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Abstract—We present a framework for deploying a multi-robot
system in a dynamic environment where the robots have to react
to external events. The specification for the system is given in a
sub-class of Linear Temporal Logic (LTL), a widely used logical
language for robot motion planning. The LTL specifications
capture how the robots should react to different environmental
events. We provide a framework for managing the robots through
persistent sensing, planning, and monitoring their execution. We
formally prove that, under certain assumptions, our framework
enables the robots to always satisfy the LTL specifications.
Furthermore, we evaluate our technique on two complex use
cases using a multi-robot system involving unmanned aerial
vehicles (UAVs) and unmanned ground vehicles (UGVs) — one
on persistent surveillance of critical infrastructure and the other
on production management in a factory. Experimental results
establish that our technique is scalable and has the potential to
be applicable to diverse applications of multi-robot systems in
challenging dynamic environments.

Index Terms—multi-robot systems, formal specification, LTL,
online planning

I. INTRODUCTION

Multi-robot systems have the potential to find applications
in various domains, such as disaster response, security and
surveillance, object transportation, and mapping, to name a
few. There has been a plethora of research for designing reli-
able multi-robot systems. However, for the multi-robot systems
to be applicable to more complex missions, it is imperative to
develop frameworks that deal with more complex specifica-
tions involving various spatial and temporal constraints.

Recently, temporal logic has been popular in specifying
requirements for multi-robot systems. Given a specification in
temporal logic, several papers address the problem of finding
a plan for the multi-robot system offline [1]–[6]. A significant
limitation of this approach is that the robots cannot cope with
the change in environment and respond to incoming tasks.

To enable a multi-robot system to react to the dynamism
in the environment effectively, a major approach adopted by
many researchers is reactive synthesis [7]–[11]. In reactive
synthesis, the specification for the robots is captured in a
special subclass GR(1) of Linear Temporal Logic. Given a
specification in this restricted class of LTL, the synthesis
algorithm aims to find a reactive controller that enables the
robots to perform appropriate actions in their current state
to respond to environmental events. The reactive synthesis

promises to provide a correct-by-construction high-level con-
troller for a robot to satisfy the task specification, provided the
environment satisfies the predefined assumptions. However,
such synthesis methodology suffers severely from the lack of
scalability in terms of the complexity of the specification, the
size of the workspace, and the number of robots.

We propose an alternative approach to address the problem
of synthesizing plans for the robots in a multi-robot system to
satisfy complex task specifications perpetually by responding
to environmental events. We introduce a restricted subclass of
LTL to capture the requirements for such a system formally.
In this class of LTL, the environmental conditions to which
the robots need to respond are captured as Boolean formulae,
assuming that the system is equipped with sensors that provide
binary inputs. The desired activities of the robots in response
to various environmental events are captured as a general LTL
formula. The specification of this form can capture a wide
range of requirements for reactive multi-robot systems, as will
be evident by case studies conducted in this paper.

We design a system to manage multiple robots and provide
them with correct and optimal plans to respond to vari-
ous environmental events according to the formally specified
requirements. Our system is based on the Sense-Plan-Act
(SPA) paradigm inspired by [12], where the system keeps
track of the current state of the environment using a set of
available sensors. Whenever an environmental change renders
the current plan invalid, the system re-plans in light of the new
information. A major challenge in implementing such a system
with many robots is that the multi-robot planner generally
takes a prohibitively large amount of time to solve the planning
problem for all the robots when some environmental change
appears. We provide a sound scheme for partitioning the
robots into mutually exclusive groups based on the given
specification, which ensures that the plan for a robot in one
partition can be computed independently from any robot in
any other group. This enables the system to solve the planning
problem for each group separately, leading to scalability.

