
Retargetable Functional Simulator
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Technology

byY Subhash Chandra

to theDepartment of Computer Science & EngineeringIndian Institute of Technology, KanpurJune, 1999

Certi�cateThis is to certify that the work contained in the thesis entitled \RetargetableFunctional Simulator", by Y Subhash Chandra, has been carried out under my su-pervision and that this work has not been submitted elsewhere for a degree.
June, 1999 (Dr. Rajat Moona)Department of Computer Science & Engineering,Indian Institute of Technology,Kanpur.

AbstractThe design of modern embedded systems require automated modeling tools for fasterdesign and for the study of various design tradeo�s. Such tools put together con-stitute an integrated environment where the designer can write the high level designspeci�cations in a language and use these tools for automatic generation of systemspeci�c tools. In this work we have designed a Retargetable Functional Simulator(Fsimg) for our integrated environment where the Sim-nML language is used as abase language for writing processor models. Sim-nML is an extension of nML machinedescription formalism and is powerful enough to describe a processor at instructionlevel.The Fsimg generates a processor speci�c function simulator using the processormodels written in Sim-nML. The generated functional simulator helps in the study offunctional correctness of the design. It can also produce the instruction trace whichcan be used by the other tools in studying other aspects of the design. As a part of thiswork we have speci�ed PowerPC 603 processor in Sim-nML. This speci�cation includesmost of user level instructions present in PowerPC 603 with pipeline, and branchprediction. We have also developed a Macro Preprocessor (nMP) for processing Sim-nML macros. This macro preprocessor converts the Sim-nML macros to m4 macrosadding the
exibility that is not provided by the Sim-nML macros.

AcknowledgementsI am grateful to my guide, Dr. Rajat Moona, who helped me at every stage of thiswork. His suggestions and innovative ideas helped me a lot in completing this work.I am also grateful to Dr. Deepak Gupta and Dr. Sanjeev Aggarwal for their valuablesuggestions and comments during thesis discussions. I would also like to thank otherfaculty members of CSE department for gaining better knowledge in di�erent �eldsof computer science.This work has been done as a part of ongoing research at Cadence Research Centerat IIT Kanpur. I express my gratitude to Cadence India Ltd. for their supportthrough fellowship.I would like to thank my seniors Atul Bhai and Kshitiz Bhai for their help through-out my stay here. I would also like thank other members of Cadence Research Center,specially V. Rajesh and Rajiv. I am greatly indebted to all friends Sridhar, Srikar,Vasu, Prasad, Uma, Gopi, Girish, Prasanna, Nihal, Kousik, Pradip, Kapil, Manoj,Atul, well the list goes on. I would also like to thank my B.Tech friends Chandu andNaveen for their encouragement and support.Finally I would like to thank my parents and my brother's family for their supportand encouragement.

Contents
1 Introduction 11.1 Motivation . 21.2 Overview of Related Work . 21.3 Goals Achieved . 51.4 Organization of Report . 52 Overview of Integrated Environment 62.1 Overall Structure . 62.2 Sim-nML Language . 62.3 Macro Preprocessor . 102.4 Intermediate Representation . 112.4.1 Structure of IR . 122.5 Existing Tools . 123 PowerPC 603 Speci�cation in Sim-nML 133.1 Overview of Architecture . 133.2 Overview of Speci�cation . 173.3 Some Issues in Writing Speci�cation 184 Functional Simulation and Trace Generation 204.1 Simulation Methods . 204.1.1 Based on Resource Management 204.1.2 Based on Instruction Sequence 214.2 Functional Simulation . 21ii

4.3 Trace Generation . 214.3.1 Issues in Trace Generation . 224.3.2 Trace Generation Methods . 224.3.3 Our Approach . 235 Design and Implementation 245.1 Macro Preprocessor (nMP) . 245.2 Retargetable Functional Simulator (Fsimg) 255.2.1 Overview of Fsim Generation 255.2.2 Fsim Structure . 255.2.3 Code Generation for Fsim . 286 External interface to Fsimg and Fsim 326.1 Executable and Linking Format (ELF) 326.2 Dynamic Library Calls . 336.2.1 Handling Dynamic Calls . 336.2.2 Specifying Dynamic Calls . 346.3 Fsim Library . 376.3.1 Sim-nML Operators . 376.3.2 Miscellaneous Functions . 386.4 Input Information . 386.5 Constraints . 396.5.1 Writing Speci�cation for Fsimg 407 Results and Conclusions 437.1 Results . 437.2 Conclusions . 477.3 Future Work . 47A File Format of Intermediate Representation 51A.1 Meta Table . 52A.2 Constant Table . 54A.3 Resource Table . 54iii

A.4 Identi�er Table . 55A.5 Attribute Table . 55A.6 Memory Table . 56A.7 And-Rule Table . 57A.8 Or-Rule Table . 59A.9 Syntax Table . 60A.10 Image Table . 61A.11 String Table . 61A.12 Integer Table . 62A.13 Pre�x-Attribute-De�nition Table . 62B User manuals for nMP and Fsimg 67B.1 Macro Preprocessor (nMP) . 67B.2 Fsimg . 68

iv

List of Tables7.1 Total number of instructions simulated for test programs. 447.2 Performance Results on Machine I . 457.3 Performance Results on Machine II 457.4 Approximate trace sizes for test programs. 46A.1 Encoding of data types . 58A.2 Parameter Type for and-rule . 59A.3 Example of the String Table . 62A.4 Interpretation of the String Table . 62A.5 Interpretation of the tuple used in Pre�x Notation 63A.6 Operators Used in Pre�x Attribute De�nition 64

v

List of Figures1.1 A SimOS System . 31.2 VMware Virtual Platform . 42.1 A View of Integrated Environment 73.1 PowerPC 603 Microprocessor Block Diagram 155.1 Fsim Components . 26

vi

Chapter 1
IntroductionIn the design of embedded systems the use of automated modeling tools is gainingmomentum. They yield fast turn-around time for the system design and simplify theprocess of design changes. In the past most such tools were system speci�c. However,with ever increasing complexity of systems and special purpose processors, a strongneed is being felt for generic and modular tools. Such tools replace the system orprocessor speci�c tools and provide a generic integrated environment. Also these toolshelp in studying the impact of various hardware-software co-design trade-o�s.In this thesis we focus on tools that deal with the machine language of processors,such as assembler, disassembler, instruction set simulator etc. For developers of thesetools, it is convenient to model the processor speci�c part separately and generic partseparately. This is typically achieved by having processor models which tools canunderstand and con�gure themselves for a speci�c processor. Moreover, it is desirableto have a single processor model for all the tools. In this work we have designeda Retargetable Functional Simulator (Fsimg) using Sim-nML[17] languagewhich is primarily an extension of the nML[8] language for processor modeling. Sim-nML is simple and powerful enough to specify a complex processor architecture withpipeline and timing parameters.Fsimg takes the speci�cation of the processor in the intermediate representa-tion1[10] and an executable for the processor in ELF[18] format and generates aFunctional simulator (Fsim) which in turn gives the functional behaviour of the pro-cessor model for the given program. Optionally, it can also give the instruction trace1From here onwards we use IR for intermediate representation.1

of the program.1.1 MotivationProcessor models are extensively used in the system design process. The systemdesign process starts with an application and its implementation. Then the model istested for its performance and other aspects. Designers re�ne the design after analysisof the performance study to tune the system according to needs. In such a scenario,an integrated environment is required for the designer where several tools exist likesimulator, assembler, compiler etc. Rewriting the tools after each design change is atedious job. Hence automatic generation of these tools is more desirable according tothe design changes.In this thesis we discuss such an integrated environment where Sim-nML isthe base language for writing processor models. In embedded systems design it isnecessary to study for the functional correctness of the model speci�ed. This isthe motivating force behind our design of Retargetable Functional Simulator whichautomatically generates a Functional Simulator. The Functional Simulator can alsobe used for the generation of instruction trace which can be used by several othertools for the study of various aspects of the system design.1.2 Overview of Related WorkUsing automated tools in the system design process has been a long practice. Thereare several functional simulation tools available today. Here we will look at some ofthese tools and some languages for processor modeling.Instruction Set Description Language (ISDL)[9] is a machine description languagewhich is similar to Sim-nML. ISDL provides constructs for specifying instruction setand other architectural features. A description in ISDL contains the machine wordformat used for the instruction assembly, semantics of the instruction, and constraintssuch as the valid combination of operations which is useful for tools like assembler togenerate correct code. All theses are captured in a separate sections. Currently anautomatic assembler generator has been developed.Speci�cation language for encoding and decoding (SLED)[15] is a language fordescribing the abstract, binary, and assembly-language representations for machine2

instructions. Using SLED a toolkit called New Jersey Machine-Code has been de-veloped which generates bit-manipulating code for use in applications that processmachine code. Programmers can write such applications at an assembly level of ab-straction, and the toolkit enables the applications to recognize and emit the binaryrepresentation used by the hardware. SLED is suitable for CISC and RISC type ofmachines. SLED deals with the instruction representation only, but not with anyother architectural details. Some tools like retargetable debugger, retargetable opti-mizing linker have been implemented.SimOS[13] is a machine simulation environment designed to study large complexcomputer systems. SimOS simulates the computer hardware in su�cient detail andspeed to run existing system software and application programs (�gure 1.1). It is

Simulation Host

Target Operating System and Workloads

SimOS
IO Devices CPU Models Memory Systems

(ex. gcc running on IRIX 5.3)

Figure 1.1: A SimOS Systemuseful to evaluate the impact of new hardware designs on the performance of thesimulated hardware components. Operating system programmers can develop theirsoftware in an environment that provides the same interface as the target hardware,while taking the advantage of the system visibility and repeatability o�ered by asimulation environment. Currently it is able to model MIPS R4000, MIPS R10000,and Digital Alpha processor families. Some existing operating systems IRIX v5.3, IRIXv6.4, and Digital Unix are ported to SimOS environment. Work is going on a port ofLinux for the Alpha.VMware[5] is one of the new products which is similar to SimOS. It creates a3

virtual platform on the host operating system and allows more than one other operat-ing systems to boot and run concurrently on it. It accomplishes this by transparentlymultiplexing all hardware resources into multiple virtual machines, each resemblingthe underlying machine. The virtual platform gives the full functional behaviour ofthe targeted hardware (�gure 1.2). The overhead due to the virtualization is over
Virtual Machines

Real Machine

Virtual Machine 2

Apps 1 Apps 2

Virtual Machine 1

x86, motherboard,
disks, display, net...

x86, motherboard,
disks, display, net...

OS 1 OS 2

VMware Virtual Platform

x86, motherboard, disks, display, net...

