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Abstract— We present an online centralized path planning
algorithm to cover a large, complex, unknown workspace with
multiple homogeneous mobile robots. Our algorithm is horizon-
based, synchronous, and on-demand. The recently proposed
horizon-based synchronous algorithms compute all the robots’
paths in each horizon, significantly increasing the computation
burden in large workspaces with many robots. As a remedy, we
propose an algorithm that computes the paths for a subset of
robots that have traversed previously computed paths entirely
(thus on-demand) and reuses the remaining paths for the
other robots. We formally prove that the algorithm guarantees
complete coverage of the unknown workspace. Experimental
results on several standard benchmark workspaces show that
our algorithm scales to hundreds of robots in large complex
workspaces and consistently beats a state-of-the-art online
centralized multi-robot coverage path planning algorithm in
terms of the time needed to achieve complete coverage. For its
validation, we perform ROS+Gazebo simulations in five 2D grid
benchmark workspaces with 10 Quadcopters and 10 TurtleBots,
respectively. Also, to demonstrate its practical feasibility, we
conduct one indoor experiment with two real TurtleBot2 robots
and one outdoor experiment with three real Quadcopters.

I. INTRODUCTION

Coverage Path Planning (CPP) deals with finding conflict-
free routes for a fleet of robots to make them completely visit
the obstacle-free regions of a given workspace to accomplish
some designated task. It has numerous applications in indoor
environments, e.g., vacuum cleaning [1], [2], industrial in-
spection [3], etc., as well as in outdoor environments, e.g.,
road sweeping [4], lawn mowing [5], precision farming [6],
[7], surveying [8], [9], search and rescue operations [10],
[11], demining a battlefield [12], etc. A CPP algorithm,
often called a Coverage Planner (CP), is said to be complete
if it guarantees coverage of the entire obstacle-free region.
Though a single robot is enough to achieve complete cov-
erage of a small environment (e.g., [13], [14], [15], [16],
[17], [18], [19], [20]), multiple robots (e.g., [21], [22], [23],
[24], [9], [2], [25], [26], [27]) facilitate complete coverage
of a large environment more quickly. However, the design
complexity of the CP grows significantly to exploit the
benefit of having multiple robots.

For many CPP applications, the workspace’s obstacle map
is unknown initially. So, the offline CPs (e.g., [28], [29], [30],
[14], [1], [24], [31], [32], [33]) that require the obstacle
map beforehand are not applicable here. Instead, we need
an online CP (e.g., [34], [35], [36], [37], [38], [39], [40],
[25], [41]) that runs through multiple rounds to cover the
entire workspace gradually. In each round, the robots explore
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some unexplored regions using attached sensors, and the
CP subsequently finds their subpaths to cover the explored
obstacle-free regions not covered so far, a.k.a. goals.

Based on where the CP runs, we can classify it as either
centralized or distributed. A centralized CP (e.g., [42], [34],
[36], [30], [14], [39], [15], [24], [43], [44]) runs at a server
and is responsible for finding all the paths alone. In contrast,
a distributed CP (e.g., [45], [46], [47], [48], [49], [50], [51],
[52], [53]) runs at every robot as a local instance, and these
local instances collaborate among themselves to find individ-
ual paths. The distributed CPs are computationally faster as
they deal with only the local state spaces. However, they find
highly inefficient paths due to the lack of global knowledge
about the state space. Despite having high computation
time, the centralized CPs can provide a shorter coverage
completion time as they can find highly efficient paths by
exploiting the global state space. The recently proposed
receding horizon-based (e.g., [36], [39]) online multi-robot
centralized coverage planner GAMRCPP [44] demonstrates
this capability, thereby outperforming the state-of-the-art
online multi-robot distributed coverage planner BoB [50].

A major bottleneck of GAMRCPP is that it generates the
paths for all the robots synchronously (i.e., at the same time)
in each horizon (like [39]), which prevents it from scaling
for hundreds of robots in large workspaces. Furthermore,
GAMRCPP decides the horizon length based on the minimum
path length and discards the remaining paths for the robots
with longer paths. Finding a better goal assignment for those
robots in the next horizon is possible, but discarding the
already generated paths leads to considerable computational
wastage. In this paper, we propose an alternative approach
where, like GAMRCPP, the CP decides the horizon length
based on the minimum path length but keeps the remaining
paths for the robots with longer paths for traversal in the
subsequent horizons. Thus, in a horizon, our proposed CP has
to synchronously generate the paths for only those robots for
which no remaining path is available (called the participant
robots), hence on-demand. However, this new on-demand
approach brings the additional challenge of computing the
new paths under the constraint of the remaining paths for
some robots. Our CP tackles this challenge soundly. Though
the proposed approach misses the opportunity to find more
optimal paths for the non-participant robots in a horizon,
the computation load in each horizon decreases significantly,
which in turn leads to a faster coverage completion of large
workspaces with hundreds of robots, promising scalability.

We formally prove that the proposed CP can achieve
complete coverage. To evaluate its performance, we consider
eight large 2D grid-based benchmark workspaces of varying



size and obstacle density, and two types of robots, TurtleBot
[54], which is a ground robot, and a Quadcopter, which is an
aerial robot, for their coverage. We vary the number of robots
from 128 to 512 and choose mission time as the compari-
son metric, which is the time required to attain complete
coverage. We compare our proposed CP with GAMRCPP
and show that it outperforms GAMRCPP consistently in
large workspaces involving hundreds of robots. We further
demonstrate the practical feasibility of our algorithm through
ROS+Gazebo simulations and real experiments.

II. PROBLEM

A. Preliminaries

Let R and N denote the set of real numbers and natural
numbers, respectively, and N0 denote the set N∪ {0}. Also,
for m ∈ N, we write [m] to denote the set {n ∈ N |n ≤ m},
and [m]0 to denote the set [m]∪{0}. The size of the countable
set S is denoted by |S| ∈ N0. Furthermore, we denote the
set {0, 1} of Boolean values by B.

1) Workspace: We consider an unknown 2D workspace
W represented as a grid of size X × Y , where X,Y ∈ N.
Thus, W is represented as a set of non-overlapping square-
shaped grid cells {(x, y) |x ∈ [X] ∧ y ∈ [Y ]}, some of
which are obstacle-free (denoted by Wfree) and traversable
by the robots, while the rest are static obstacle-occupied
(denoted by Wobs), which are not. Note that Wfree and Wobs

are not known initially. We assume that Wfree is strongly
connected and Wobs is fully occupied with obstacles.

2) Robots and their States: We employ a team of R ∈ N
failure-free homogeneous mobile robots, where each robot
fits entirely within a cell. We denote the i(∈ [R])-th robot
by ri and assume that ri is location-aware. Let the state of
ri at the j(∈ N0)-th discrete time step be sij , which is a tuple
of its location and possibly orientation in the workspace. We
define a function L that takes a state sij as input and returns
the corresponding location as a tuple. Initially, the robots get
deployed at different obstacle-free cells, comprising the set
of start states S = {si0 | i ∈ [R] ∧ L(si0) ∈ Wfree ∧ ∀j ∈
[R] \ {i}. L(sj0) ̸= L(si0)}. We also assume that each ri is
equipped with four rangefinders on all four sides to detect
obstacles in the four neighboring cells they are facing.