We prove that under certain assumptions on the behavior of
the environment, the proposed system ensures the satisfaction
of the LTL specification by the multi-robot system. We imple-
ment our framework on ROS and evaluate it in two case stud-
ies: persistent surveillance and warehouse management. Both
case studies involve complex specifications and demonstrate



the broad applicability of our method. Through a scalability
experiment, we demonstrate that our method can work for
large workspaces and many robots. We also evaluate our
method through a real experiment with two ground robots and
a quadcopter on a limited version of the persistent surveillance
case study. This experiment establishes the practical feasibility
of our proposed technique.

In summary, we make the following contributions:
• We introduce a restricted subclass of LTL to capture

the specifications for multi-robot systems deployed to
perform specific tasks in a dynamic environment where a
change in the state of the environment leads to new tasks
that need to be completed by the robots.

• We present a framework that, given an LTL specification
of the above-mentioned form, enables a multi-robot sys-
tem to move and perform various tasks so that the LTL
specification is satisfied.

• We provide a ROS [13] implementation of our framework
and apply it to two real-life case studies. Moreover, we
evaluate our method through a real robotic experiment,
establishing its practical feasibility.

II. PROBLEM

A. Workspace, Robots and Environment

1) Workspace: We assume that n robots operate in a 3-D
discrete workspaceW , which we represent as a grid map. The
grid divides the workspace into cube-shaped cells. Each grid
cell is referenced by its (x, y, z) coordinates. We ignore the z
coordinate for the ground robots. Obstacles may occupy some
of the cells in the workspace, and the robots cannot visit such
cells. We denote the set of obstacles using O.

2) Motion Model for Robots: We capture the motion of a
robot i using a set of actions Acti. The robot changes its state
in the workspace by performing the actions from Acti. An
action act ∈ Acti is associated with a cost, which captures
the energy consumption or time delay (based on the need) to
execute it. A robot can move to satisfy a given specification
by executing a sequence of actions in Acti.

Formally, we model the motion of the i-th robot in the
workspace W as a weighted transition system defined as
T i = (Si, si0, E

i,Πi, Li, wi). Here (i) Si is the set of states
denoting obstacle-free cells in W , (ii) si0 ∈ Si is the initial
state of the robot i, (iii) Ei ⊆ Si×Si is the transitions/edges
allowed to be taken by robot i, (si1, s

i
2) ∈ Ei iff si1, s

i
2 ∈ Si

and si1
act−−→ si2, where act ∈ Acti, (iv) Πi is the set of atomic

propositions defined for robot i, (v) Li : Si −→ 2Π
i

is a
map that provides the set of atomic propositions true in state
si ∈ Si, (vi) wi : Ei −→ N>0 is a weight function capturing
the cost of the action on an edge ei ∈ Ei.

A joint transition system T is a transition system that
captures the collective motion of a team of m robots in
a workspace W , where the i-th robot executes one action
from the set of actions Acti available to it. We define a
joint transition system as T := (ST , s0, ET ,ΠT , LT , wT ),
where (i) ST is the set of vertices/states in a joint transition

system, where each vertex is of the form ⟨s1, s2, . . . , sm⟩, si
represents the state of robot i in transition system T i, (ii)
s0 := ⟨s10, s20, . . . , sm0 ⟩ ∈ ST is the joint initial state of the
team of m robots, (iii) ET ⊆ ST × ST is the set of edges,
(s1, s2) ∈ ET iff s1, s2 ∈ ST and (si1, s

i
2) ∈ Ei for all i ∈

{1, 2, . . . ,m}, (iv) ΠT :=
⋃m

i=1 Π
i is the set of atomic propo-

sitions, (v) LT : ST −→ 2ΠT , and LT (sj) :=
⋃m

i=1 L
i(sij)

gives us the set of propositions true at state sj , and (vi)
wT : ET −→ N>0, and wT (sj , sk) :=

∑m
i=1 w

i(sij , s
i
k) is a

weight function. We can also consider the transition system as
a weighted, directed graph with vertices, edges, and a weight
function. Whenever we use a graph algorithm over a transition
system, we mean to apply it over its equivalent graph.