TM

Figure 1.2: VMware Virtual Platformcome by it's dual-mode personality. The virtual machine platform run as a virtualmonitor directly on hardware and a normal application running on top of the hostoperating system. For performance monitor personality is used and for device inde-pendent portions application personality is used. Currently it supports x86 machineas target hardware and is available for Linux and Windows NT.vMac[4] is a Macintosh emulator which emulates Motorola 68000 based AppleMacintosh plus.Boucs[1] is also another emulator, which emulates x86 instruction set, relatedAT hardware components and BIOS to boot and run various operating systems.Currently it emulates full x386 and x486 user level instructions. Supports real/virtualaddressing modes, VGA color graphics,
oppy and hard drive etc.There are other small emulators which basically emulate very small environmentslike Sega, Nintendo game entertainment system etc. Snes9x[2] is an emulator for4

Super Nintendo Entertainment System. It emulates 65c816 main CPU, Sony SPC700sound CPU, DMA channels, some IRQ channels and a few other things.All these tools try to give the hardware abstraction to the applications. The levelof abstraction vary from each other depending on what kind of applications they aretrying to support.1.3 Goals AchievedIn this work we aimed at the development of integrated environment for processorperformance modeling using Sim-nML. The development of complete environmentis in progress. Many tools have been developed till now, which we will look at inChapter 2. The goals achieved in this work are as follows.� PowerPC 603 Speci�cation in Sim-nMLAs a starting point model for PowerPC 603[19] processor (chapter 3) hasbeen developed in Sim-nML. Around 237 instructions have been speci�ed withresource usage model and pipeline.� Macro Preprocessor for Sim-nMLSim-nML provides macros which help in writing the speci�cation. A MacroPreprocessor has been designed and implemented.� Retargetable Functional SimulatorIt has been designed and implemented which takes processor speci�cation anda executable and generates a Functional Simulator.1.4 Organization of ReportThe rest of the thesis is organized as follows. In chapter 2 we discuss brie
y theintegrated environment. In chapter 3 we look at PowerPC 603 architecture andits speci�cation in Sim-nML. In chapter 4 we look at some aspects of FunctionalSimulation and Trace Generation. In chapter 5 and chapter 6 we discuss the designand implementation of Macro Preprocessor and Fsimg. Finally we conclude with theresults and future work in chapter 7. In Appendix A and B, we provide the format ofir and the user manuals for tools developed in this thesis respectively.5

Chapter 2
Overview of IntegratedEnvironmentIn this chapter we discuss the integrated environment that we work in, the Sim-nMLLanguage, the IR, and some existing tools.2.1 Overall StructureThe base language for our environment is Sim-nML, an extension of nML machinedescription formalism. Processor models are written in Sim-nML, using which, variousprocessor speci�c tools can be generated automatically. To make the tools' design easythe model speci�ed in Sim-nML is �rst converted into an intermediate representation(IR) (section 2.4). For a tool, intermediate form is simpler and very easier to readand interpret when compared to a speci�cation in Sim-nML. A tool called irg[10] isavailable that takes a Sim-nML speci�cation and converts it to IR. The overall viewof the environment is shown in the �gure 2.1.2.2 Sim-nML LanguagenML[8] is an extensible formalism to describe a processor architecture. nML worksat an abstract level hiding implementation details of the architecture. In nML thearchitecture is described at instruction level. The instruction set is enumerated as anattribute grammar in a tree hierarchy capturing the semantics of the instructions at6

IR

Generator

 IR

Assembler
Compiler
Backend
Generator

Disassembler
Generator

Simulator

Spec.
Sim-nML

Figure 2.1: A View of Integrated Environmentdi�erent levels of the hierarchy depending on the class of instructions.nML de�nes a �xed start symbol called instruction and two kinds of productionsor-rule, whose syntax is as follows:op n0 = n1 j n2 j n3 jand and-rule whose syntax is as followsop n0 (p1 : t1, p2 : t2, ...)a1 = e1 a2 = e2 ...where each ni is a non-terminal and each ti is a terminal. Each ai is a at-tribute and ei is it's corresponding de�nition. pis are the parameters used in the7

attribute de�nitions. We can specify the addressing modes using mode-rule which issimilar to and-rule. A simple mode-rule looks like followingmode REG INDIRECT (i : card (5)) = R [i]Above mode-rule de�nes a register indirect mode. nML grammar prede�nes threeattributes namely syntax which is textual syntax of the instruction, image which isbinary coding of the instruction and action which is the semantics of the instruction.Following is a nML description for simple processor with two instructions add and sub.mem AC [1 , card (16)]mem PC [1 , card (16)]mem REG [4 , card (16)]mode REG INDIRECT (i : card (2)) = REG [i]syntax = format (\%d", i)image = format (\%2b", i)op instruction (x : instruction action)syntax = format (\%s", x.syntax)image = format (\%s", x.image)action = f PC = PC + 1;x.action;gop instruction action = add j subop add (x : REG INDIRECT)syntax = format (\add %s", x.syntax)image = format (\100000%s", x.image)action = f AC = AC + x; gop sub (x : REG INDIRECT)syntax = format (\sub %s", x.syntax)8

image = format (\100001%s", x.image)action = f AC = AC + x; gThe add instruction adds the contents of a register to register AC and storesthe result in the AC. Similarly the sub instruction does the subtraction. PC is theprogram counter.nML allows type declarations, constant declarations and macros which aid in writ-ing clear speci�cation. nML lacks in the control constructs and ability to specifyinter-instruction dependencies. Moreover, speci�cation of timing of operations is notpossible. Therefore nML is not very useful for performance evaluation. It is di�cultto specify and study a newer architecture having features like pipelines, out-of-orderexecution, branch prediction etc. Sim-nML[17] is an extension of nML which includesthe timing of various operations and a resource usage model. The main idea behindthe resource usage model is that, as an instruction executes it holds a set of resourceslike functional units, registers etc. Capturing this model helps in the study of theperformance of the processor.In Sim-nML resources are declared with the resource construct which looks likefollowing.resource fetch unit, execution unit, retire unitA new attribute uses has been added which describes the resource usage patternand timing parameters1 for the instruction. The speci�cation for the previous exam-ple with the resource use model looks like the following.reg AC [1 , card (16)]reg PC [1 , card (16)]reg REG [4 , card (16)]mode REG INDIRECT (i : card (2)) = REG [i]syntax = format (\%d", i)image = format (\%2b", i)resource fetch unit, execution unit, retire unit1Refer [17] for more detailed information. 9

op instruction (x : instruction action)uses = fetch unit : preact #f1g, x.uses, retire unit #f1g : actionsyntax = format (\%s", x.syntax)image = format (\%s", x.image)preact = f PC = PC + 1; gaction = f x.action; gop instruction action = add j subop add (x : REG INDIRECT)uses = execution unit & AC #f1gsyntax = format (\add %s", x.syntax)image = format (\100000%s", x.image)action = f AC = AC + x; gop sub (x : REG INDIRECT)uses = execution unit & AC #f1gsyntax = format (\sub %s", x.syntax)image = format (\100001%s", x.image)action = f AC = AC + x; gThe above speci�cation says that all instructions use the fetch unit for one timeunit, the execution unit for the time speci�ed by the instruction and the retire unitfor one time unit. The add and sub instructions use the execution unit for one timeunit. The action attribute at the end of the uses de�nition speci�es that after usingthe given resources for the mentioned duration of time, the speci�ed function hasto be performed. Sim-nML gives more constructs like declaration of exceptions2 etc.which help in describing branch prediction and out-of-order execution.2.3 Macro PreprocessornML provides macros to aid the speci�cation writing. A typical macro de�nition looks2Refer [17] for more information. 10

like, macro name (p1, p2, ...) = exprwhere pi is a parameter and expr is an nML expression. The above syntax is notvery
exible because the macro body allows only one nML expression. We have re-laxed this restriction so that macros can be used extensively. The new syntax lookslike, macro name (p1, p2, ...) = macro-bodywhere macro-body is sequence of characters ending with a new line. If the macro def-inition needs to span multiple lines then each line should end with a reverse slash(\)except the last line which should end with a new line. For this purpose we havedesigned and implemented a macro preprocessor nMP3. The Sim-nML descriptioncontaining macros is given as input to nMP which translates the macros into m4[16]macros. m44 is a generic macro processor in traditional Unix systems. It is availableon most platforms. The output from m4 is Sim-nML description without macros. Thisis given as input to irg. nMP does not do any syntax checking on the macro-body sinceit is done by irg[10]. This macro processing phase appear in between Sim-nML Spec.and IR generator in the �gure 2.1. We will discuss its design and implementation insection 5.1.2.4 Intermediate RepresentationSpeci�cation written in Sim-nML contains many constructs for the clarity and un-derstanding. Tools using this speci�cation need to parse and interpret the contents.Such an e�ort can be avoided if parsed Sim-nML speci�cation is represented in anintermediate form that is easily understand by a program. IRG[10] converts Sim-nMLspeci�cation into an IR.3Refer Section 5.14man m4 or info m4 gives detailed information on using and writing macros in m4.11

2.4.1 Structure of IRThe information in the Sim-nML speci�cation is captured into a set of tables in IR.Each table consists of �xed or variable size records representing a particular typeof information. For example all the mem type declarations i.e, variables are putinto MEMORY TABLE. Each record in this table give the information such as type,size etc., of a variable. In the remaining tables a variable is referred by its index inthe MEMORY TABLE. In this way it is easy to extract out the information needed.Finally to �gure out the number of tables, no of records in each table and theirlocation inside the IR, a special table is added called META TABLE, whose recordsprovide information about the other tables in the IR. META TABLE is always the �rsttable in the IR while other tables can be any where inside the IR. Information aboutvarious tables and their structures can be found in Appendix A.2.5 Existing ToolsFollowing tools have been implemented till now in our environment.Instruction Set Simulator Generator [17] takes Sim-nML speci�cation and gen-erates a performance simulator, which in turn takes a binary for that processorand gives the performance based results.Disassembler [10] takes Sim-nML speci�cation and a binary in ELF format andgives out the disassembly of the binary.Compiler Back-End Generator [14] takes nML speci�cation and generates a LCCmachine description which can used to generate a LCC compiler for the speci�edprocessor.

12

Chapter 3
PowerPC 603 Speci�cation inSim-nMLIn this chapter we present a brief overview of PowerPC 603 architecture and discussthe PowerPC 603 speci�cations in Sim-nML, and some issues in writing speci�cationsin general.3.1 Overview of ArchitecturePowerPC 603[19] is a 32-bit implementation of PowerPC architecture[7] which con-sists of following components.� PowerPC user instruction set architecture - This includes the base user-level instruction set, user-level registers, programming model, data types, andaddressing modes.� PowerPC virtual environment architecture - This describes the memorymodel that can be assumed by software processes and includes descriptions ofthe cache model, cache-control instructions, address aliasing, and other relatedissues.� PowerPC operating environment architecture - This includes the struc-ture of the memory management model, supervisor-level registers, and the ex-ception model. 13

The 32-bit portion of PowerPC architecture provides 32-bit e�ective address, integerdata types of 8, 16, and 32 bits, and
oating-point data types of 32 and 64 bits.The PowerPC 603 is a super-scalar processor capable of issuing and retiring as manyas three instruction per clock. Instructions can execute out of order for increasedperformance; however, PowerPC 603 makes completion appear sequential.Execution UnitsThe PowerPC 603 consists of �ve execution units - an integer unit (IU), a
oating-point unit (FPU), a branch processing unit (BPU), a load/store unit (LSU), and asystem register unit (SRU) (�gure 3.1). The PowerPC 603 has the ability to execute�ve instructions in parallel. Most of the integer instructions execute in one clockcycle. The FPU is pipelined such that a single-precision multiply-add instructioncan be issued every clock cycle. It provides two independent on-chip 8-Kbyte, two-way set-associative, physically addressed caches for instructions and data and on-chipinstruction and data memory management units (MMUs). MMUs contain translationlook aside bu�ers (TLBs) for virtual memory support.The IU contains a fetch unit, instruction queue, dispatch unit, and BPU providesthe centralized control of instruction
ow to the execution units. The IU determinesthe address of the next instruction to be fetched based on information from the sequen-tial fetcher and from the BPU. The IU fetches the instructions from the instructioncache and places them in the instruction queue. The BPU extracts branch instruc-tions from the fetcher and uses static branch prediction on an unresolved conditionalbranch to enable IU continue fetching instructions from predicted target while theconditional branch is evaluated. The instruction queue holds as many as six instruc-tions and loads up to two instructions from IU in a single cycle. The instructions aredispatched to their respective execution units from dispatch unit at a maximum rateof two instructions per cycle. The completion unit tracks instructions from dispatchthrough execution, and then retires or completes them in program order. For thispurpose a �rst in �rst out (FIFO) queue of �ve completion bu�ers is used. At thetime of dispatching an instruction a completion bu�er is allocated to that instruction.If no bu�er is available then the instruction dispatch stalls until a completion bu�eris available along with other resources needed for the dispatch. A maximum of twoinstructions per cycle are completed in order from the queue.14