3) Motions and Paths of the robots: The robots have a
common set of motion primitives M to change their states in
the next time step. It also contains a unique motion primitive
Halt(H) to keep the state of a robot unchanged in the next
step. Each motion primitive µ ∈ M is associated with some
cost cost(µ) ∈ R, e.g., distance traversed, energy consumed,
etc. We assume that all the motion primitives take the same
τ ∈ R unit time for execution. Initially, the path πi for robot
ri contains its start state si0. So, the length of πi, denoted
by Λ ∈ N0, is 0. But, when a finite sequence of motion
primitives (µj ∈ M)j∈[Λ] of length Λ > 0 gets applied to
si0, it results in generating the Λ-length path πi. So, πi is a
finite sequence (sij)j∈[Λ]0 of length Λ+1 of the states of ri:

sij−1

µj−→ sij , ∀j ∈ [Λ].

Thus, πi has the cost cost(πi) =
∑

j∈[Λ] cost(µj). Note
that we can make the set of paths Π = {πi|i ∈ [R]} of all the
robots equal-length Λ by suitably applying H at their ends.

Example 1: For illustration, we consider TurtleBot
[55]. A TurtleBot not only drives forward to change
its location but also rotates around its axis to change its
orientation. So, the state of a TurtleBot is sij = (x, y, θ),
where (x, y) ∈ W is its location in the workspace and θ ∈
{East(E), North(N), West(W), South(S)} is its orientation
at that location. The set of motion primitives is given by M =
{Halt(H), TurnRight(TR), TurnLeft(TL), MoveNext(MN)},
where TR turns the TurtleBot 90◦ clockwise, TL turns the
TurtleBot 90◦ counterclockwise, and MN moves the TurtleBot
to the next cell pointed by its orientation θ.

B. Problem Definition

We now formally define the CPP problem below.
Problem 1 (Complete Coverage Path Planning): Given

an unknown workspace W , start states S of R robots, and
their motion primitives M , find paths Π of equal-length Λ
for the robots such that the following two conditions hold:

Cond. i: Each path πi must satisfy the following:
1) ∀j ∈ [Λ]0 L(sij) ∈ Wfree, [Avoid obstacles]
2) ∀j ∈ [Λ]0 ∀k ∈ [R] \ {i}

L(sij) ̸= L(skj ), [Avert same cell collisions]
3) ∀j ∈ [Λ] ∀k ∈ [R] \ {i}

¬((L(sij−1) = L(skj )) ∧ (L(sij) = L(skj−1))).
BLANK [Avert head-on collisions]

Cond. ii: Each obstacle-free cell must get visited by at
least one robot, i.e.,

⋃
i∈[R]

⋃
j∈[Λ]0

{L(sij)} = Wfree.

III. ON-DEMAND CPP FRAMEWORK

This section presents the proposed centralized horizon-
based online multi-robot on-demand CPP approach for com-
plete coverage of an unknown workspace whose size and
boundary are only known to the CP and the mobile robots.

Due to the limited range of the fitted rangefinders, each
robot gets a partial view of the unknown workspace, called
the local view. Initially, all the robots share their initial
local views with the CP by sending requests for paths. The
CP then fuses these local views to get the global view
of the workspace. Based on the global view, it attempts
to generate collision-free paths for the robots, possibly of
different lengths. The robots with non-zero-length paths are
said to be active, while the rest are inactive. Next, the CP
determines the horizon length as the minimum path length
of the active robots. Subsequently, it makes the paths of the
active robots of length equal to that horizon length. If any
active robot’s path length exceeds the horizon length, the CP
stores the remaining part for future horizons. Finally, the CP
provides these equal-length paths to respective active robots
by sending responses. As the CP has failed to find paths
for the inactive robots in the current horizon, it considers
them again in the next horizon. However, the active robots
follow their received paths synchronously and update their
local views accordingly. Upon finishing the execution of their
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Fig. 1: Overview of on-demand CPP

current paths, they share their updated local views with the
CP again. In the next horizon, after updating the global view,
the CP attempts to generate paths for the previous horizon’s
inactive robots and active robots who have completed follow-
ing their last planned paths. In other words, the CP generates
paths for only those robots with no remaining path, called the
participants. Note that the robots with remaining paths com-
puted in the previous horizon become the non-participants
(inherently active) in the current horizon. Moreover, the CP
does not alter the non-participants’ remaining paths while
generating the participants’ paths in the current horizon.

Example 2: In Figure 1, we show a schematic diagram of
the on-demand CPP approach for three robots in an arbitrary
workspace. In horizon 1, the CP finds paths of lengths 0, 2,
and 3 for the participants r1, r2, and r3, respectively. Observe
that only r2 and r3 are active. As the horizon length turns out
to be 2, the CP stores the remaining part of r3’s path. Now,
r2 and r3 follow their equal-length paths while r1 waits. In
horizon 2, however, the CP finds paths only for r1 and r2

(notice the new colors) as non-participant r3 already has its
remaining path (notice the same color) found in horizon 1.

A. Data structures at CP

Before delving deep into the processes that run at each
robot ri (Algorithm 1) and the CP (Algorithm 2), we define
the data structures that the CP uses for computation.

Let Σrem denote the set {σi
rem | i ∈ [R]} of the remaining

paths of all the robots for the next horizon, where σi
rem

denotes the remaining path for ri. Initially, none of the
robots has any remaining path, i.e., σi

rem is NULL for each
ri. We denote the set of indices of the robots participating
in the current horizon by Ipar ⊆ [R] and the number of
requests received in the current horizon by Nreq ∈ [R]0.
Also, Nact ∈ [R]0 denotes the number of active robots in the
current horizon. By Iinactpar , we denote the set of indices of the
inactive robots of the previous horizon, and by Sinact, their
start states. So, the CP must incorporate the robots Iinactpar

into the planning of the current horizon. Finally, W̃g denotes
the goals at which the remaining paths end. So, W̃g remains
reserved for the corresponding robots, and the CP cannot
assign W̃g to any other robot hereafter.