We define robots’ trajectories ξr as a discrete sequence of
multi-robot states ξr1ξ

r
2 . . ., where ξrt denotes the combined

state ⟨s1t , s2t , . . . , smt ⟩ of all the robots at the t-th time step.
Here sit represents the state of the i-th robot at the t-th step.

3) Environment Model: A robot interacts with its environ-
ment using various sensors, which are sampled periodically.
We place the following high-level assumptions on the possible
behaviour of the sensor variables.

• There exists a sensor data processing system that pro-
cesses the analog and noisy sensor signals and generates
correct values for the binary sensor variables representing
the accurate state of the environment.

• Once a sensor variable is changed, it will stay so until the
robots perform some actions in response to the change in
the sensor value. For instance, if the battery of a robot is
down, it will continue to stay so until the corresponding
robot moves to a charging location to charge its battery.

Our goal is to construct a planning and control mechanism
that enables the multi-robot system to satisfy the given spec-
ifications for all possible admissible environments satisfying
these assumptions. The l binary sensor variables K={κ1, κ2,
. . . , κl} have their own dynamics. We define environment
trajectory ξe as a discrete sequence of environment states
ξe1 ξ

e
2 . . . generated through periodic sampling of the sensors,

where ξei =⟨κ1i , κ2i , . . . , κli⟩. Here κji denotes the value obtained
from the j-th sensor at the i-th time step. A change in
environment is observed at time step t, if ξet−1 ̸= ξet .

Example II.1. Given two sensor variables K={b, h}, with
initial state ⟨b=true, h=false⟩, a possible environment
trajectory ξe=⟨true, false⟩⟨true, false⟩⟨true, false⟩
⟨true, true⟩⟨true, true⟩ . . . , where the sensor variable h
changes to true at the 4th time step, but the sensor variable
b never changes.

B. Specification Language
1) Linear Temporal Logic: We capture the specification of

the multi-robot system using Linear Temporal Logic (LTL).
LTL formulae over the set of atomic propositions ΠT are
formed according to the following grammar [14]:

Φ ::= true | a | ϕ1 ∨ ϕ2 | ¬ϕ | ⃝ ϕ | ϕ1Uϕ2.

The basic ingredients of an LTL formula are the atomic
propositions a ∈ ΠT , the Boolean connectors (¬ (Negation)



and ∨ (Disjunction), and two temporal operators⃝ (Next) and
U (Until). The Boolean connectors have their usual meaning.
Given negation (¬) and disjunction (∨) operators, we can
derive the conjunction (∧) and implication (⇒) operators.

The semantics of an LTL formula is defined over an infinite
sequence of sets of atomic propositions called trace. The trace
σ satisfies a formula ϕ, if the first state of σ satisfies ϕ. The
Next operator ⃝ is a unary operator and is followed by a
formula, which has to be satisfied in the next time step. The
Until operator U is a binary operator between two formulas.
The formula ϕ1 U ϕ2 says that ϕ2 should be observed at some
step t, and for all steps t′, 0 ≤ t′ < t, ϕ1 must be observed.
There are two other widely-used temporal operators, namely ♢
(Eventually) and □ (Always), which can be derived from the
basic logical and temporal operators as follows: ♢ϕ := T U ϕ,
and □ϕ := ¬♢¬ϕ. Here, ♢ϕ says that ϕ has to be observed
at some time step eventually, and □ϕ says that ϕ must be
observed at all the steps, i.e., it is not the case that ¬ϕ will be
observed eventually. There is yet another operator, namely W
(Weak Until), which is defined as: ϕ1W ϕ2 := (ϕ1 U ϕ2) ∨
□ϕ1. As opposed to U (Until), ϕ1W ϕ2 does not require that
ϕ2 eventually becomes true.