INSTRUCTION UNIT

Dispatch Unit

INSTRUCTION

QUEUE

FETCHER

SEQUENTIAL

INTEGER

UNIT

LOAD
STORE
UNIT

FLOATING
POINT
UNIT

GPR
File

FPR
File

SYSTEM
REGISTER

UNIT

DMMU IMMU

8Kb
ICache

8Kb
DCache

32/64-BIT DATA BUS

32-BIT ADDRESS BUS

PROCESSING

UNIT

BRANCH

64 BIT

64 BIT

64 BIT64 BIT64 BIT64 BIT

64 BIT

32 BIT

PROCESSOR BUSS INTERFACE

64 BIT

UNIT

COMPLETION

Figure 3.1: PowerPC 603 Microprocessor Block Diagram
15

RegistersThe PowerPC 603 contains 32 user-level, general-purpose registers (GPRs). Theseregisters are 32-bit wide. The GPRs serve as the data source or destination for allinteger instructions. The PowePC 603 also contains 32 user-level, 64-bit
oating-point registers (FPRs). These serve as the data source or destination for
oating-point instructions. FPRs can contain data objects in either single or double precision
oating-point formats. Apart for the GPRs and FPRs, PowerPC 603 also containssome conditional registers, segment registers and a few special-purpose registers.Instruction SetAll PowerPC 603 instructions are encoded in 32-bits. Various types of instructionformats are consistent, permitting e�cient decoding to occur in parallel with operandaccesses. The PowerPC 603 instruction set is categorized into the following categories.� Integer instructions - These include computational and logical instructions.� Floating-point instructions - These include
oating-point computational in-structions.� Load/store instructions - These include integer and
oating-point load andstore instructions.� Flow control instructions - These include branch instructions and otherinstructions that a�ect the instruction
ow.� Processor control instructions - These instructions are used for synchroniz-ing memory accesses and management of caches, TLBs and segment registers.� Memory control instructions - These instructions provide control of caches,TLBs, and segment registers.Addressing ModesThe PowerPC architecture supports at least two simple addressing modes for loadand store instructions.1. Register indirect with immediate index16

2. Register indirect with indexAddressing modes available in PowerPC 603 implementation are as follows. The loadand store instructions have the following three categories of addressing modes.1. Register indirect with immediate index - The e�ective address is calcu-lated by adding one register value and an immediate value in the instruction.2. Register indirect with index - The e�ective address is computed by addingtwo register contents speci�ed in the instruction.3. Register indirect - The e�ective address is provided in the register speci�edin the instruction.Branch instructions have the following three categories of addressing modes.1. Immediate - The e�ective address is calculated using the immediate valuefrom the instruction. Branch relative and branch absolute modes fall in thiscategory.2. Link register indirect - The target address is provided in a special registercalled link register (LR).3. Count register indirect - The target address is provided in a special registercalled count register (CTR).3.2 Overview of Speci�cationWe have speci�ed the PowerPC 603 in Sim-nML. The speci�cations consist of userlevel instructions which includes integer,
oating-point, load/store,
ow control in-structions, and user level instructions in processor control category. Branch predic-tion, pipelines, resource usage, and instruction timing have been included.The description of instruction hierarchy is as follows. Top level node is instruction,and all the instructions are partitioned into two categories, branch and non-branchinstructions. The branch instructions are further categorized into conditional andunconditional branch instructions. The unconditional branch instructions are of threetypes, PC relative, absolute, and branch and link. Branch and link instructions areused for procedure calls and save the return address in a register (this is called linking)17

before branching to the target address. The conditional branch instructions test thebranch condition on bit-�elds in the condition register. These conditional branchinstructions can be speculated or non-speculated depending on the availability ofcondition register at the time of the branch resolution. The resource usage modelhandles this speculation part.The remaining instructions fall into non-branch instructions. The load and storeinstructions cover integer and
oating-point load and stores for loading and stor-ing byte(8-bits), half word(16-bits), and word(32-bits) of integer types and singleprecision(32-bits) and double precision(64-bits) of
oating point data types. Inte-ger instructions include integer arithmetic and logical instructions. Floating-pointinstructions include
oating-point arithmetic, multiply-add, compare, and move in-structions. Flow control instructions include instructions to set bit-�elds in the con-dition register on which branch instructions test for a particular condition. Processorcontrol instructions have instructions for moving to and from special purpose regis-ters. About 235 instructions in the PowerPC 603 have been speci�ed in its Sim-nMLspeci�cations.3.3 Some Issues in Writing Speci�cationBit FieldsSim-nML gives bit-range operator to select arbitrary bit �elds of memory structures.The syntax of this operator is as follows.memory-name hlsb::msbiThe lsb is the least signi�cant bit and msb is the most signi�cant bit. In Sim-nML the bits of memory locations are numbered from right to left starting with0 (little-endian). Following example copies a least signi�cant byte from half wordmemory location to a byte memory location.mem REG1 [1 , card (16)]mem REG2 [1 , card (8)]REG2 = REG1 h0::7i; 18

In the above example if msb and lsb are interchanged (i.e. REG2 = REG1h7::0i;) then the bit-�eld is reversed and put into the destination. This brings theissue of writing speci�cation for a big-endian processor, where the bits in memorylocations are numbered from left to right. In such cases the speci�cation writerhas to convert the bit numbering to Sim-nML numbering and use the correspondingnumbers in the speci�cation. This is needed since tools follow Sim-nML conventions.The above example for a big-endian processor without conversion looks like thefollowing.REG2 = REG1 h15::8i;This expression extracts the most signi�cant byte, reverses it and puts in thedestination. This is not what exactly we wanted. So the speci�cation writer has toconvert theses bit numbers for the correct interpretation by a tool.Instruction HierarchyThe speci�cation of the instruction set should strictly follow a tree structure, i.e. itshould not contain any cycles. Cycles imply that there are di�erent paths in thehierarchy to reach an instruction from top level node, which is not correct. Thiscauses tools to report errors.Program Counter and Current Instruction PointerThe semantics of incrementing the program counter (PC) should not appear in theaction part of any instruction. Only branch instructions should modify the PC inthe action part. The task of incrementing the PC will be taken care of by the tools(e.g. simulator). Tools increment the PC before the instruction is executed. If theinstruction uses the current instruction address then it can not use PC, since it isalready incremented. If the instruction set contains such instructions then anothervariable say OLD PC can be used for keeping track of the current instruction addressin the action part.
19

Chapter 4
Functional Simulation and TraceGenerationRepeated performance analysis and testing is an essential part of a system designphase. Performance analysis tools play major role in this phase. The complexity ofmodern processors is due to the performance enhancement techniques they use. Thismakes the simulation a time consuming process. The simulator is of no use if it isunable to simulate at a speed close to that of the real processor. It is not a easy taskto make the simulator to run at that speed. Several techniques have been developedto speed up the simulation.4.1 Simulation MethodsThe existing simulation methods can be classi�ed into two categories depending onthe technique they employ.4.1.1 Based on Resource ManagementSimulation is done by managing various resources between all the instructions. Aresource can be a register-�le, functional unit, pipeline stage etc. There are twoprimary methods in this category. First one is Cycle Based in which the resources aremanaged between instructions each cycle analogous to a processor clock. The secondone is Event Based in which the resources are managed between instructions based20

on the events happening like release of a resource by an instruction etc.4.1.2 Based on Instruction SequenceSimulation is done by the dynamic execution sequence of instructions. There aretwo primary methods in this category. First one is Execution Driven in which theactual functionality of instruction is simulated along with pipeline etc. Simulationof functionality gives the dynamic sequence of instructions. The second one is TraceDriven in which the dynamic sequence of instructions is obtained earlier, then thesimulation of pipelines etc. is done on using this sequence. It is clear that trace drivensimulation is faster than the execution driven simulation.In our environment we have an instruction set simulator[17] which uses cycle basedsimulation method. The speed of this simulator is, however, low. A trace drivensimulator is a choice for improving the speed of simulation. Trace driven simulatorrequires a dynamic instruction sequence. A trace generator is needed for obtainingthe instruction sequence. This is one of the reasons behind our design of retargetablefunctional simulator which can also produce dynamic instruction sequence or theinstruction trace.4.2 Functional SimulationSimulation of functionality of the instructions is called functional simulation. Thisincludes keeping track of registers contents, memory contents etc. Generally thefunctional simulation is very fast, due to the fact that the complex simulation of thepipelines and other architectural features is not done. The functional simulation ofa program should produce the same results as of the program running on the actualprocessor. This is very helpful in verifying the design of the instruction set of theprocessor, it can also be used for the generation of instruction trace of a programwhich is used by various other tools like trace driven simulator etc.4.3 Trace GenerationTraces are of two types. One is the instruction trace which is a sequence of addressesof instructions executed, and the other one is the memory trace which is a sequence of21

addresses of memory locations the program refers to while executing. Memory tracesare used to simulate caches and memory systems. Here in this work we generate onlythe instruction trace.4.3.1 Issues in Trace GenerationThe di�culties in getting the complete program trace comes from the high cost ofrecording every instruction and data address as the application program executesand from the large size of resulting trace �le. A simple tracing system examinesevery instruction as a program executes. This approach is ine�cient and makes theprogram run slowly. A 10-million-instruction-per-second (MIPS) processors producesnearly up to 70 megabytes of trace per second of execution. This makes the trace forlong time execution of the program di�cult to store.4.3.2 Trace Generation MethodsGenerally the computational overhead in tracing can be reduced by modifying thecomputer hardware along with the computer application software to record address.Although such approaches can reduce computational overhead in tracing, the size ofthe trace remains a big problem. Even if the traces can be compressed using standardcompression utilities by a factor of about 10, trace size remains large. Some tracingsystems avoid the storage of trace by sending the trace directly to the consumingtool. This is called on-line-tracing. The di�culty with this method is that traces arenot sharable.An e�cient tracing system should reduce the tracing time as well as the tracesize. This can be achieved by recording minimal number of events while tracing theprogram. One such technique was given by Ball and Larus[6]. A tool called qpt[12]has been implemented using this technique combined with another technique calledabstract execution[11] for the MIPS 2000 system. This technique uses compiler-basedtechniques. Tracing of a program is done in two phases. In the �rst phase a compiler-style analysis is done on the program which helps in reducing the information tocollect during the program's execution. This phase identi�es a small subset of a tracethat su�ces to reproduce the full trace. Only the events in this subset, called the tracerecord, is recorded while the program runs. In the second phase a trace regenerationprocess produces the full trace from the trace records.22

This is achieved by analyzing the program and instrumenting it to generate thetoken records. The instrumentation is done in such a way that less number of tokenrecords are generated when the program is executed. Then the program is executedto get these token records. The full trace can be obtained form these token recordsusing trace regenerating tool.4.3.3 Our ApproachAll the existing methods require modi�cation in the compiler, or the program, orsome other application, or the hardware to produce the trace, and the methods aredependent on the system. For a retargetable system, such an approach is not possi-ble. Therefore, we generate traces by functional simulation of the program. In ourapproach, the functional simulator, fsim, can generate traces for any program. Sincethe fsim itself is generated using Sim-nML model for a processor, our set of tools areretargetable. The trace generated, however, is not compressed.