B. Overall On-Demand Coverage Path Planning

In this section, we present the overall on-demand CPP
approach in detail. First, we explain Algorithm 1, which
runs at the robots’ end. Each robot ri initializes its local
view W i = ⟨W i

u,W
i
o,W

i
g,W

i
c⟩ (line 1), where W i

u,W
i
o,W

i
g,

Algorithm 1: Robot(i, si0, X, Y )

1 W i ← init localview(si0, X, Y )
2 Mreq[id, state, view]← [i, si0,W

i] // Create Mreq
3 while true do
4 send localview(Mreq)
5 σi ← receive path(Mres)
6 W i ← follow path(σi)
7 Mreq[state, view]← [si|σi|,W

i] // Update Mreq
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Fig. 2: Incremental updation of the global view W

and W i
c are the set of unexplored, obstacle, goal, and

covered cells, respectively, due to the partial visibility of
the workspace. Subsequently, ri creates a request message
Mreq[id, state, view] (line 2) and sends that to the CP (line
4) to inform about its local view. Then, ri waits for a
response message Mres[path] (line 5) from the CP. Upon
receiving, ri extracts its path into σi and starts to follow
it (line 6). While following, ri explores newly visible cells
and accordingly updates W i. Finally, once it reaches the last
state si|σi| of σi, it updates its Mreq (line 7) to inform the
CP about its updated W i. The same communication cycle
continues between ri and the CP in a while loop (lines 3-7).
Here, we assume that the communication medium is reliable
and each communication takes negligible time.

We now describe Algorithm 2 in detail, which runs at
the CP’s end. After initializing the required data structures
(lines 1-4), the CP starts a service (lines 5-18) to receive
requests from the robots in a mutually exclusive manner.
Upon receiving a Mreq from ri (line 6), the CP checks
whether ri has any remaining path σi

rem or not (line 7). If
ri has, it does not participate in the planning of the current
horizon. Otherwise (lines 7-9), ri participates, and so the
CP adds ri’s ID {i} into Ipar, and current state into S. In
either case, the CP updates the global view of the workspace
W = ⟨Wu,Wo,Wg,Wc⟩ incrementally (line 10).

In update globalview (lines 19-32), first, the CP
extracts the local view W i of ri (line 20). Then, it marks all
the cells visited by ri as covered in the global view W (lines
21-23). Next, the CP marks any unexplored cell in W as a
goal if ri classifies that cell as a goal (lines 24-26). Similarly,
the CP marks any unexplored cell in W as an obstacle if ri

classifies that cell as an obstacle (lines 28-30). As ri visits
some previously found goals, making them covered, the CP
filters out those covered cells from Wg (line 27). Also, as
a robot cannot distinguish between an obstacle and another
robot using the fitted rangefinders, the CP filters out those
covered cells from Wo that previously posed as obstacles
(line 31). Finally, the CP marks the remaining cells in W as
unexplored (line 32).

Example 3: In Figure 2, we show an example, where two
robots, namely r1 and r2 with initial states (2, 1, W) and



Algorithm 2: OnDemCPP(R,X, Y )

1 Σrem ← {NULL | i ∈ [R]} // Init.

2 Ipar ← ∅, S ← ∅, Iinact
par ← ∅, Sinact ← ∅, W ← ∅, W̃g ← ∅,

Π← ∅
3 Nreq ← 0 // Number of requests
4 Nact ← R // Number of active robots

5 Service receive localview(Mreq):
6 i← Mreq.id // Robot ID

7 if σi
rem = NULL then

8 Ipar ← Ipar ∪ {i} // ri is a participant
9 S ← S ∪ {Mreq.state}

10 update globalview(Mreq.view)
11 Nreq ← Nreq + 1
12 if (Nreq = Nact) then
13 Ipar ← Ipar ∪ Iinact

par // Formerly inactive

14 S ← S ∪ Sinact

15 Σ← OnDemCPP Hor () // Equal-length paths
16 send paths to active robots (Σ)
17 Ipar ← ∅, S ← ∅ // Reinit.
18 Nreq ← 0

19 Function update globalview(Mreq.view):
20 W i ← Mreq.view // Local view of ri

21 for (x, y) ∈W i
c do

22 if (x, y) /∈Wc then
23 Wc ←Wc ∪ {(x, y)} // Covered

24 for (x, y) ∈W i
g do

25 if (x, y) ∈Wu then
26 Wg ←Wg ∪ {(x, y)} // Goal
27 Wg ←Wg \Wc

28 for (x, y) ∈W i
o do

29 if (x, y) ∈Wu then
30 Wo ←Wo ∪ {(x, y)} // Obstacle
31 Wo ←Wo \Wc

32 Wu ← ([X]× [Y ]) \ (Wc ∪Wg ∪Wo) // Unexplored

33 Function send paths to active robots(Σ):
34 parallel for i ∈ [R] \ Iinact

par do
35 Mres[path]← σi // Create Mres
36 send path (Mres, i)

37 Function OnDemCPP Hor():
38 Σ′ ← ∅ // Participants’ collision-free paths

39 if (Wg \ W̃g) ̸= ∅ then
40 Σ′ ← CPPForPar(W, W̃g, Ipar, S,M,R,Σrem)
41 else if Ipar ̸= [R] then
42 for i ∈ Ipar do
43 σ′i ← si0
44 Σ′ ← Σ′ ∪ {σ′i}
45 else
46 exit () // Coverage Complete !!!
47 Σ′

all ← combine paths(Ipar,Σ
′, R,Σrem)

48 λ← determine horizon length(Σ′
all)

49 Σ← get equal length paths (Σ′
all, λ)

50 return Σ

51 Function get equal length paths(Σ′
all, λ):

52 Σ← ∅, Σrem ← ∅, W̃g ← ∅, Iinact
par ← ∅, Sinact ← ∅

53 Nact ← 0 // Reinit.
54 for i ∈ [R] do
55 if |σ′i

all| > 0 then
56 Nact ← Nact + 1 // ri is active

57 ⟨σi, σi
rem⟩ ← split path(σ′i

all, λ)
58 Σ← Σ ∪ {σi}
59 if |σi

rem| > 0 then
60 W̃g ← W̃g ∪ {L(si|σ′i

all
|)} // Reserve

61 else
62 σi

rem ← NULL
63 πi ← πi : σi // Concat.
64 else
65 Iinact

par ← Iinact
par ∪ {i} // ri is inactive

66 Sinact ← Sinact ∪ {si0}
67 σi

rem ← NULL
68 πi ← πi : dummy path(si0, λ) // Concat.

69 Σrem ← Σrem ∪ {σi
rem}

70 return Σ

(3, 1, N), respectively, get deployed in a 3 × 3 workspace.
Notice that r2 appears as an obstacle to r1 in its local
view W 1. Likewise, r1 appears as an obstacle to r2 in its
local view W 2. Without loss of generality, we assume the
CP receives requests from r1 first and then from r2 and
incrementally updates the global view W accordingly.

Once the CP receives all the requests from the active
robots of the previous horizon (lines 11-12), it makes the
inactive robots of the previous horizon Iinactpar participants
(lines 13-14). Then, it invokes OnDemCPP Hor (line 15),
which does the path planning for the current horizon (we
describe in Section III-C). OnDemCPP Hor updates Iinactpar ,
which now contains the inactive robots of the current hori-
zon, and returns the equal-length paths Σ for the active robots
[R]\Iinactpar of the current horizon. So, the CP simultaneously
sends paths to those active robots through response messages
Mres (lines 16 and 33-36). Finally, it reinitializes some data
structures for the next horizon (lines 17-18).

