appendix B

User manuals for nMP and Fsimg

B.1 Macro Preprocessor (nMP)

Getting nMP:

The source code of nMP can be obtained from the following F'TP site.
ftp://cse.iitk.ac.in/pub/moona/simnml-nMP-0.1 tar.gz

The number 0.1 stands for the version. Future versions will be placed with
higher numbers like 0.2, 0.3 etc. The file is a Unix tape archive in the compressed

format.

Compiling nMP:

The downloaded file can be uncompressed and untarred to reveal the source files.

Following GNU tools are required to compile nMP.
e gcc 2.7.2 or higher
e flex 2.5.4 or higher
e bison 1.25 or higher

This code may be compatible with lower versions or older lexz and yacc tools

which we have not tested. To compile the source “make” is executed. This creates
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an executable for nMP.

Command Line Options:

nMP does not take any command line options. It takes the input file as an argument
and writes to the file with “.m4” suffixed to the input file name. If no arguments are

given, it reads from the standard input and writes to the standard output.

Running m4:
A shell script “runm4” has been provided for running m4 on the output generated
by nMP. Given the name of the Sim-nML file with m4 macros as the first argument
and the name of the output file name as the second argument, runm4 generates the
output file that contains no macros. One can also run the m4 manually using the
following command.

% m4 -P input-file > output-file
Example:

% nMP input.nml
This generates a Sim-nML file “input.nml.m4” which has only m4 macros.

% runm4 input.nml.m4 output.nm|

This generates a Sim-nML file “output.nml” which has no macros.

B.2 Fsimg

Getting Fsimg:

The source code of Fsimg can be obtained from the following ftp site.

ftp://cse.iitk.ac.in/pub/moona/simnml-Fsimg-0.1.tar.gz
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The downloaded file can be decompressed and untarred to get the source files.

Compiling Fsimg:
Following GNU tools are required to compile Fsimg.

e gcc 2.7.2 or higher
e flex 2.5.4 or higher

e bison 1.25 or higher

This code may be compatible with lower versions of these tools. The lexical
analyzer code is compatible with solaris lex tool. It may also be compatible with
other tools. The parser code is not tested for other tools like yacc.

In order to install, first configure script is run, which generates a few files required
for the compilation. In order to compile Fsimg, “make” is executed and to install
“make install” is executed. This step installs Fsimg in the Fsimg-0.1 sub-directory
within the source directory. In order to install it in another directory “—prefix=full-
install-path” option may be added to the configure before compilation. Following is

the contents of installed directory.

e bin - This directory contains the tools fsimg, irview, and elfview. irview and

elfview are tools to look into ir and elf files.

e lib - This directory contains the library fsim. You have to provide the -lfsim
option as well as path of this directory as a library search path while compiling

Fsim.

e include - This directory contains the C header files needed by the Fsim. You
have to include the path of this directory in the compiler include search path

option to search this directory for header files while compiling Fsim.

Command Line Options:

Options given in [ | are optional.
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-i filename : Input IR file.
-e filename : Input ELF file.
-p pc-name : Name of the variable used as a program counter in the

Sim-nML description.

-P cpc-name :  Current PC name.

-m mem-name : Name used for memory in the Sim-nML description.

-s sp-name : Name used for the stack pointer in the Sim-nML description.
[ -¢ config-file | : Dynamic function configuration file.

[ -S size | : Initial stack size. Negative value to size indicates stack

growth from lower address to higher address. Default higher
address to lower address.

[ -f call-node | : Call instructions. Call-node is the top and or or-rule node of
call instructions in the description.

[ -t ] : Do not load text into the memory. Default is load text.

Output:

Fsimg generates following files Instr.c, Funcs.c, Fsim.c, Defs.h, Vars.h, and Types.h.

Compiling F'sim:

Compile the file Fsim.c with -lIfsim and giving include search path as the include
directory and the library search path as lib in the directory where Fsimg is installed.
The functions for dynamic calls and any extra canonical functions have to compiled
along with it.

For this purpose a “makefile” is provided in the directory where Fsimg is installed.
One can edit this file to add the files(s) containing user and canonical functions to be

compiled into the Fsim.

Example:

To compile Fsim manually with gce assuming Fsimg is installed in /home/yschand /Fsimg-

0.1 is as follows.

% gcc Fsim.c lib_dynfuncs.c canonical.c -o fsim -I. -1fsim
-I/home/yschand/Fsimg-0.1/include -L/home/yschand/Fsimg-0.1/1ib
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An option -DTRACE if given in above compilation command causes the trace to
be generated. Similarly -DICOUNT option is added to configure Fsim to find out
total instructions simulated. By adding -DICOUNT option defines an integer variable
Count which can be printed at the end of simulation through the implementation of

exit function.

To use the “makefile” first the variables DYNLIBOBJ and DYNLIBSRC are set

to the file name of user functions file. Following example shows this.

DYNLIBOBJ
DYNLIBSRC

lib_dynfuncs.o

lib_dynfuncs.c

Similarly the canonical file name can be set as shown below.

CANONOBJ
CANONSRC

canonical.o

canonical.c

The “makefile” implements all the three options as described above. Running “make”
results in the functional simulator fsim. Running “make count” generates the simu-
lator which can give the count of the number of instructions simulated, and running

“make trace” generates the execution trace.

Various other tools and information like IR generator, PowerPC 603 specification

etc. can be obtained from ftp://cse.iitk.ac.in/pub/moona F'TP site.
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