23

Chapter 5
Design and ImplementationIn this chapter we discuss the design and implementation of the Macro Preprocessor(nMP) and Retargetable Functional Simulator (Fsimg).5.1 Macro Preprocessor (nMP)As we discussed in section 2.3 that nMP is not really a macro processor but a macrotranslator, which translates the Sim-nML macros into m4[16] macros. This decisionwas made to simplify the design and implementation of nMP by making use of widelyavailable powerful macro processor m4. Moreover, by this approach we can also usethe features available in m4 such as macro calls within macros, recursive macros etc.This encourages the use of macros in an extensive manner.nMP recognizes only the macro de�nitions in the given Sim-nML input. The macrocalls are not considered because nMP does not do any macro expansion. nMP worksin two modes. The �rst one is the passive mode. In this mode nMP looks for themacro de�nitions in the input and copies simultaneously the input to the output. Bydefault nMP works in the passive mode. The second mode is the active mode. nMPswitches to the active mode when ever it �nds a macro de�nition in the input. In theactive mode nMP stores the macro de�nition in its internal data structures. Whenthe macro de�nition is completed the Sim-nML macro is translated to the m4 macroand nMP switches back to the passive mode.nMP is written using
ex and bison in about 500 lines of code. nMP takes input �lewith macros as a command line argument and writes the output (Sim-nML description24

with m4 macros) to the �le whose name is derived by su�xing \.m4" to the input�le name. If no �le name is given, nMP reads its input from the standard input andwrites its output to the standard output. A shell script has been provided for runningm4 on nMP generated output to get the Sim-nML speci�cation without macros.5.2 Retargetable Functional Simulator (Fsimg)Fsimg takes as input, the processor description in an intermediate form and a programin ELF (section 6.1) executable format and generates a functional simulator (Fsim)for this program. The code generated for Fsim is a C code. First we look at theoverall process of Fsim generation, then the basic structure of Fsim and details onFsim generation.5.2.1 Overview of Fsim GenerationThe action attribute in the Sim-nML speci�cation captures the semantics of the in-structions. Fsimg converts all instructions semantics into respective functions by
attening the hierarchical description of action attribute. The Fsimg then decodesthe instructions from the program, extracts the parameters for the instruction andgenerates a call to the respective function with these parameters. All these calls tofunctions are captured into a table called function-pointer-table whose entries are ba-sically a set of parameters and a function pointer pointing to the respective function.The entries in this table are in the order of the instructions in the program. The simu-lation starts by calling the function for the �rst instruction along with its parameters.The called function return the index of the next instruction into the function-pointer-table. In this way simulation continues till the program is terminated. Along with thistable Fsimg generates data structures for the memory, registers and other memory el-ements in the processor, and a driving routine for the simulation which initializes thememory and registers. The driving routine calls the �rst instruction of the program.5.2.2 Fsim StructureFsim has the following �ve components (�gure 5.1).1. A set of functions one for each instruction in the processor description.25

2. A function-pointer-table corresponding to instructions in the program.3. The memory image of the program.4. Data structures for registers and other memory elements.5. The driving routine.
Memory Image

memory.img Vars.h

Functions for
Instructions

Instr.c

Function Pointer
Table

Funcs.c

Driving Routine

Main.c
Fsim

Registers etc.

Figure 5.1: Fsim ComponentsThe function-pointer-table is an array of structure whose members are an array ofparameters and a pointer to a function. The C declaration of function-pointer-tableis as follows.struct func ptr fuint64 p [MAX PARAMS];int (�func)(uint64 �);g;struct func ptr Func Pointers [MAX POINTERS] = fff13, 0, 388g, Fun38g,ff13, 13, 41916g, Fun146g, 26

...g;The function pointed to by the function pointer take a pointer to the parametersand return the index of the next instruction. When the simulation starts the driverroutine initializes the conceptual program counter (PC), stack pointer (SP), and mem-ory. At this point PC points to the �rst instruction of the program. The index ofthis instruction into the function-pointer-table is calculated di�erently for a processorwith �xed instruction length and processor with variable instruction length. For aprocessor with �xed instruction length, the index calculation is as shown below,index = (PC - CODE BASE) / INSTR LEN;where CODE BASE is the address of the �rst instruction in the program's codesegment and INSTR LEN is the length of the instruction in bytes. Each entry in thefunction-pointer-table represents an instruction with parameters.In the case of a processor with variable instruction length, the index calculationis not possible in this manner. In our simplistic approach each entry in the function-pointer-table for such a processor represents only one byte of the instruction. Thatis for a three byte instruction three entries are used in which �rst one represents theinstruction and the remaining two are not used. With this kind of function-pointer-table the index calculation is as shown below.index = (PC - CODE BASE);The following example shows the function pointer table for a variable length pro-cessor where the length of the �rst instruction is two bytes and that for the second isthree bytes.struct func ptr Func Pointers [MAX POINTERS] = fff2g, Fun190g,ffg, Dummy Ciscg,ff4100g, Fun78g,ffg, Dummy Ciscg,ffg, Dummy Ciscg, 27

...g;After computing the index, the driver routine calls the function at this index with theparameters. The function called performs the semantic action associated with the in-struction and returns the next instructions index to the driver routine. The functioncalculates this index as described earlier using the program counter (PC), the lengthof the instruction, and the base address of the �rst instruction. The driver routineuses this index to call the function at that index. In this way the instructions getexecuted (simulated) until the program terminates. The code for the driver routinelooks like the following.index = (MAIN ENTRY � CODE BASE) / INSTR LEN;while((index = Func Pointers[index].func(Func Pointers[index].p)) != -1);5.2.3 Code Generation for FsimExtracting instructions and HashingAt �rst Fsimg tries to �nd out the information about the instructions in the de-scription. All the tables in the IR are read into the memory and syntax and imageattributes for all instructions are extracted. Syntax attributes contain the informa-tion about the parameters. Image attributes are used to decode the instructions inthe program. For this image masks are computed for each image as described here.Generally some of the bits in the image are �xed and others come as parameters.Image mask is basically a bit string that has ones for the �xed bit positions and zerosin the parameter bit positions. In order to decode an instruction, we and it bit-wisewith each instruction mask and compare the result with the image attribute in theIR. This process of decoding is, however time consuming. To improve the decodingperformance the images are hashed into a hash table.First a global mask is computed by bit-wise anding all instruction masks. Theglobal mask therefore represents the opcode �eld of the instructions. First levelhashing is done based on the opcode �eld. However it is not very useful becauseinstructions may not have distributed evenly to all the buckets. It may result inone bucket having large number of instructions while some other buckets having no28

instructions. For this reason instructions in each bucket are further hashed based onthe remaining �xed �elds of those instructions. This comes from the observation thatwhen we hash on opcode all instruction of particular type say integer instructionsgets hashed to same bucket. Now these instruction have additional �elds to identifydi�erent instructions amongst them self. These �elds are called sub-opcodes. In thisway hashing is done several levels until single instruction is hashed to a bucket.Generating Functions for instructions (Action Flattening)After instruction hashing, Fsimg generates the functions for the instructions in thedescription. The semantics of an instruction are captured in the action attribute,which is hierarchically spread over the path from the top level node to the instruction.A set of dot-expressions[10] in the IR provides the information about this path for eachinstruction. Starting at the top node till the instruction, the de�nition in the actionattributes is captured as aC function. All the attribute de�nitions are available in thePREFIX ATTRIBUTE DEFINITION table in the IR. The de�nitions are in the pre�xnotation which are converted in to the in�x notation during the code generation. Sim-nML operators like bit-�eld, left and right rotate, bit-concatenation etc., are convertedinto library calls (see 6.3.1).In the de�nition of action attributes the operands of the instruction may appear.The image got from the IR provides the method to �nd this information. Thesestatements may also contain calls to other attribute de�nitions. In this case thede�nition of that attribute is substituted in that place. Before generating the codefor the attribute, a unique label is placed so that if the de�nition recursively calls thesame attribute then it can be converted to a goto statement. This situation may arisebecause Sim-nML lacks loop constructs and the speci�cation writer may need a loopwhile describing a instruction like load string bytes1. This can be written by callingan attribute recursively on a condition. The generated functions take pointer toparameters and returns the index of next instruction into the function-pointer-table.1load string bytes instruction loads n consecutive bytes from a memory address, where n andmemory address are operands of this instruction.
29

Instruction Decoding and Function Pointer Table GenerationThe Fsimg reads the required information from the given program which is in ELFformat into the internal data structures. Depending on the processor type number offunction-pointer-table entries are calculated. If it is a processor with �xed instructionlength, then the calculation is as follows.no-of-entries = text-section-size-in-bytes / instruction-lengthIf it is a processor with variable instruction length, then the calculation is as fol-lows. no-of-entries = text-section-size-in-bytesNow the decoding of the instructions in the program is done using the hash tablecreated earlier. Once a instruction is recognized the operand values are extractedfrom the instruction and a function-pointer-table entry is generated with these val-ues and the corresponding function for the instruction. In case of a processor withvariable instruction length, number of entries generated are equal to the length ofthe instruction in bytes. In this manner all the instructions in all text sections of theprogram are decoded and function pointer table is generated. If an instruction getsunrecognized then a dummy entry is created in that position of the function-pointer-table. If the control reaches this entry during the simulation, then it generates anerror message and simply returns the index of next instruction to the driving routine.This may lead to incorrect results and unpredicted behaviour of the Fsim. To avoidthis the speci�cation has to cover all the instructions needed for running the program.Generation of Types and Memory ImageThe Sim-nML types are converted into corresponding C types, like unsigned int forcard and int for int etc. But the problem comes with the sizes of these declarations.Sim-nML allows the declaration of variables of arbitrary bit sizes. Consider thefollowing Sim-nML declaration.mem TEMP [1 , int (4)] 30

This declares TEMP as a memory location of type integer and size 4 bits.We have to allocate exactly 4 bits for the correctness of the value held by thislocation. For this the C feature of bit-�elds inside the structure declaration is used.For the above declaration the code generated is as follows.typedef char int8;typedef struct fint8 val:4;g Int4;Int4 TEMP;Whenever TEMP occurs in any attribute de�nition, TEMP.val is generated inthat place. Thus whenever a variable is declared which is not a multiple of 8 bits,nearest C-data structure larger than the one being used in Sim-nML, for example, a12 bit variable in Sim-nML is declared using int16 type.Fsimg composes the memory image for Fsim by combining all the data sectionsand text sections of the program and is written to a �le. When Fsim starts it loadsthis memory image in to its memory. All memory references are redirected relativeto the location where it is loaded.Finally code for the driver routine is generated which consists of the code thatinitializes the PC, SP, and memory and the code for the simulation as we have seenearlier.