C. Coverage Path Planning in the Current Horizon

Here, we describe the rest of Algorithm 2. Recall that the
CP has already assigned the goals W̃g to the non-participants
in some past horizons. In OnDemCPP Hor (lines 37-50),
first, the CP checks whether there are unassigned goals, i.e.,
Wg \ W̃g left in the workspace (line 39). If so, it attempts
to generate the collision-free paths Σ′ = {σ′i | i ∈ Ipar} for
the participants Ipar to visit some unassigned goals while
keeping the remaining paths Σrem of the non-participants
[R] \ Ipar (hereafter denoted by Ipar) intact (line 40).
We defer the description of CPPForPar to Section III-D.
Otherwise, the CP cannot plan for the participants. Thereby,
it skips replanning the participants in the current horizon.
Still, if there are non-participants (line 41), they can proceed
toward their assigned goals in the current horizon while the
participants remain inactive. To signify this, the CP assigns
the current states of the participants to their paths Σ′ (lines
42-44). Note that when both the criteria, viz all the robots are
participants, and there are no unassigned goals get fulfilled
(lines 45-46), it means complete coverage (established in
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Theorem 1 in Section IV). Next, the CP combines Σ′ with
Σrem into Σ′

all = {σ′i
all|i ∈ [R]}, where

σ′i
all =

{
σ′i, if i ∈ Ipar,

σi
rem, otherwise.

Thus, σ′i
all contains the collision-free path σ′i if ri is a

participant, otherwise contains the remaining path σi
rem of

the non-participant ri. Notice that Σ′
all contains the collision-

free paths for all the robots (line 47). A robot ri is said to
be active in the current horizon if its path length is non-zero,
i.e., |σ′i

all| > 0. Otherwise, ri is said to be inactive. In the
penultimate step, the CP determines the length of the current
horizon (line 48) as the minimum path length of the active
robots, i.e., λ = mini∈[R]{|σ′i

all| > 0}. Finally, it returns λ-
length paths Σ only for the active robots (lines 49-50). This
way, the CP ensures that at least one active robot (participant
or non-participant) reaches its goal in the current horizon.

In get equal length paths (lines 51-70), after re-
initialization of some of the data structures (lines 52-53),
the CP examines the paths Σ′

all in a for loop (lines 54-69)
to determine which robots are active (lines 55-63) and which
are not (lines 64-68). If ri is active, first, the CP increments
Nact by 1 (line 56). Then, the CP splits its path σ′i

all into two
parts σi and σi

rem of lengths λ and |σ′i
all| − λ, respectively

(line 57). Active ri traverses the former part σi, containing
si0 . . . s

i
λ, in the current horizon (line 58) and the later part (if

any), containing siλ . . . s
i
|σ′i

all|
, in the future horizons (line 69).

If it has the remaining path σi
rem, its goal location L(si|σ′i

all|
)

gets added to W̃g (lines 59-60), signifying that this goal
remains reserved for ri. Otherwise, σi

rem is set to NULL
(lines 61-62 and 69), indicating the absence of the remaining
path for ri, thereby enabling ri to become a participant in
the next horizon. In contrast, if ri is inactive (lines 64-68),
the CP adds ri’s ID {i} and its start state si0 into Iinactpar and

Sinact, respectively (lines 65-66), as it would reattempt to
find ri’s path in the next horizon. The CP also sets σi

rem to
NULL (lines 67 and 69). Note that the CP also generates the
full path for the active robots (line 63) and the inactive robots
(line 68), where dummy paths generates a path of length λ
containing only the current state. The CP sends no path to
an inactive robot in the current horizon (lines 34-36). So, the
active robots of the current horizon send requests in the next
horizon (lines 56 and 11-12).

Example 4: In Figure 3, we show an example (contin-
uation of Example 3) where the CP skips planning for a
participant due to the unavailability of an unassigned goal.
In horizon 1, both the robots r1 and r2 participate, and the
CP finds their collision-free paths σ′1 and σ′2 of lengths 2
and 1, respectively. Note that both robots are active. As the
horizon length (λ) is found to be 1, the CP reserves r1’s
goal into W̃g , and sets its remaining path σ1

rem accordingly.
Each robot follows its 1-length path and sends the updated
local view to the CP. In horizon 2, though the CP receives 2
requests, only r2 participates. As no unassigned goal exists
(i.e., Wg \ W̃g = ∅), the CP fails to find any path for r2. So,
r2 becomes inactive, and the CP adds its ID into Iinactpar and
state into Sinact as it would reattempt in horizon 3. Now,
only r1 (non-participant) is active. As λ is found to be 1, r1

visits its reserved goal, which the CP removes from W̃g and
resets σ1

rem. Notice that in horizon 3, the CP receives only
1 request (from r1 only), but both the robots participate.

D. Coverage Path Planning for the Participants
In detail, we now present CPPForPar (Algorithm 3),

which in every invocation, generates the collision-free paths
only for the participants without altering the remaining paths
for the non-participants. It is a modified version of Algo-
rithms 2 and 3 of [44] combined, which uses the idea of Goal
Assignment-based Prioritized Planning to generate collision-
free paths for all the robots. Let R∗ and G∗ be the number



Algorithm 3: CPPForPar(W, W̃g, Ipar, S,M,R,Σrem)

Result: Collision-free paths for the participants (Σ′)

1 ⟨Γ, Φ⟩ ← COPForPar(W, W̃g, Ipar, S,M)
2 Σ′ ← CFPForPar(Γ,Φ, Ipar, R,Σrem)

Algorithm 4: COPForPar(W, W̃g, Ipar, S,M)

Result: Opt. assignment (Γ) and corresponding paths (Φ)

1 ⟨∆, L∆⟩ ← compute optimal costs(W, W̃g, Ipar, S,M)
2 Γ← compute optimal assignments(∆, Ipar)
3 Φ← get optimal paths(L∆,Γ, Ipar)

of participants and unassigned goals in the current horizon.
So, R∗ = |Ipar| = |S| and G∗ = |Wg \W̃g|. The problem of
optimally visiting G∗ unassigned goals with R∗ participants
is a Multiple Traveling Salesman Problem [56], which is NP-
hard. Hence, it is computationally costly when R∗, G∗, or
both are large. So, the CP generates the participants’ paths
in two steps without guaranteeing optimality. First, it assigns
the participants to the unassigned goals in a cost-optimal
way and finds their optimal paths (line 1 and Algorithm
4). Then, if needed, it makes those optimal paths collision-
free by adjusting them using a greedy method (line 2 and
Algorithm 5), thereby may lose optimality.