A robot trajectory σ satisfying an LTL specification Φ can
be represented as σ = σpref .(σsuff )ω , where σpref is a prefix
path starting from the initial location of the robot and is
traversed once to reach the suffix cycle σsuff , which is then
traversed repetitively (See [14] for more details).

C. Problem Statement

To capture the specification of a multi-robot system dealing
with a dynamic environment, we introduce a sub-class of LTL,
which is presented below.
Proposed Specification for Reactive System. We capture the
specification Φ of the system as the conjunction of several
sub-specifications Φi as follows:

Φ ≡
n∧

i=1

Φi. (II.1)

Each sub-specification Φi is of the following form:

Φi ≡ □(ψe
i ⇒ ♢(ϕri W ¬ψe

i )). (II.2)

Here, ψe
i is a Boolean condition on the environment variables

K, and ϕri is an LTL formula on the propositions defined on
the states of the robots ST in the transition system.

The formal specification intuitively says that whenever a
Boolean condition ψe

i on the environmental variables becomes
true, eventually the system will reach a state from where, in
each subsequent state, the system will satisfy the LTL formula
ϕri till the Boolean condition ψe

i becomes false. Moreover,
it is not mandatory that ψe

i will eventually become false. In
that case, the robots need to keep satisfying ϕri all the time in
the future.

Now, we formally define the problem. Given environment
trajectory ξe and robots trajectory ξr, we define the system
trajectory ξ as ξ1ξ2 . . ., where ξi denotes the tuple ⟨ξei , ξri ⟩ at
the i-th time step.

(a) Real workspace
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(b) Grid representation

Fig. 1: Workspace of size 11×11 for a surveillance application.

Problem 1. Consider a multi-robot system with m robots.
The environment of this multi-robot system is sensed using l
sensors. The specification of the multi-robot system Φ is of the
form given in equation II.1. Generate trajectories ξr for the
robots in response to the environment trajectory ξe such that
the resulting system trajectory ξ satisfies the formula Φ.

D. Illustrative Example

Throughout this paper, we use a surveillance example for
illustration purposes. Figure 1a shows the real workspace, and
Figure 1b shows its grid representation W . In Figure 1b, the
cells in the black colour represent obstacles (O). There are 3
robots: r1, r2, and r3. Robots r1 and r2 are unmanned ground
vehicles (UGVs) that can move to one of the four neighbouring
cells with cost 1 and stay in their current cell with cost 0. The
robot r3 is an unmanned aerial vehicle (UAV) that can move
to one of its eight neighbouring cells or stay in its current
cell with cost 1. The robots start at locations p8, p9 and p10,
respectively.

Here Π1 = {p1, p2, p3, p4, p8, follow}, Π2 = {p1, p2, p3,
p4, p9, follow}, and Π3 = {p5, p6, p7, p10}. The propositions
p1, p2, . . . , p7 represent patrolling points, whereas p8, p9, p10
the charging locations. These propositions are satisfied if the
corresponding robot visits the location marked in Figure 1b.
The proposition follow is satisfied when the robot visits a
neighbouring cell of the cell where the intruder was detected.

We use four sensor variables K = ⟨b1, b2, b3, intrusion⟩.
Sensor variable intrusion refers to detecting a human in
the workspace. The UAV is equipped with camera sensors to
detect any intruder (human) in the workspace (the intruder
is detected along with its coordinates). For simplicity, we
assume that there cannot be more than one intruder (if any) in
the workspace at any time instant, and detection of a human
by the UAV will set the sensor variable intrusion to true.
The absence of boundaries at points (0, 10) and (10, 0) in
Figure 1b serves as entry/exit points for an intruder. Sensor
variable bi refers to the battery status of robot ri. Initially,
it is set to true. It is set to false when the corresponding
robot’s battery voltage drops below a lower threshold voltage,
meaning that the battery is about to discharge and requires
charging. These sensor variables will be set to true when the