31

Chapter 6
External interface to Fsimg andFsim
6.1 Executable and Linking Format (ELF)ELF was originally developed and published by UNIX Systems Laboratories (USL)as part of the Application Binary Interface (ABI). The Tool Interface Standardscommittee (TIS)[3] has selected the evolving ELF standard as a portable object �leformat that works on 32-bit architecture environments for a variety of operatingsystems.There are three main types of ELF object �les.� Relocatable �le - This type of ELF �le holds the code and data for linkingwith other object �les to create an executable or a shared object �le.� Executable �le - This type of ELF �le holds a program suitable for programexecution. This �le speci�es how to create the program's process image.� Shared Object �le - This type of ELF �le holds the data suitable for linking.Linking is done in two ways. The static linking done by the link editor (ld) re-quires processing of several relocatable and shared object �les to create anotherobject �le. The dynamic linking involves the combining of an executable �lewith other shared object �les to create a process image.Object �les participate in program linking and execution. The object �le format has32

di�erent views in these two di�erent contexts. The �le starts with a machine inde-pendent header called ELF header which describes the remaining �le organization.A linking view has a set of sections which provide the information needed for linkingsuch as instructions, data, symbol table, relocation information etc. A section headertable gives the information related to these sections. An execution view has a set ofsegments and a program header table which provides the information about how tocreate a process image.6.2 Dynamic Library CallsELF executable �les are two types depending on the way they are linked with thelibrary. A dynamically linked executable �le contains references to the library func-tions which reside inside the shared object �les. The dynamic linker resolves thesereferences while creating the process image for this executable. This enables the shar-ing of same library by many programs. A statically linked executable contains all thecode including the library functions and its size may be very large.Simulation of interactive programs is very di�cult because interactive programsinteract with the operating system, devices etc. Typically programs use standardlibrary functions for interaction. These library calls can be diverted to the simulatorhost's library calls for simulating interactive programs. For this dynamically linkedexecutables are more suitable as they are easy to identify in the code.6.2.1 Handling Dynamic CallsThe Fsimg has the capability to identify the dynamic calls in the program and gener-ates code for Fsim which diverts these calls to the host system's library calls. Fsimgachieves this through the external interface. The list of dynamic calls that may beused by the program can be speci�ed through a con�guration �le. In this �le, for eachdynamic function to be diverted, a corresponding user function with the parametersand their size is speci�ed. These user functions substituted for the diverted dynamiccalls are linked with Fsim. Fsimg passes the parameters to user functions by refer-ence. The user function extracts the parameters and call the host library function.The return value of the host library function should be modi�ed and returned bythe user function to Fsim. The handling of the return value is also speci�ed in the33

con�guration �le.The issues of endianness is also important. The simulated processor may havedi�erent endianness than the simulating host. In such cases the parameters whichare passed to the user function are converted to re
ect the simulating host endiannessand return value has to be converted back from host endianness to the simulatingprocessor's endianness. Fsimg detects this mismatch of endianness in parameters andgenerates code for changing the endianness of parameters before passing to the userfunction. Similarly return value is also converted. For this Fsimg needs to knowthe sizes of the parameters and return value which are optionally speci�ed in thecon�guration �le.In addition Fsimg needs to know the various instructions through which the sim-ulated program may call dynamic library functions. This information can be giventhrough command line options. The call instructions typically modify the PC andsave the old PC. Using the destination address of the call instructions, Fsimg gener-ates code for diverting the calls.6.2.2 Specifying Dynamic CallsThe con�guration �le has following syntax given in yacc style grammar. A terminalsymbol starts with a upper case letter and a non-terminal symbol start with a lowercase letter.function_definitions :| function_definitions function_definition;function_definition : Lib_Function => user_function;user_function : return_variable = Function_Name (parameters)| Function_Name (parameters);return_variable : Name| Name [expr]| Name : Size| Name [expr] : Size;34

parameters :| parameter_definition , parameters;parameter_definition : parameter: parameter : size_info;parameter : Name| Name [expr];size_info : parameter_size| parameter_size $ size_info;parameter_size : No_Of_Elements - Element_Size;expr : Name| Name [expr]| Constant| expr + expr| expr - expr| expr * expr| expr / expr;Where, Name : [a-zA-Z_][a-zA-Z0-9_]*Constant : [0-9]+Size : [0-9]+No_Of_Elements : [0-9]+Element_Size : [0-9]+Lib_Function : [a-zA-Z_][a-zA-Z0-9_]*Function_Name : [a-zA-Z_][a-zA-Z0-9_]*The grammar speci�es that con�guration �le is a sequence of function de�nitions.Each function de�nition starts with the name of the dynamic function (the function35

called in the binary executable �le being simulated) followed by a token \=>". Thedynamic function is diverted to the user function speci�ed on the right side of \=>".The number of parameters to the dynamic function as well as to the user function isthe same. All parameters are speci�ed at the right side. According to grammar thereturn value speci�cations need not be given if the user function does not return anyvalue (or, value is to be discarded). The optional size information for a variable canbe given after the variable name followed by a \:" token. All parameter speci�ca-tions to the user function are given within \(" and \)". If the function does not takeany parameters, the parameter information can be left out. A parameter is givenby its name followed by optional size information. Since Fsimg passes parametersby reference, passing of structures is also possible. When passing structures the sizeinformation gives the number of structure elements and their respective sizes. Thefollowing example explains this.myfunc =>R[0] : 4 = usr myfunc (M[SP] : 1-4 $ 1-2 $ 2-4, M[SP+14] : 1-4)The above example depicts that a user function called \usr myfunc" should be calledinstead of simulating a call to a dynamic function \myfunc". The user function takestwo parameters from the stack. The return value should be placed in register R0whose size is 4 bytes. The �rst parameter of the user function is a structure startingat address given by the register SP in the processor being simulated. The structurehas four members with their respective sizes being 4, 2, 4, and 4 bytes. The syntaxx-y stands for x number of elements each of size y bytes. The $ in the speci�cationseparates these element declarations. Basically $ separates the di�erent size memberdeclarations. If all members of a structure are of the same size then it can be givenby a single x-y declaration, for example, 4-2 stands for four members of two byteseach.The parameter size information is used by Fsimg to generate code for changingthe endianness of the parameters before passing them to the user function if theendianness of the simulating processor is not same. If no size information is givenFsimg does not generate the code to change the endianness of the parameters. Asample con�guration �le for PowerPC 603 is shown below.printf => 36

GPR[3] = lib_printf(GPR[3], GPR[4], GPR[5],GPR[6], GPR[7], GPR[8], GPR[9])memcpy =>GPR[3] = lib_memcpy(GPR[3], GPR[4], GPR[5])open =>GPR[3] = lib_open(GPR[3], GPR[4])read =>GPR[3] = lib_read(GPR[3], GPR[4], GPR[5])The parameters to the functions are passed through registers from GPR3 onwardsand the return value is put in GPR3. The size information for parameters is not givenso Fsimg does not generate any endianness change code for parameters.In general if the parameters are passed through the registers then there is noneed for endianness change. This is because the registers are simulated in simulatormemory. The load instructions take care of endianness while loading them properlyso there is no need for endianness change. Whereas the parameters in the memory(e.g. stack) needs the endianness change, because the memory image which is loadedfrom �le is in the endianness of the processor being simulated.6.3 Fsim LibraryThe Fsim library contains functions that are needed by the Fsim. They are implemen-tation of certain Sim-nML operators corresponding operators for which is not presentin C. There are also a few other miscellaneous functions.6.3.1 Sim-nML OperatorsFollowing are the functions for Sim-nML operators present in the library. These opera-tors are for integer data types only. In the current implementation of the library, theseoperators do not work with
oating-point arguments. In general bit-level operatorsare rarely used on
oating-point data types.37

� OpLeftRotate - This function implements the Sim-nML left rotate operator\hhh".� OpRightRotate - This function implements the Sim-nML right rotate operator\iii".� OpBitField - This function implements the Sim-nML bit-�eld select operator\hlsb::msbi".� OpSetBitField - This function implements the Sim-nML bit-�eld operator onthe left size of expression for setting selected bits.� OpExp - This function implements the Sim-nML exponentiation operator \��".� OpBitConcat - This function implements the Sim-nML bit-concatenation op-erator \mem1 :: mem2".� OpSetBitConcat - This function implements the Sim-nML bit-concatenationoperator on the left side of the expression.6.3.2 Miscellaneous FunctionsThere are a few miscellaneous functions needed by Fsim. The �rst one is InitMemwhich initializes the memory before start of the simulation. The second one is En-dianChange which is used for changing the endian of data.If the Sim-nML speci�cation contains any canonical functions then the user has toprovide those functions also in the library.6.4 Input InformationThe Fsimg needs some information regarding the speci�cation to generate code forFsim. This information is given through command line options.Stack Size and its Direction of growthThe stack size for the program is given through the command line option `�S size'.Where size is in kilo-bytes. The default direction of stack growth is from higher38

address to lower address. This can be changed by giving the negative value to size.If this option is not given default stack size and direction are used.Program Counter, Stack Pointer and Current Instruction PointerThe program counter (PC) is the variable name used in the Sim-nML description forthe program counter of the processor. The stack pointer (SP) is the variable nameused for the stack pointer. Some processors do not have any special register for stackpointer. In such cases compiler uses one of the general purpose register as a stackpointer. In that, case the variable name of the register as stack pointer should begiven. The current instruction pointer is a dummy program counter used for branchinstructions which use the current instruction address as described in the section 3.3.This information is needed for correct code generation. This information can be givenby the following command line options.�p program counter name�s stack pointer name�P current instruction pointer nameCall instructions and Con�guration �leThe information about the call instructions can be given with option `�f call-instruction-node'. Where call-instruction-node is the top and or or-rule node for call instructionsin the speci�cation. The con�guration �le for dynamic functions can be given with`�c �le' option.6.5 ConstraintsFsimg has certain limitations, due to which it puts some restrictions on writing spec-i�cations for Fsimg.
39

6.5.1 Writing Speci�cation for FsimgSim-nML gives many features for speci�cation writes which are some times di�cultto implement. Here we discuss the restrictions in writing Fsimg.Data Types1. In Sim-nML the speci�cation writer can use data types of any length. TheFsimg allows only maximum length up to the size supported by the simulatinghost. For example, if one declares an integer of 128-bits, and the simulatinghost supports only 64-bit integers then the Fsimg would not allow this.2. Bit operations are not allowed on
oating-point data types.3. Enumerated data type of Sim-nML is not supported.OperatorsThe sizes of the operands to the bit-concatenation operator when it is used on the leftside of the expression should be the natural size of the simulating host data types.That is if the machine supports 8, 16, 32-bit integers then the arguments should onlyany of these sizes.The Fsimg disallows the use of bit-�eld operator and bit-concatenation operatorat the same time on the left side of the expression. The following code shows thesituation which is not allowed by Fsimg.mem VAR1 [1 , card (8)]mem VAR2 [1 , card (16)]mem VAR3 [1 , card (16)]VAR2 h 0 .. 7 i :: VAR1 = VAR3;AliasesThe Fsimg allows use of aliases in a restrictive manner. Only byte level aliases aresupported. In other words, size of an alias should be of a multiple of 8-bits (8,40

16 etc.) and the location to which it is aliased should be byte aligned. Followingexample shows the various possible methods of aliasing.reg AC [1 , card (32)]reg BX [1 , card (20)]mem ALIAS 1 [1 , card (8)] alias = AC [7]mem ALIAS 2 [1 , card (8)] alias = AC [11]mem ALIAS 3 [1 , card (4)] alias = AC [3]mem ALIAS 4 [1 , card (8)] alias = BX [7]In the above example two registers AC and BX are declared with sizes being32-bits and 20-bits respectively. Four variables are declared which are aliased tothese registers. ALIAS 1 is a valid alias de�nition because its size is one byte andit is aliased to the least signi�cant byte of AC who's size is multiple of byte size.ALIAS 2 is not a valid alias de�nition because it is aliased to a location that is notbyte aligned. ALIAS 3 is also not valid because its size is 4-bits and is aliased toinvalid position. ALIAS 4 is also not valid because it is aliased to BX who's size isnot multiple of byte.Load and Store InstructionsThe main memory used in the Sim-nML description is typically byte addressable.However, Sim-nML allows accessing multi-byte items with a given address. Followingexample explains this.type byte = int (8)mem M [2**16 , byte]reg REG [1 , int (16)]mem EA [1 , card (16)]M [EA] = REG;Although M is a byte addressable according to its declaration, the e�ect of41

the above statement is storing the REG's contents in two consecutive bytes startingfrom EA. This brings in the issue of endianness even in the speci�cation. The Fsimgdoes not support this feature currently. Hence the speci�cation writer has to writethe code for storing these bytes separately.The registers of any machine are always big-endian, but the memory endiannessdepends on the machine. The endianness has to be changed when ever a multi-byteitem is loaded from memory to a register or stored to the memory from a register.In general this can be done at two places, when the simulation is done the simulatordynamically converts, or in the speci�cation itself where the simulator would notbother about the conversion. The �rst method is a big overhead on the simulator. Ithas to keep track of may things and has to do the conversion for each memory access.The second method removes this overhead form the simulator. Since the speci�cationwriter knows the endianness of the processor he can take care of endianness whilewriting speci�cation for load and store instructions. Fsimg requires the speci�cationwriter to take care of endianness. This can be achieved by using byte level aliases orbit operators. For
oating-point load and store instructions use of aliases is the onlypossibility.Program TerminationTo terminate the simulation gracefully, the simulated program has to call exit() atthe end. Further the behaviour of exit() should be speci�ed in the con�guration�le. In absence of call to exit() library function, Fsim produced exhibit unpredictedbehaviour.