1) Sum-of-Costs-optimal goal assignment and corre-
sponding paths: First, we construct a weighted state transi-
tion graph G∆. Its vertices G∆.V are the all possible states
of the participants s.t. L(s) ∈ Wg∪Wc, ∀s ∈ G∆.V . And its
edges G∆.E are the all possible transitions among the states,
i.e., e(s′, s′′) ∈ G∆.E iff s′, s′′ ∈ G∆.V and ∃µ ∈ M s.t.
s′

µ−→ s′′. Moreover, the weight of an edge e is cost(µ).
Now, for each pair of participant ri (i.e., i ∈ Ipar) and
unassigned goal γj ∈ Wg \ W̃g (i.e., j ∈ [G∗]), we run
the A* algorithm [57], [58] to compute the optimal path
that originates from the start state si0 and terminates at the
state s s.t. L(s) = γj . We store the cost of the path in
∆[i][j] ∈ R, and the corresponding path in L∆[i][j] (line 1 of
Algorithm 4). Next, we apply the Hungarian algorithm [59],
[60] on ∆ to find the cost-optimal assignment Γ : Ipar →
[G∗] ∪ {NULL} (line 2), signifying which participant would
go to which unassigned goal. Notice that some participants
would get assigned NULL when R∗ > G∗. We call such
participants inactive and the rest of the participants active.
Finally, for each participant ri, its optimal path φi ∈ Φ is set
to L∆[i][j] if Γ[i] = j, otherwise (i.e., when participant ri is
inactive), set to its start state si0 (line 3). Thus, we get the set
of optimal paths for the participants Φ = {φi | i ∈ Ipar}.
Keep in mind that the non-participants Ipar are inherently
active as their remaining paths σk

rem ̸= NULL,∀k ∈ Ipar.
Example 5: We show an example of a cost-optimal goal

assignment and corresponding optimal paths in Figure 4
involving two participants r1 and r2 in a 4× 4 workspace.

2) Prioritization: Prioritization is an inter-robot collision-
avoidance mechanism, which assigns priorities to the robots
either statically (e.g., [61], [62]) or dynamically (e.g., [63],
[64]) so that a CP can subsequently find their collision-free
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Algorithm 5: CFPForPar(Γ,Φ, Ipar, R,Σrem)

Result: Collision-free paths for the participants (Σ′)
1 while true do
2 ⟨Γ,Ω⟩ ← get feasible paths(Γ,Φ, Ipar)
3 Θr ← compute relative precedences(Ω, Ipar)
4 Θa ← compute absolute precedence(Θr, Ipar)
5 if Θa is valid then
6 Γ′ = Γ // Itemwise copy
7 ⟨Γ,Υ⟩ ← compute sto(Γ,Ω,Θa, Ipar, R,Σrem)
8 if Γ′ = Γ then break
9 else

10 Γ← break precedence cycles(Γ,Θr, Ipar)
11 Φ← adjust paths(Γ,Ω, Ipar)
12 Σ′ ← get collision free paths(Ω,Υ, Ipar)

paths in order of their priority. In CFPForPar (Algorithm
5), prioritization of the participants Ipar takes place (in the
while loop in lines 1-11 except the if block in lines 5-8)
based on the movement constraints among their paths in Φ.
But, prioritization surely fails if there is any infeasible path
in Φ. So, detection and correction of the infeasible paths are
necessary (line 2). There are two types of infeasible paths,
namely crossover paths and nested paths. Optimal paths φi

and φj , where φi, φj ∈ Φ, of distinct participants ri and
rj , where i, j ∈ Ipar, are said to be -

1) a crossover path pair if one of the participants is
inactive, which sits on the path of the other active
participant or their start locations are on each other’s
path, and

2) a nested path pair if the active participant ri’s start
and goal locations are on φj of the active participant
rj , or vice versa.

Example 6: We show four simple examples of infeasible
paths involving two participants ri and rj in Figure 5.

The CP can modify the paths Φ of the participants, but
not the remaining paths Σrem of the non-participants. So,
first, we mark those active participants as killed, which form
infeasible path pairs with an inactive, active, or already killed
participant. In the revival step, we initially mark all the
inactive and the killed participants as unrevived. Then, each
path φi of the killed participants is processed in reverse until
an unrevived participant rj gets found. If rj can reach ri’s
goal by following ωj ∈ Ω (note that ωj gets generated from
φi) without forming any infeasible path pair, then rj gets
revived. Thus, a greedy procedure (a modified version of
Algorithm 4 in [44], which works only for R participants)
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generates the feasible paths Ω = {ωi | i ∈ Ipar} for the
participants through goal reassignments.

Example 7: As a continuation of Example 6, in Figure 5,
only ri is an active participant in (a) while both ri and rj are
active participants in the rest (b-d). Due to infeasible paths,
only ri gets killed in (a) while both ri and rj get killed in
the rest (b-d). Though only rj gets revived in (a, c-d), both
ri and rj get revived in (b).

Next, for each pair of distinct participants ri and rj , we
compute the relative precedence Θr[i][j] ∈ B (line 3) based
on their paths ωi and ωj , respectively, where ωi, ωj ∈ Ω.
Θr[i][j] is set to 1 if ri must move before rj , which is
necessary when either the start location of ri is on ωj , or
the goal location of rj is on ωi, 0 otherwise. Similarly, we
compute Θr[j][i]. Finally, we apply the topological sorting
on Θr to get the absolute precedence Θa (line 4). But, it fails
if there is any cycle of relative precedence (see Example 8).
In that case, we use [65], [66] to get a Directed Acyclic
Graph (DAG) out of that Directed Cyclic Graph (DCG) by
inactivating some active participants in Γ and adjusting their
feasible paths Ω accordingly (lines 9-11), which in turn may
form new crossover paths. Therefore, we reexamine the paths
in another iteration of the while loop (line 1).

Example 8: In Figure 6, we show an example of remov-
ing a precedence cycle involving four participants.

Example 9: As a continuation of Example 5, the feasible
paths ω1 and ω2 for the participants r1 and r2 are the same
as φ1 and φ2, respectively. Also, Θr[2][1] = 1 because L(s20)
is on ω1. Therefore, robot ID 2 comes before 1 in Θa.

3) Time parameterization: Time parameterization ensures
inter-robot collision avoidance through decoupled planning.
Recall that the CP does not change the remaining paths
Σrem for the non-participants, implicitly meaning the non-
participants have higher priorities than the participants. So,
for each participant ri in order of Θa, we incrementally com-
pute its start time offset Υ[i] ∈ N0 (line 7). It is the amount
of time ri must wait at its start state to avoid collisions with
its higher priority robots (some other participants and the
non-participants). But, a collision between a participant ri

and non-participant rj may become inevitable (see Example
11). In that case, the CP inactivates the participant in Γ and
reexamines updated paths Φ (line 11) for the presence of
new crossover paths. In the worst case, all the participants
may get inactivated due to inevitable collisions with the non-
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participants. Otherwise, ri’s collision-free path σ′i ∈ Σ′

gets generated (line 12) by inserting its start state si0 at the
beginning of ωi for Υ[i] times.

Example 10: As a continuation of Example 9, start time
offsets for the participants r2 is Υ[2] = 0, and r1 is Υ[1] = 2
because any value smaller than 2 would cause a collision.
Therefore, the collision-free path lengths for the participants
r1 and r2 are |σ′1| = 4 and |σ′2| = 3, respectively. Observe
that the horizon length λ = 3.