TABLE I: Queries for Example II-D

i ψe
i ϕri

1 ((b1 ∧ b2) ∨ ((b1 ∨ b2) ∧
¬intrusion)) (♢ p1 ∧♢ p2 ∧♢ p3 ∧♢ p4)

2 b3 (♢ p5 ∧ ♢ p6 ∧ ♢ p7)
3 ((b1 ∨ b2) ∧ intrusion) ♢(follow)
4 ¬ b1 ♢ p8
5 ¬ b2 ♢ p9
6 ¬ b3 ♢ p10

Fig. 2: The proposed online planning framework for multi-
robot systems with LTL specifications

corresponding robot’s battery reaches above an upper threshold
voltage, meaning the battery is fully charged.

We define six queries/tasks of the form given in equa-
tion II.1 for our example problem in Table I. In natural lan-
guage, the specification states that robots r1 and r2, whenever
available, should continuously patrol the locations p1, p2, p3,
and p4 (Specification Φ1). The robot r3, which is a UAV,
should patrol the locations p5, p6, and p7 whenever it has
sufficient battery charge (Specification Φ2). While patrolling
the locations p5, p6, p7, the UAV looks for an intruder and sets
the sensor variable intrusion to true whenever it detects an
intruder. When that happens and one of the ground robots is
available with sufficient battery charge, it pursues the intruder
by satisfying the follow proposition eventually (specification
Φ3). When the battery of a robot is low, the robot should visit
its charging location and stay there until the battery is fully
charged (specification Φ4, Φ5, and Φ6). We assume that once
a robot visits its respective charging location, there is some
mechanism to charge its battery.

III. FRAMEWORK

We aim to solve a planning problem in which the multi-
robot system must react to environmental changes. As a
result, offline planning is not applicable because the plan may
become invalid with any environmental changes. Because of
this, we employ a planning technique based on the Sense-
Plan-Act (SPA) paradigm inspired by [12], where we generate
plans for an initial environment state and distribute the plan
to the appropriate robots incrementally for execution. Every
time an environmental change renders our plan invalid, we
amend or re-plan in light of the new information. In what
follows, we propose a framework that, following the principle
mentioned above, generates continuous robot trajectories as
per the system’s goals given in Φ.

Figure 2 outlines the framework’s basic structure and data
flow among various modules. The framework consists of five
different modules. The admin is a human being who configures

the manager module with the number of robots, the transition
systems T i for each robot, and a set of queries Φi (i.e.,
goals to be achieved by the system) each of the form in
equation II.2. The manager module decides the high-level
directives to satisfy the system’s operational goals as per the
specification Φ and sends the same to the dispatcher module.
The objective of the module is to generate plans for the robots
(by employing a planner) satisfying Φ that are consistent with
the changes in the environment. We will deliberate on the
functionalities of the manager module in Section III-A. The
dispatcher module receives a high-level plan from the manager
module and manages its execution on the robots. It refines
the high-level plan into low-level collision-free trajectories
and incrementally sends the refined trajectories to the vehicle-
system module to be executed by the robots.

The robotic platforms are mounted with various sensors and
actuators for sensing and interacting with the environment. The
vehicle-system module provides the manager and dispatcher
modules with the required information about the robots and the
environment. It also performs the atomic tasks received from
the dispatcher module by generating the required low-level
command using a feedback controller. The actuators connected
to the robots directly receive the executable commands.

The sensors module receives raw data from different sen-
sors, processes the data, and provides the manager module
with updated values for the environment sensor variables K.
The sensors may be installed in the robots or may be placed
in any location of interest in the workspace.

A. Manager

The manager module uses a static Multi-Agent LTL Planner
to plan for a reduced version of Φ (let us call it Φredc)
based on the current environmental condition. It then sends
the plan to the dispatcher module for execution on the robots,
which results in robot trajectories (ξr). The robots execute
their respective plan until Φredc becomes invalid, i.e., the
environment condition changes. On detecting any such change,
the manager recomputes Φredc accordingly and re-plan for it.