42

Chapter 7
Results and ConclusionsIn this chapter, we discuss a few performance based results of the functional simulator(Fsim) and conclude this thesis.7.1 ResultsFsimg has been tested for its retargetability for two di�erent processors PowerPC603 and Motorola 68HC11. Fsim has been tested for its functional simulation andperformance. The functional simulation as well as the performance depends on thedescription. If the description is erroneous then the functional simulation can not becorrect. Further even if the description is correct but the instruction semantics arespeci�ed in an ine�cient manner then the performance gets a�ected.Test SetupThe simulation results have been taken on two di�erent machines with followingcon�gurations.� Machine I: Intel P-II 233MHz, a little-endian processor with 32MB RAMrunning GNU-Linux Kernel 2.0.32.� Machine II: Sun Ultra SPARC II 250MHz, a big-endian processor with 512MBRAM running SunOS 5.5.1. 43

The PowerPC 603 processor description written as a part of this work has been usedfor the testing. Following are the test programs written in C. The PowerPC 603 ELFbinaries were created using a GNU cross-compiler.� mmul.c : Matrix multiplication program. This program initializes two integermatrices of 100x100 size and multiplies these two.� bsort.c : Bobble sort program. This program initializes an array of 1500integers in descending order and sorts them to ascending order using bubblesort algorithm.� qs.c : Quick sort program. This program initializes array of 1,00,000 integers indescending order and sorts them to ascending order using quick sort algorithm.� fmmul.c : Matrix multiplication for
oating-point numbers. Initializes andmultiplies two
oating point matrices of size 100x100.� nqueen.c : This program �nds all the possible ways that N queens can beplaced on an NxN chess board so that the queens cannot capture one another.Here N is taken as 12.All these programs were tested for the functional correctness on both the machines.Here we present some performance based results for the above programs on these twomachines. The table 7.1 gives the total number of dynamically executed instructionsduring the simulation for each of these programs.Program Total No. of Instructionsmmul.c 91,531,966bsort.c 60,759,034qs.c 80,773,862fmmul.c 92,131,966nqueen.c 204,916,928Table 7.1: Total number of instructions simulated for test programs.The functional simulatorFsim is compiled using a GCC compiler. The performanceresults are taken by compiling Fsim with optimization (optimization level 3 i.e -O3)and without optimization. In an unoptimized mode GCC tries to reduce the cost of44

compilation with out doing any optimizations on the generated code. In an optimizedmode it tries to optimize the code for reducing the code size as well as execution speedat a higher cost of compilation.Machine I: With no optimization With optimization level 3Program Total time Instructions Total time Instructions(seconds) per second (seconds) per secondmmul.c 65.7 1,393,181 59.8 1,503,635bsort.c 102.3 593,930 97.6 622,531qs.c 111.7 723,132 108.7 743,090fmmul.c 66.5 1,385,443 60.0 1,535,533nqueen.c 265.2 772,688 262.4 780,933Table 7.2: Performance Results on Machine IMachine II: With no optimization With optimization level 3Program Total time Instructions Total time Instructions(seconds) per second (seconds) per secondmmul.c 68.4 1,338,187 52.1 1,756,851bsort.c 96.0 632,907 75.6 803,691qs.c 105.7 764,180 84.4 957,036fmmul.c 72.1 1,277,836 48.9 1,884,089nqueen.c 261.2 784,521 234.7 873,101Table 7.3: Performance Results on Machine IIAnalysis of ResultsThe results of test programs from tables 7.2 and 7.3 shows that three of these pro-grams are simulated at 0.5 MIPS (million instructions per second) to 0.9 MIPS. But45

the mmul.c and fmmul.c are simulated at above 1 MIPS. After careful analysis of theinstructions executing for all these programs we found that the simulator is spendingvariable amount of time in the library functions corresponding to Sim-nML operators.The simulation speed di�ers due to the varying number of calls to such library func-tions. The matrix multiplication programs have fewer number of instructions whichin turn call these library functions. This number is higher in the other three programswhich made them to slowdown.An experimental setup has been used for �nding the simulation timings of variousindividual instructions. We found that di�erent instructions are having di�erentsimulation timings and the instructions having greater simulation time are havingmore calls to the library operators. The mix of instructions which are having greatersimulation time is more in the programs whose simulation speed is less.The conclusion we can make from this is that infrequent use of Sim-nML oper-ators in the description can result in faster simulation. Further a better and fasterimplementation of Sim-nML operators can further improve the simulation.Trace ResultsThe table 7.4 gives the approximate trace sizes for the test programs. Since the tracegenerated is not compressed and for each instruction executed a four byte address isgenerated, the trace size is four times the number of instructions executed.Approximate trace sizeProgram (mega bytes)mmul.c 349bsort.c 232qs.c 308fmmul.c 351nqueen.c 782Table 7.4: Approximate trace sizes for test programs.
46

7.2 ConclusionsIn this thesis we have discussed the Sim-nML language for modeling processors atinstruction level. It is powerful enough to specify any modern processor with pipelines,branch prediction, etc. at the instruction level. We have also discussed the integratedenvironment where automatically tools (assembler, simulator, compiler, etc.) can begenerated using Sim-nML processor models.As a part of this work we have speci�ed PowerPC 603 processor in Sim-nML.Around 237 instructions have been speci�ed with resource usage model and pipeline.These instructions cover most of the user level instructions of the PowerPC 603 in-struction set. We have implemented a Macro Preprocessor (nMP) for processingSim-nML macros. nMP converts Sim-nML macros into m4 macros there by makingthe task of macro expansion simple. We have also designed and implemented a Re-targetable Functional Simulator (Fsimg). The Fsimg takes a processor description inan intermediate form and an executable in ELF format and generates a function sim-ulator (Fsim). The Fsim simulates functionally executable program for the desiredprocessor. It can also generate the instruction trace of the program which is usefulfor other tools in studying various other aspects of the design.7.3 Future WorkFollowing points can be considered as an extension to this work.� Removing the restrictions which Fsimg is imposing on the speci�cations writ-ing. These include supporting aliases, allowing the use of bit-�eld and bit-concatenation operators at the same time on the left side of an expression,allowing operands of any size for bit-concatenation operator, supporting datatypes of any size, and supporting Sim-nML enumeration data type.� Current bit-operator library supports only integer data types. This can beextended to
oating-point data types also.� The trace produced by Fsim is not compressed. It makes it di�cult to handleand process trace �les. Producing the compressed trace is one of the improve-ments that can be achieved. 47

� Simulation speed is one of the important issue generally we look for. ImprovingFsim's speed by possibly rewriting a better and faster operator library and bychanging the logic of the driving routine can be another future work.� Although it may not be an extension to this work, Retargetable Trace DrivenSimulator can be designed that can use the trace generated by Fsim for theperformance study of processors.

48

Bibliography[1] Bochs Software Company. http://www.bochs.com.[2] Snes9x.com. http://207.5.92.43.[3] The Tool Interface Standards committee (TIS). http://developer.intel.com/vtune/tis.htm.[4] VMac group. http://leb.net/vmac/.[5] VMware, Inc. http://www.vmware.com/products/virtualplatform.html.[6] Ball, T., and Larus, J. R. Optimally Pro�ling and Tracing Programs.ACM Transactions on Progamming Languages and Systems 16, 4 (July 1994),1319{1360.[7] C.May, E.Silha, R. S., and H.Warren, Eds. The PowerPC Architecture:A Speci�cation for A New Family of RISC Processors. Morgan Kanfmann, 1994.[8] Freerick, M. The nML Machine Description Formalism, July 1993.http://www.cs.tu-berlin.de/~mfx/dvi docs/nml 2.dvi.gz.[9] George Hadjiyiannis, S. H., and Devadas, S. ISDL An Instruction setDescription Language for Retargetability. Proceedings of the 34th Annual Con-ference on Design Automation Conference (1997), 299.[10] Jain, N. C. Disassemble using High Level Processor Models. Master'sthesis, Department of Computer Science and Engg., IIT Kanpur, Jan 1999.http://www.cse.iitk.ac.in/research/mtech1997/9711113.html.[11] Larus, J. R. Abstract Execution: A Technique for E�ciently Tracing Pro-grams. Software Practice & Experience 20, 12 (Dec 1990), 1241{1258.[12] Larus, J. R. E�cient Program Tracing. Computer 26, 5 (May 1993), 52{61.49

[13] Mendel Rosenblum, Edouard Bugnion, S. D., and Herrod, S. A. Us-ing the SimOS Machine Simulator to Study Complex Computer Systems. ACMTransactions on Modeling and Computer Simulation 7, 1 (Jan 1997), 78{103.http://simos.stanford.edu.[14] Mondal, S. Compiler Back-end Generation using nML Machine Description.Master's thesis, Department of Computer Science and Eng., IIT Kanpur, June1999. http://www.cse.iitk.ac.in/research/mtech1997/9711117.html.[15] Raksey, N., and Fernandez. Specifying Representations of Machine Instruc-tions. ACM Transactions on Programming Langauges and Systems 19, 3 (May1997), 492{594. http://www.cs.virginia.edu/~nr/pubs/specifying-abstract.html.[16] Seindal, R. GNU m4. http://www.seindal.dk/rene/gnu/.[17] V.Rajesh. A Generic Approach to Performance Modeling and its Applicationto Simulator Generator. Master's thesis, Department of Computer Science andEngg., IIT Kanpur, July 1998. http://www.cse.iitk.ac.in/research/mtech1996/9611123.html.[18] UNIX System V Release 4, Programmers Guide : ANSI C and ProgrammingSupport Tools. Prentice-Hall of India Private Ltd., New Delhi, 1992. Executableand Linkable Format (ELF), Tools Interface Standards (TIS), Portable FormatsSpeci�cation, Version 1.1.[19] PowerPCTM603 RISC Microprocessor User's Manual. IBM Microelectronics,Motorola, 1994. http://www.mot.com/SPS/PowerPC/products/semiconductor/cpu/603.html.