Example 11: In Figure 7, we show an extreme case of
replanning where the CP inactivates a participant to avoid
collision with a non-participant. Notice that both the robots
r1 and r2 have traversed their full paths of length five till
horizon 4. In horizon 5, both participate because none has
any remaining path. The CP assigns the unassigned goal ids
2 and 1 to r1 and r2, respectively, and subsequently finds
their collision-free paths Σ′. As the horizon length (λ) is
found to be 2, the CP reserves the goal (3, 2) for r1 in W̃g

and sets its remaining path σ1
rem accordingly. Therefore, only

r2 participates in horizon 6. The CP finds r2’s optimal path
φ2, leading to the only unassigned goal (4, 2). Though the
prioritization succeeds trivially, the offsetting fails because
the non-participant r1 would reach its goal (3, 2) before the
participant r2 gets past that goal. So, the CP inactivates r2.
In this horizon, only r1 remains active with λ = 1. Observe
that both will participate in the next horizon.

IV. THEORETICAL ANALYSIS

First, we formally prove that OnDemCPP covers W com-
pletely and then analyze its time complexity.

A. Proof of Complete Coverage

Lemma 1 (Lemma 4.3 of [44]): GAMRCPP Horizon
ensures that at least one goal gets visited in each horizon.

Lemma 2: CPPForPar ≡ GAMRCPP Horizon if
R∗ = R.

Proof: When all the robots are participants, i.e., R∗ =
R, there are no non-participants, i.e., Ipar = ∅. It implies
that in Σrem, σi

rem = NULL,∀i ∈ [R], thereby W̃g = ∅.
Hence, CPPForPar ≡ GAMRCPP Horizon if R∗ = R.

Lemma 3: OnDemCPP Hor ensures that at least one
robot visits its goal in each horizon.

Proof: The set of all collision-free paths Σ′
all (line 47

of Algorithm 2) consists of two kinds of paths, namely the



paths Σ′ of the participants Ipar and the remaining paths
Σrem of the non-participants Ipar. Now, consider two cases:
(i) R∗ = R and (ii) R∗ < R. In the case of (i), W̃g = ∅.
Further, by Lemma 2 and Lemma 1, when Wg ̸= ∅ (lines
39-40), there is at least one active robot in Σ′, and so in Σ′

all.
In the case of (ii), however, W̃g ̸= ∅ because there are R−
R∗ non-participants. Thus, Σ′

all contains at least one active
robot because the non-participants are active. Moreover, the
horizon length λ (line 48) ensures that at least one robot
(participant or non-participant) remains active in the λ-length
paths Σ (line 49) to visit its goal.

Theorem 1: OnDemCPP eventually terminates, and when
it does, it ensures complete coverage of W .

Proof: By Lemma 3, in a horizon, at least one active
robot visits its goal, thereby exploring Wu (as Wfree is
strongly connected) and adding new goals (if any) into Wg .
If an active participant visits its goal, the CP marks that goal
as covered. So, in the next horizon, Wg decreases, and Wc

increases. But, if a non-participant (inherently active) visits
its goal, the CP removes that reserved goal from W̃g in the
next horizon, thereby decreasing W̃g . But, it may not increase
Wc as other robots might have already passed through that
goal in the past horizons, already covering it in Wc. These
two types of active robots and the inactive participants Iinactpar

participate in the next horizon (line 13 of Algorithm 2).
However, the rest of the active robots who cannot visit their
goals in the current horizon become non-participants in the
next horizon as the CP reserves their goals into W̃g . Each
reserved goal in W̃g gets visited eventually in some horizon
(as the CP does not alter the corresponding robot’s remaining
path), making the corresponding robot participant in the
next horizon. Therefore, eventually, all the robots become
participants (i.e., Ipar = [R]), falsifying the if condition (line
41), and hence W̃g = ∅. Now, if Wg = ∅ (line 39), it entails
Wc = Wfree (lines 45-46).

Note that OnDemCPP can also ensure complete coverage
of a W , where Wfree is not strongly connected, provided
we deploy at least one robot in each component.

B. Time Complexity Analysis
Lemma 4: CFPForPar takes O(R3).

Proof: The only difference between CFPForPar (Al-
gorithm 5) and GAMRCPP CFP (Algorithm 3 in [44]) is that
compute sto (line 7 of Algorithm 5) gets called just after
the while loop in GAMRCPP CFP. Still, the time complexity
of compute sto and the rest of the body of the while loop
(lines 1-11 of Algorithm 5) remain O(R3) (interested reader
may read Theorem 4.6 of [44]) as R∗ = O(R).

Lemma 5: CPPForPar takes O(|W |3).
Proof: CPPForPar (Algorithm 3) does the task per-

formed by lines 1-4 of GAMRCPP Horizon (Algorithm 2
in [44]). Therefore, CPPForPar takes as much time as
GAMRCPP Horizon, which is O(|W |3) (interested reader
may read Theorem 4.6 of [44]).

Lemma 6: OnDemCPP Hor takes O(|W |3).
Proof: Finding the unassigned goals Wg\W̃g (line 39 of

Algorithm 2) takes O(|W |) as both Wg and W̃g are bounded

by O(|W |). As per Lemma 5, CPPForPar (line 40) takes
O(|W |3). Checking the existence of non-participants (line
41) takes O(R). The generation of the zero-length paths for
the participants (lines 42-44) takes O(R∗). Combining all the
paths into Σ′

all (line 47) and determining the horizon length
λ (line 48) take O(R). Subsequently, generating the λ-length
paths Σ (lines 49 and 51-70) take O(R) as the for loop in
get equal length paths (lines 54-69) takes O(R). So,
OnDemCPP Hor takes O((|W |+ |W |3)+(R+R∗)+3 ·R),
which can be written as O(|W |3) as R = O(|W |).

Theorem 2: OnDemCPP’s time complexity is O(|W |4).
Proof: Each call to update globalview (line 10

of Algorithm 2) takes O(|W |2) as follows: three for loops
(lines 21-23, 24-26, and 28-30) and computing Wg, Wo,
and Wu (lines 27, 31-32) take O(|W |2). In a horizon,
Nreq = O(R) (line 11). So, update globalview total
takes O(R · |W |2), which is O(|W |3). According to Lemma
3, at least one robot visits its goal in each horizon. In the
worst case, in each horizon, only one robot visits its goal
while the rest remain inactive or make progress toward their
goals. As the number of horizons is at most |Wg|, the service
receive localview invokes OnDemCPP Hor (line 15)
at most |Wg| times. So, OnDemCPP takes O(|Wg| · (|W |3+
|W |3)), which is O(|W |4).

V. EVALUATION

A. Implementation and Experimental Setup

We implement Robot (Algorithm 1) and OnDemCPP
(Algorithm 2) in a common ROS [67] package1 and run it
in a computer having Intel® Core™ i7-4770 CPU @ 3.40
GHz and 16 GB of RAM. For experimentation, we consider
eight large 2D grid benchmark workspaces from [68] of
varying size and obstacle density. In each workspace, we
incrementally deploy R ∈ {128, 256, 512} robots and repeat
each experiment 10 times with different initial deployments
of the robots to report their mean in the performance metrics
(standard deviations are available in [69]).

1) Robots for evaluation: We consider both TurtleBot
(introduced before) and Quadcopter in the experimentation.
A Quadcopter’s state sij = (x, y) ∈ W is its loca-
tion in the workspace. Its set of motion primitives M =
{Halt(H), MoveEast(ME), MoveNorth(MN), MoveWest(MW),
MoveSouth(MS)}, where ME, MN, MW, and MS move it to the
immediate east, north, west, and south cell, respectively.

2) Evaluation metrics: We compare OnDemCPP with
GAMRCPP [44] in terms of the mission time (Tm), which is
the sum of the total computation time (Tc) and the total path
execution time (Tp) while ignoring the total communication
time between the CP and the robots. Total computation
time (Tc) is the sum of the computation times spent on
OnDemCPP Hor across all horizons. Total path execution
time (Tp) can be expressed as Tp = Λ × τ , where Λ is the
total horizon length (i.e., the sum of the horizon lengths).
We can also express Tp as the sum of THalt and Tnon−Halt,
where THalt is the duration for which the robots remain

1https://github.com/iitkcpslab/OnDemCPP



TABLE I: Experimental results

Tc (s) Tp (s) Tm (s) Mission

M Workspace R R∗ GAMRCPP OnDemCPP GAMRCPP OnDemCPP GAMRCPP OnDemCPP speed up

Q
ua

dc
op

te
r

W1:
w woundedcoast

578× 642 (34,020)

128 80.4 (62.9 %) ± 3.8 619.5 ± 97.9 362.2 ± 58.4 696.2 ± 55.5 1042.0 ± 149.5 1315.7 ± 148.6 1404.2 ± 167.1 0.9
256 170.7 (66.7 %) ± 5.7 1091.3 ± 255.3 521.7 ± 150.2 416.8 ± 95.0 804.2 ± 250.9 1508.1 ± 345.3 1325.9 ± 383.0 1.1
512 361.5 (70.6 %) ± 9.7 1815.2 ± 359.4 569.1 ± 168.6 231.8 ± 33.0 557.2 ± 138.9 2047.0 ± 388.0 1126.3 ± 255.4 1.8

W2:
Paris 1 256

256× 256 (47,240)

128 81.3 (63.6 %) ± 2.6 513.5 ± 38.4 270.4 ± 37.8 815.2 ± 77.4 962.6 ± 100.8 1328.7 ± 109.8 1233.0 ± 118.8 1.1
256 157.2 (61.4 %) ± 3.7 1461.9 ± 164.0 537.2 ± 79.6 508.0 ± 22.0 656.2 ± 49.4 1969.9 ± 172.2 1193.4 ± 110.8 1.7
512 335.6 (65.6 %) ± 7.0 3338.8 ± 321.9 894.0 ± 113.6 301.1 ± 19.2 455.7 ± 50.1 3639.9 ± 333.6 1349.7 ± 117.1 2.7

W3:
Berlin 1 256

256× 256 (47,540)

128 83.2 (65.1 %) ± 2.5 489.3 ± 36.5 238.4 ± 17.2 752.7 ± 32.6 898.2 ± 63.9 1242.0 ± 67.4 1136.6 ± 65.0 1.1
256 167.4 (65.4 %) ± 12.1 1323.9 ± 154.2 515.2 ± 69.8 564.6 ± 132.5 669.6 ± 48.9 1888.5 ± 234.1 1184.8 ± 103.3 1.6
512 365.2 (71.3 %) ± 34.5 3196.5 ± 329.4 856.0 ± 115.1 434.5 ± 209.9 524.9 ± 140.0 3631.0 ± 434.1 1380.9 ± 238.9 2.6

W4:
Boston 0 256

256× 256 (47,768)

128 79.6 (62.2 %) ± 4.5 509.5 ± 36.4 250.6 ± 30.1 773.6 ± 61.7 928.0 ± 100.6 1283.1 ± 94.0 1178.6 ± 116.3 1.1
256 157.8 (61.7 %) ± 9.3 1220.1 ± 215.0 455.7 ± 61.2 460.3 ± 44.8 625.9 ± 46.9 1680.4 ± 256.8 1081.6 ± 92.4 1.6
512 345.3 (67.5 %) ± 7.7 2454.7 ± 525.7 628.7 ± 119.3 252.9 ± 23.5 428.7 ± 69.2 2707.6 ± 546.1 1057.4 ± 182.2 2.6

Tu
rt

le
B

ot

W5:
maze-128-128-2

128× 128 (10,858)

128 75.5 (59.0 %) ± 7.4 90.8 ± 19.3 49.5 ± 19.8 451.9 ± 71.7 791.5 ± 202.1 542.7 ± 88.6 841.0 ± 217.7 0.6
256 174.7 (68.3 %) ± 7.5 193.6 ± 27.1 68.1 ± 16.9 218.6 ± 35.6 417.6 ± 97.4 412.2 ± 58.7 485.7 ± 113.7 0.8
512 378.4 (73.9 %) ± 6.8 411.1 ± 64.7 124.1 ± 23.9 125.9 ± 24.8 224.3 ± 32.1 537.0 ± 71.1 348.4 ± 54.1 1.5

W6:
den520d

257× 256 (28,178)

128 71.9 (56.2 %) ± 3.2 341.8 ± 50.5 147.6 ± 17.7 556.4 ± 71.4 773.1 ± 106.9 898.2 ± 121.2 920.7 ± 117.7 1.0
256 153.8 (60.1 %) ± 3.7 685.4 ± 121.5 253.9 ± 63.1 324.2 ± 56.5 506.4 ± 57.4 1009.6 ± 175.2 760.3 ± 103.4 1.3
512 331.1 (64.7 %) ± 6.6 1292.4 ± 304.0 316.0 ± 29.2 188.7 ± 9.2 398.6 ± 37.9 1481.1 ± 301.9 714.6 ± 51.7 2.1

W7:
warehouse-20-40-10-2-2
164× 340 (38,756)

128 81.2 (63.5 %) ± 2.6 467.1 ± 40.0 211.3 ± 22.2 595.6 ± 43.1 707.6 ± 82.5 1062.7 ± 75.2 918.9 ± 98.3 1.2
256 149.3 (58.3 %) ± 8.1 1009.5 ± 165.2 336.0 ± 31.2 361.6 ± 25.2 502.5 ± 78.2 1371.1 ± 185.3 838.5 ± 100.4 1.6
512 335.5 (65.5 %) ± 7.2 1646.2 ± 343.7 394.7 ± 36.6 208.9 ± 18.0 375.2 ± 29.5 1855.1 ± 357.5 769.9 ± 54.7 2.4

W8:
brc202d

481× 530 (43,151)

128 65.1 (50.9 %) ± 3.5 1019.0 ± 160.9 395.2 ± 70.7 915.9 ± 116.4 1444.9 ± 232.0 1934.9 ± 274.3 1840.1 ± 273.6 1.1
256 142.0 (55.5 %) ± 8.7 1880.7 ± 275.0 697.7 ± 152.3 512.5 ± 60.8 972.5 ± 147.1 2393.2 ± 326.5 1670.2 ± 230.3 1.4
512 309.6 (60.5 %) ± 9.5 3026.8 ± 326.8 705.6 ± 112.5 302.6 ± 21.6 780.9 ± 98.5 3329.4 ± 322.3 1486.5 ± 163.1 2.2

stationary while following respective paths, i.e., when they
execute Halt(H) moves, and Tnon−Halt is the duration for
which the robots move, i.e., when they do not.