50

Appendix A
File Format of IntermediateRepresentationIn this appendix, we will discuss the layout of the �le for the intermediate representa-tion. The �le consists of various �xed or variable size tables where the name of eachtable is �xed. A table, named as META TABLE, is always the �rst table in the �le. Allother tables can reside anywhere in the �le and can be located using the META TABLE.The following are the tables available presently in the IR.� META TABLE� CONSTANT TABLE� ATTRIBUTE TABLE� RESOURCE TABLE� IDENTIFIER TABLE� MEMORY TABLE� AND RULE TABLE� OR RULE TABLE� SYNTAX TABLE� IMAGE TABLE 51

� STRING TABLE� INTEGER TABLE� PREFIX ATTR DEF TABLEEach table consists of an array of records. Each record in a table constitutes ofvarious �elds. For each table, all the �elds of �rst records are written �rst in the�le. Then all the �elds of second record are written and so on. We have used theword record and entry interchangeably. The �elds might be stored either in little-endian encoding or big-endian encoding depending on the processor on which the �leis created.� Convention : Each table is described by de�ning its record format. We haveused a C-like struct de�nition to describe a record. For each record, �elds arewritten from top to bottom in the �le. In describing the record, following datatypes are being used. Size is in bytes.Type Size PurposeByte 1 Unsigned ByteWord 2 Unsigned WordDword 4 Unsigned Double WordSByte 1 Signed ByteSWord 2 Signed WordSDWord 4 Signed Double WordString - Null terminated array of SBytesAddress 4 DwordOffset 4 DwordA.1 Meta TableThe Meta table holds the table of contents for all the tables which are present in the�le. Each record of the META TABLE stores the information to locate a table. Eachrecord has the following format.
52

typedef struct{String table_name;Dword table_size;Address table_offset;Dword total_record;Dword record_size;}Meta_Record;table name : This �eld stores the �xed name of a table which is a 32 byte nullterminated string. Name of all the tables are written earlier.table size : This �eld holds the size (in bytes) of a table.table o�set : This �eld holds the starting o�set (in bytes) of a table in the �le.total record : This �eld holds the number of record stored in a table. For thestring table, it holds the value 0.record size : This �eld holds the size of a record (in bytes) of a table. If arecord for a table is variable in size, then this �eld contains thevalue 0.The data encoding of the IR is dependent on the processor on which it is createdi.e. data encoding can be little-endian or big-endian depending on the processor.A tool can �gure out the endian-ness of the IR by reading the table of contentsirrespective of the type of the machine on which the tools is running. First record ofthe table represent the META TABLE entries itself. Therefore the no-of-rec containsthe total number of tables including the META TABLE, size-of-rec contains the sizeof each record in the meta table and size-of-table contains the total size of the metatable including the �rst record. A tool can read these values and check if the followingequation is satis�ed.no-of-rec * size-of-rec = size-of-tableIf this equation is not satis�ed, then the endian-ness of the IR and the machine onwhich the tool is running are not the same, otherwise they are the same. In theformer case, this equation must be satis�ed after the endian-ness conversion of the�elds values.
53

A.2 Constant TableEach record of the CONSTANT TABLE holds the informations about the constants inthe following format.typedef struct {Offset id_name;Dword val_typ;SDwor dvalue;}Const_Record;id name : This �eld holds the index into the STRING TABLE. As discussedearlier, STRING TABLE holds null terminated strings. Thus this�eld represents a reference to the constant name.val typ : This �eld indicates type of the value associated with the constant(0 for integer type or 1 for a string type).value : If the val typ �eld represents integer , then this �eld holds thecorresponding signed integer value. If the val typ �eld representsstring , then this �eld holds the unsigned integer index into thestring table from where a null terminated string value can beretrieved.A.3 Resource TableEach entry of this table holds the information about a resource. Each resource isassigned a unique integer key by which it is referenced at other places. Each recordhas the following format.typedef struct{Offset res_name;Dword res_key;}Resource_Record;res name : This �eld holds the index into the STRING TABLE. In theSTRING TABLE, the name of the resource is stored at this in-dex.res key : This �eld holds the key value assigned to the resource.54

A.4 Identi�er TableThis table holds the informations about all the identi�ers used in the processor spec-i�cation �le (other than those speci�ed in the CONSTANT TABLE and the RESOURCETABLE). Each identi�er is assigned a unique integer key which is used to refer to theidenti�er at other places. Each record has the following format.typedef struct{Offset id_name;Dword id_typ;Dword id_key;}Identifier_Record;id name : This �eld holds an index into the STRING TABLE. The STRINGTABLE holds a null terminated string at this index which is thename of the identi�er.id typ : This �eld indicates the type of the identi�er and may have oneof the following values.0 : Unde�ned Identi�er1 : Name of a memory Variable2 : Name of an or-rule of mode type3 : Name of an and-rule of mode type4 : Name of an or-rule of op type.5 : Name of an and-rule of op type.6 : Name of an Exceptionothers : Unspeci�edid key : This �eld holds the key value assigned to the identi�er.A.5 Attribute TableEach entry of this table holds the name of an attribute. Each attribute is assigned aunique integer key to refer to it at other places. Each record has the following format.
55

typedef struct{Offset attr_name;Dword attr_key;}Attribute_Record;attr name : This �eld holds an index into the string table. The STRINGTABLE holds a null terminated string at this index which is thename of the attribute.attr key : This �eld holds the key value assigned to the attribute.Note : For mode speci�cation, one new attribute , val , is de�ned to store theoptional expression associated with =.A.6 Memory TableEach entry of this table holds the information about a memory variable speci�edwith reg or mem speci�cation construct of Sim-nML language. Each record has thefollowing format.typedef struct{Dword id_key;Dword siz;Dword tot_attr;Dword mem_reg;Dword data_typ;Dword value1;Dword value2;Dword attr_list_index;}Memory_Record;id key : This �eld stores the key value associated with the identi�ername of a memory variable. The key value is assigned in theIDENTIFIER TABLE.siz : A memory declaration de�nes a memory base i.e. a set of mem-ory locations accessible under a name and an index. This �eldspeci�es the number of such locations.56

tot attr : A memory declaration may also de�ne values for some prede�nedattributes. This �eld speci�es how many attributes are de�nedfor the memory variable.mem reg : This �eld holds a value 0 if the memory identi�er is declaredusing Reg speci�cation. It holds 1 if the memory identi�er isdeclared using mem speci�cation. Both type of identi�ers aresimilar in nature except that �rst type of identi�ers refer to pro-cessor registers and second type of identi�ers refer to memorylocations.data typ :value1 :value2 : A memory location might hold values of di�erent data types.The data type is encoded in a tuple <data typ, value1, value2>First �eld, data typ, speci�es what type of values can be storedin a memory location. Second and third �eld stores the valueaccording to the data typ �eld. Table A.1 shows the possiblevalues for these �eld.attr list index : If the tot attr �eld has a value 0, then this �eld is ignored andshould be 0. Otherwise it speci�es an index into the integertable. At this index, three integers are stored for each of the at-tributes. Therefore, the total number of integers are 3�total attr.Each integer triple indicates <attr key, o�set, len> where theattr key, is the key corresponding to attribute name assigned inthe attribute table. The second �eld of triple, o�set, is thestarting tuple number into the PREFIX ATTRIBUTE DEFINITIONTABLE where de�nition of the attribute is stored in pre�x nota-tion. Third �eld of triple, len, is the number of tuples for itsattribute de�nition.A.7 And-Rule TableThis table holds the information about all the and-rules (mode and op type). Itincludes the information about sub-rules and attributes. The sub-rules of an and-ruleare numbered from 0 to n and parameters are numbered as 0 to m from left to right.Each record has the following format. 57

Data Type data typ value1 value2bool 0 0 0card(n) 1 n 0int(n) 2 n 0�x(n;m) 3 n m
oat(n;m) 4 n mrange[n::m] 5 n menum(id 1. . . id m) 6 0 m� 1Table A.1: Encoding of data typestypedef struct{Dword and_key;Dword id_key;Dword total_sub_rule;Dword total_para;Dword total_attr;Dword attr_list_index;Dword para_list_index;}And_Rule_Record;and key : This �eld holds an integer which is a unique key assigned to anand-rule. This key is used later to refer to the and-rule.id key : This �eld holds the key value which is assigned to the identi�ername of the and-rule in the identifier table.total sub rule : This �eld holds the number of sub-rules generated by
atteningof the and-rule.total para : This �eld holds the number of parameters taken by the and-rule.total attr : This �eld speci�es the number of attributes de�ned for the and-rule.attr list index : If total attr �eld has value 0, then this �eld is ignored and has avalue 0, otherwise it speci�es an index into the integer table.At this index, three integers are stored for each of the attributes.Each integer triple indicates <attr key, o�set and len> similarto the one described in the memory table. There are two excep-tions here. If attr key refers to a syntax or image attribute,58

then o�set �eld contains the starting index in the SYNTAX TABLEor the image table and len �eld contains the total number ofsyntax or image records corresponding to the and-rule.para list index : If total para �eld has value 0, then this �eld is ignored. Other-wise it speci�es an index into the integer table. At this index,three integers are stored for each of the parameter. Initially, allparameters triples of �rst sub-rule are written, then all parame-ter triples of second sub-rule are written and so on. Thus if wehave n sub-rules and m parameters, then there will be n*m suchinteger triples. Each integer triple indicates <data typ, value1,value2> i.e. the data type of parameter. Table A.2 shows pos-sible values for �elds of the triples.Data Type data typ value1 value2bool 0 0 0card(n) 1 n 0int(n) 2 n 0�x(n;m) 3 n m
oat(n;m) 4 n mrange[n::m] 5 n menum(id 1. . . id m) 6 0 m� 1and-rule 7 and key 0Table A.2: Parameter Type for and-ruleA.8 Or-Rule TableThis table holds the information of all or-rules (mode or op type). Each entry de-scribes the children nodes of an or-rule. Each record has the following format.typedef struct{Dword or_key;Dword id_key;Dword total_child;Dword child_list_index;}Or_Rule_Record; 59

or key : This �eld holds an integer which is a unique key assigned toan or-rule.id key : This �eld holds the key value associated with the identi�ername of the or-rule in the identifier table.total child : This �eld holds the integer number which indicate number ofchildren generated by the
attening procedure for the or-rule.child list index : This �eld holds the index into the INTEGER TABLE where a listof and key values are stored. Number of such and key valuesis given by the value of total child. These and key are uses torefer to the and-rule (assigned in the and-rule table).A.9 Syntax TableThis table holds the syntax records associated with the syntax attribute de�nition ofall and-rules. Each record has the following format.typedef struct{Dword syn_key;Dword dot_expr_len;Offset dot_expr_offset;Dword syn_expr_len;Offset syn_expr_offset;}Syntax_Record;syn key : This �eld holds an integer which is a unique key assigned toa syntax record. In the and-rule table, the key is used toget the attribute information of syntax attribute.dot expr len : This �eld holds the length of a character string, named asdot-expression.dot expr o�set : This �eld holds the o�set in bytes into the STRING TABLEwhere actual dot-expression is stored as a sequence of charac-ters.syn expr len : This �eld holds the length of the character string, named assyntax-string of the instruction.syn expr o�set : This �eld holds the o�set in bytes into the STRING TABLEwhere the syntax-string is stored as a sequence of characters.60