In our evaluation, we take the path cost as the number
of moves the corresponding robot performs, where each
move takes τ = 1s. This is realistic because the maximum
translational velocity of a TurtleBot2 is 0.65m/s [55], and
that of a Quadcopter is ∼ 16m/s [70]. Thus, to ensure
τ = 1s, we can keep the grid cell size for a TurtleBot2 up
to 0.65m, which is sufficient considering its size. Similarly,
a grid cell size of up to 16m is sufficient for most practical
applications involving Quadcopters. We demonstrate this in
the real experiments described in Section V-C.

B. Results and Analysis

We show the experimental results in Table I, where we
list workspaces in increasing order of their obstacle-free cell
count |Wfree| for each type of robot. In the table, R∗ denotes
the average number of participants over all horizons.

1) Effects of the non-participants on the participants:
Recall that the CP keeps the goals W̃g reserved for the
non-participants Ipar in a horizon. So, the CP cannot assign
these reserved goals to the participants Ipar in COPForPar
(Algorithm 4) even if some participants can visit some
reserved goals in a more cost-optimal manner than their cor-
responding non-participants. Consequently, the CP assigns
the participants to the unreserved goals Wg \ W̃g , which
could be far away. Thus, the participants’ optimal paths Φ,
consisting of non-Halt moves, become marginally longer in
OnDemCPP as Tnon−Halt justifies in Figure 8.

Also, recall that the CP does not change the non-
participants’ remaining paths Σrem in a horizon. So, it makes
the participants’ optimal paths Φ inter-robot collision-free in
CFPForPar (Algorithm 5) by either prefixing the optimal
paths with offsets (i.e., Halt moves) or inactivating some
active participants in Φ. Firstly, THalt in Figure 8 justifies
that the CP prefixes the participants’ optimal paths with a

substantial number of Halt moves to generate their collision-
free paths Σ′.

Lastly, in Figure 9, we show the number of active robots
(Nact) per horizon to measure the extent of inactivation of
the active participants in Φ during prioritized planning in a
horizon. Unlike GAMRCPP, where all R robots participate
in a horizon, only R∗ robots participate in OnDemCPP. So,
during prioritized planning, the CP may inactivate some ac-
tive participants in Φ while finding their collision-free paths
Σ′ under the added constraint in the form of the remaining
paths of the R−R∗ non-participants. Figure 9 justifies that
the inactivation becomes more severe in OnDemCPP as R
increases because the constraint also gets stronger for a larger
number of non-participants.

2) Comparison of Mission time: The total computation
time Tc increases with the number of robots R because
more robots become participants in a horizon. So, assigning
R∗ participants to G∗ unassigned goals and getting their
collision-free paths Σ′ becomes computationally intensive.
Notice that Tc also increases with the workspace size,
specifically with |Wfree| as the state-space increases. Unlike
GAMRCPP, where all R robots participate in replanning,
OnDemCPP replans with R∗ ≤ R robots. It results in sub-
stantially smaller Tc in OnDemCPP compared to GAMRCPP.

Next, the total horizon length Λ decreases with R as
the deployment of more robots expedites the coverage. But,
it increases with the workspace size since more Wfree

must be covered. During replanning, GAMRCPP finds paths
for R robots without constraint. But, OnDemCPP replans
for R∗ participants while respecting the non-participants’
constraint Σrem. As a result, there is an increase in the
participants’ collision-free path lengths, increasing individual
horizon length λ and so Λ. Thus, GAMRCPP yields better Tp

compared to OnDemCPP.
In summary, OnDemCPP outperforms GAMRCPP in terms

of Tc but underperforms in terms of Tp. As R or the
workspace size increases, OnDemCPP’s gain in terms of Tc
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surpasses its loss in terms of Tp by a noticeable margin. So,
OnDemCPP beats GAMRCPP w.r.t. the mission time Tm.

3) Implication on Energy Consumption: A ground robot
like TurtleBot consumes energy only for Tnon−Halt dura-
tion. Table I shows that Tnon−Halt is 7% − 57% more
for OnDemCPP than for GAMRCPP. Thus, the energy con-
sumption for the ground robots for OnDemCPP is also
proportionately more than that for GAMRCPP.

The situation is quite different for aerial robots like quad-
copters. Once the mission starts, a quadcopter either keeps on
hovering (during Tc and THalt) or makes translational moves
(during Tnon−Halt). Thus, a quadcopter consumes energy
throughout the mission, i.e., during Tm. As OnDemCPP
significantly reduces Tm for hundreds of robots compared
to GAMRCPP, it also helps reduce power consumption in the
quadcopters during a mission.

Given that reducing energy consumption during a mission

is more crucial for aerial robots than for ground robots and
that OnDemCPP significantly reduces Tm for both types
of robots, OnDemCPP establishes itself to be superior to
GAMRCPP for hundreds of robots.

4) Limitation of OnDemCPP: The results obtained from
the maze-128-128-2 workspace for R ∈ {128, 256} show
the limitation of OnDemCPP. In a cluttered workspace with
narrow passageways, the flexibility of GAMRCPP allows it to
find a more efficient Σ′, thereby outmatching OnDemCPP in
instances with a smaller R.

C. Simulations and Real Experiments

For validation, we perform Gazebo[71] simulations in five
2D grid benchmark workspaces from [68] with 10 Quad-
copters and 10 TurtleBots, respectively. We also perform
two real experiments - one indoor with two TurtleBot2s,
each fitted with four HC SR04 Ultrasonic Sound Sensors
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Fig. 10: Workspaces for the real experiments

for obstacle detection and using Vicon[72] for localization,
and one outdoor with three Quadcopters, each fitted with one
Cube Orange autopilot, one Herelink Air Unit for commu-
nication with the remote controller, and one Here3 GPS for
localization. Figure 10 shows the workspaces for these real
experiments. The video containing the real experiments is
available at https://youtu.be/5nhysTTp2Fw.

VI. CONCLUSION

We have proposed a centralized online on-demand CPP
algorithm that uses a goal assignment-based prioritized plan-
ning method at its core. Our CP guarantees complete cover-
age of an unknown workspace with multiple homogeneous
failure-free robots. Experimental results demonstrate its su-
periority over its counterpart by decreasing the mission time
significantly in large workspaces with hundreds of robots. In
the future, we will extend our work to an approach dealing
with simultaneous path planning and plan execution.
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