A.10 Image TableThis table holds the image records associated with the image attribute de�nition ofall and-rules. Each record has the following format.typedef struct{Dword img_key;Dword dot_expr_len;Offset dot_expr_offset;Dword syn_expr_len;Offset img_expr_offset;}Image_Record;img key : This is the unique integer assigned to each image record. Inthe and-rule table, this value is used to get the attributeinformation of image attribute.dot expr len : This �eld holds the length of the character string, named asdot-expression[10].dot expr o�set : This �eld holds the o�set in bytes into the string tablewhere actual dot-expression is stored as a sequence of charac-ters.syn expr len : This �eld holds the length of the character string, named asimage-string of the instruction.syn expr o�set : This �eld holds the o�set in bytes into the STRING TABLEwhere the image-string is stored as a sequence of characters.A.11 String TableThis table holds null terminated character sequences, commonly called strings. Thesestrings are referred to by an index into the string table. The �rst byte at indexzero always contains a null character. Similarly, the last byte also contains a nullcharacter, ensuring null termination for all strings. A string whose index is zerospeci�es either no name or a null name depending on the context. We show oneexample of the string table of size 30 bytes in table A.3 and the strings associatedwith various indices in table A.4. 61

null i d e n t i f i er null P C null null i n s tr u c t i o n null 1 nullTable A.3: Example of the String TableIndex string1 identi�er12 PC16 instruction18 struction0 nullTable A.4: Interpretation of the String TableA.12 Integer TableThis table holds list of unsigned integer values (Dword type). These integers representdi�erent meanings in di�erent contexts. The integers are referred to by an index intothe integer table. The �rst entry always stored in this table contains 0. The indexrefers to the starting entry and not the starting o�set. The o�set can be found bymultiplying the index and the the size of Dword.A.13 Pre�x-Attribute-De�nition TableThis table holds various attribute de�nitions in pre�x notation. All attributes ex-cept the syntax and image are converted into the pre�x notation and stored in thistable. Each item of the pre�x expression is stored in the following record of typeTuple Record.typedef struct{Word typ;SDword value;}Tuple_Record;typ : This �eld holds an integer value to indicate the type of tuple i.e.an operator tuple or operand tuple. If tuple is of operand type,then this �eld also encodes the type of operand.62

value : This �eld holds a integer value which will be interpreted accord-ing to the value of typ �eld.An attribute de�nition is stored in the and-rule table and in the MEMORY TABLEwith the starting index into the PREFIX ATTRIBUTE DEFINITION table and the num-ber of items in the pre�x notation of the de�nition. Table A.5 shows the possiblevalues of typ �eld and corresponding interpretation of value �eld. If the typ �eld holdsthe value 0, then the tuple is operator tuple, otherwise the tuple is operand tuple. Ifthe tuple is of operator type, then value �eld holds an integer which indicates operatorname and arity. Table A.6 shows all possible values for this �eld and correspondingarity of the operator.Type of the tuple typ �eld value �eldOperator 0 operator number (see table A.6)Fixed constant 1 signed integer value ofoperandCard constant 2 unsigned integer value ofoperandBinary constant 3 O�set into the STRING TABLEHex constant 4 O�set into the STRING TABLEString constant 5 O�set into the STRING TABLEMemory variable 6 key of the identi�er as assigned inthe MEMORY TABLEAttribute type 7 key of the attribute name as as-signed in the ATTRIBUTE TABLEParameter type 8 parameter number (left most isassigned number 0).Resource type 9 key of the resource name as as-signed in the RESOURCE TABLEException type 10 Key of the identi�er as assignedin the IDENTIFIER TABLETable A.5: Interpretation of the tuple used in Pre�x NotationThere are as many operands available as needed for an operator. Since the arity foran operator is �xed, the number of arguments is implicit. For example, an expressionPC = PC +2 is = PC +PC2 in pre�x notation and it has 5 items. The �rst item isan operator '='. Second is a memory variable with value �eld being the index into thememory table. Third item is again an operator '+'. The last �eld is a �xed-constant2. 63

value Name of Operator Symbol Arity of Operator0 Addition + Binary1 Subtraction - Binary2 Multiplication * Binary3 Division / Binary4 MOD % Binary5 EXP ** Binary6 Greater than > Binary7 Less than < Binary8 Equal to == Binary9 Not equal to != Binary10 GEQ >= Binary11 LEQ <= Binary12 Logical AND & Binary13 Logical OR j Binary14 Logical XOR ^ Binary15 AND && Binary16 OR jj Binary17 Left Shift << Binary18 Right Shift >> Binary19 Rotate Left <<< Binary20 Rotate Right >>> Binary21 Dot . Binary22 Concatenation :: Binary23 Indexing [] Binary24 Assignment = Binary25 Statement Separator ; Binary26 Unary Addition + Unary27 UNOT OPERATOR ! Unary28 Unary Subtraction - Unary29 Bitwise NOT ~ Unary30 Bit Range .. Ternary31 IF if then else Ternary32 Function canonical function n-ary33 Switch switch n-ary34 default Expression default 0-ary35 NULL nothing 0-ary36 Hash # Binary37 Comma , Binary38 Condition fg Unary39 Colon : BinaryTable A.6: Operators Used in Pre�x Attribute De�nition64

For detailed description of each operator, read the Sim-nML speci�cation givenin Appendix A. There are some special cases which are described here.� The �rst case is for Bit Range operator which has the in�x notation asopd1 < opd2::opd3 >.Equivalent pre�x notation used is as follows.(operator; bitrangeoperator; opd1; opd2; opd3):� The second case is for \if then else". If there is no operand in else part, thenNULL operator (0-ary) (see table A.6) is being used.� The third case is when there is a no attribute expression for an attribute. Wehave used NULL operator to denote it.� The fourth case is that of a switch operator. General in�x notation for this isswitch (expr){ case Expr_1 : Sequence_1 ;case Expr_2 : Sequence_2 ;.default : Sequence_i ;.case Expr_n : Sequence_n ;}The corresponding pre-�x notation is as follows :(operator, switch)(n, expr,Expr_1, Sequence_1,Expr_2, Sequence_2,....DEFAULT OPERATOR, Sequence_i,....Expr_n, Sequence_n)65

The �rst item is an operator with operator name as switch. Then next item isa simple operand tuple of Card constant type and value as n. After that, exprwill be again written in pre�x notation. It will be followed by n-operands whereeach operand is an expression in pre�x notation and sequence of statements inpre�x notation. Default operator is a 0-ary operator so it can be taken as apre-�x expression.� The �fth case is that of a canonical function. General notation for this is asfollows.\function name" (Arg1; Arg2; Arg3; :::::::::; Argn)where each argument is again an expression. The corresponding pre-�x notationis as follows.(operator, function)(length of name, "function name" string,n, Arg1, Arg2,........Argn)The �rst item is a function operator. Second tuple is a string constant type (typ= String constant, value = byte o�set into the string table where function nameis written). Next item is a simple operand tuple with typ as Card constant andvalue as n. Then each argument is represented in pre�x notation.There is one special case with function operator where the function name iscoerce. This function takes �rst argument as a data type. In the IR, we con-vert data types to the basic data types and represent them using three num-bers, data type, value1 and value2 as described in table A.1. Thus, the datatype parameter for the coerce function is converted to three integers internally.Therefore, we have two extra parameters for this function. Thus number ofparameters are increased by two.

66

Appendix B
User manuals for nMP and Fsimg
B.1 Macro Preprocessor (nMP)Getting nMP:The source code of nMP can be obtained from the following FTP site.ftp://cse.iitk.ac.in/pub/moona/simnml-nMP-0.1.tar.gzThe number 0.1 stands for the version. Future versions will be placed withhigher numbers like 0.2, 0.3 etc. The �le is a Unix tape archive in the compressedformat.Compiling nMP:The downloaded �le can be uncompressed and untarred to reveal the source �les.Following GNU tools are required to compile nMP.� gcc 2.7.2 or higher�
ex 2.5.4 or higher� bison 1.25 or higherThis code may be compatible with lower versions or older lex and yacc toolswhich we have not tested. To compile the source \make" is executed. This creates67

an executable for nMP.Command Line Options:nMP does not take any command line options. It takes the input �le as an argumentand writes to the �le with \.m4" su�xed to the input �le name. If no arguments aregiven, it reads from the standard input and writes to the standard output.Running m4:A shell script \runm4" has been provided for running m4 on the output generatedby nMP. Given the name of the Sim-nML �le with m4 macros as the �rst argumentand the name of the output �le name as the second argument, runm4 generates theoutput �le that contains no macros. One can also run the m4 manually using thefollowing command.% m4 -P input-�le > output-�leExample:% nMP input.nmlThis generates a Sim-nML �le \input.nml.m4" which has only m4 macros.% runm4 input.nml.m4 output.nmlThis generates a Sim-nML �le \output.nml" which has no macros.B.2 FsimgGetting Fsimg:The source code of Fsimg can be obtained from the following ftp site.ftp://cse.iitk.ac.in/pub/moona/simnml-Fsimg-0.1.tar.gz68

The downloaded �le can be decompressed and untarred to get the source �les.Compiling Fsimg:Following GNU tools are required to compile Fsimg.� gcc 2.7.2 or higher�
ex 2.5.4 or higher� bison 1.25 or higherThis code may be compatible with lower versions of these tools. The lexicalanalyzer code is compatible with solaris lex tool. It may also be compatible withother tools. The parser code is not tested for other tools like yacc.In order to install, �rst con�gure script is run, which generates a few �les requiredfor the compilation. In order to compile Fsimg, \make" is executed and to install\make install" is executed. This step installs Fsimg in the Fsimg-0.1 sub-directorywithin the source directory. In order to install it in another directory \{pre�x=full-install-path" option may be added to the con�gure before compilation. Following isthe contents of installed directory.� bin - This directory contains the tools fsimg, irview, and elfview. irview andelfview are tools to look into ir and elf �les.� lib - This directory contains the library fsim. You have to provide the -lfsimoption as well as path of this directory as a library search path while compilingFsim.� include - This directory contains the C header �les needed by the Fsim. Youhave to include the path of this directory in the compiler include search pathoption to search this directory for header �les while compiling Fsim.Command Line Options:Options given in [] are optional. 69

-i �lename : Input IR �le.-e �lename : Input ELF �le.-p pc-name : Name of the variable used as a program counter in theSim-nML description.-P cpc-name : Current PC name.-m mem-name : Name used for memory in the Sim-nML description.-s sp-name : Name used for the stack pointer in the Sim-nML description.[-c con�g-�le] : Dynamic function con�guration �le.[-S size] : Initial stack size. Negative value to size indicates stackgrowth from lower address to higher address. Default higheraddress to lower address.[-f call-node] : Call instructions. Call-node is the top and or or-rule node ofcall instructions in the description.[-t] : Do not load text into the memory. Default is load text.Output:Fsimg generates following �les Instr.c, Funcs.c, Fsim.c, Defs.h, Vars.h, and Types.h.Compiling Fsim:Compile the �le Fsim.c with -lfsim and giving include search path as the includedirectory and the library search path as lib in the directory where Fsimg is installed.The functions for dynamic calls and any extra canonical functions have to compiledalong with it.For this purpose a \make�le" is provided in the directory where Fsimg is installed.One can edit this �le to add the �les(s) containing user and canonical functions to becompiled into the Fsim.Example:To compile Fsimmanually with gcc assuming Fsimg is installed in /home/yschand/Fsimg-0.1 is as follows.% gcc Fsim.c lib dynfuncs.c canonical.c -o fsim -I. -lfsim-I/home/yschand/Fsimg-0.1/include -L/home/yschand/Fsimg-0.1/lib70

An option -DTRACE if given in above compilation command causes the trace tobe generated. Similarly -DICOUNT option is added to con�gure Fsim to �nd outtotal instructions simulated. By adding -DICOUNT option de�nes an integer variableCount which can be printed at the end of simulation through the implementation ofexit function.To use the \make�le" �rst the variables DYNLIBOBJ and DYNLIBSRC are setto the �le name of user functions �le. Following example shows this.DYNLIBOBJ = lib dynfuncs.oDYNLIBSRC = lib dynfuncs.cSimilarly the canonical �le name can be set as shown below.CANONOBJ = canonical.oCANONSRC = canonical.cThe \make�le" implements all the three options as described above. Running \make"results in the functional simulator fsim. Running \make count" generates the simu-lator which can give the count of the number of instructions simulated, and running\make trace" generates the execution trace.Various other tools and information like IR generator, PowerPC 603 speci�cationetc. can be obtained from ftp://cse.iitk.ac.in/pub/moona FTP site.

71