We present the operation of the manager module in Al-
gorithm 1 and explain the concepts of major steps in detail.
Given the transition system of m robots {T 1, . . . , Tm} and an
LTL specification Φ of the form in Equation II.2, the goal is to
generate continuous trajectories ξr for the robots in response
to the environment trace ξe such that the resulting system trace
ξ satisfies the formula Φ.

We first group the m queries of Φ into v groups (line 1)
using the procedure described in section III-A1. The goal of
this step is to partition the robots into different groups so
that the behavior of a robot in one group is independent of
the behavior of a robot in any other group. For each group
ωp, we maintain a Boolean vector statusp of size |ωp| and
two Boolean variables readyp, replanp as group variables.
These variables help us keep track of each query ωp,k, the
k-th specification in the group ωp, and thereby help us in
generating and sending the required plans for the robots to
the dispatcher module. In statusp[k], we store the last known



Algorithm 1: manager
Input: Transition systems for m robots

{T 1, . . . , Tm} and the LTL specification Φ.
Output: Continuous trajectories ξr for the robots.

1 Ω = {ω1, . . . , ωv} ← creategroup(Φ)
2 initialize flags (Ω)
3 parallel for 1 ≤ p ≤ |Ω| do
4 while true do
5 update flags(ωp)
6 if readyp then
7 if replanp then
8 Φredc

p ←
compute spec for planning(ωp,
statusp)

9 ⟨σpref
p , σsuf

p ⟩ ←
Planner((T 1, . . . , T q),Φredc

p )
10 replanp ← false

11 dispatcher(σpref
p )

12 dispatcher(σsuf
p )

13 readyp ← false

14 procedure initialize flags(Ω)
15 for 1 ≤ p ≤ |Ω| do
16 for k ← 1 to |ωp| do
17 statusp[k]← false

18 readyp ← false

19 replanp ← false

20 procedure update flags(ωp)
21 read sensor values( )
22 for k ← 1 to |ωp| do
23 if ¬ωe

p,k then
24 if statusp[k] then
25 statusp[k]← false, replanp ← true

26 else if ¬statusp[k] then
27 statusp[k]← true, replanp ← true

28 if dispatcher.free(ωp) then
29 readyp ← true

30 procedure compute spec for planning(ωp,
statusp)

31 Φredc
p ← true

32 for k ← 1 to |ωp| do
33 if statusp[k] then
34 Φredc

p ← Φredc
p ∧□ωr

p,k

35 return(Φredc
p )

information about the validity of ωe
p,k, which denotes the

Boolean environment condition associated with specification
ωp,k. The information about the need for replanning for group
ωp is stored in replanp, whereas readyp denotes that the
dispatcher is waiting for any new plans from the manager
module for the robots in group ωp.

At the beginning of the operation, the group variables are set
to false, as the manager currently has no information about
the environment by calling the function initialize flags()

at line number 2. Next, it runs an infinite loop for each
group ωp in parallel (lines 4-13), which generates continuous
trajectories ξr for the robots. The first task in the loop is to
update the group variables with the latest information about
the environment by calling the function update flags() at
line number 5. In the function, for each query ωp,k, we check
if the current value of ωe

p,k and statusp[k] are the same. If
there is any change, we set statusp[k] to ωe

p,k, and also set
replanp to true. We also set the variable readyp to true if
the robots belonging to queries in ωp are ready and waiting for
new trajectories to execute. The function is continuously called
until all the robots belonging to queries in ωp are ready, i.e.,
variable readyp is set to true. Now, if the earlier generated
plan is valid (replanp is false), the manager sends the
previous plan to the dispatcher module and waits for the robots
to execute their task (by setting readyp to false), and repeat
the steps in the loop. If the earlier generated plan becomes
invalid (variable replanp is true), the manager performs the
steps in line numbers 7-11. For re-planning, it first generates
Φredc

p using the procedure described in section III-A2. The
LTL formula Φredc

p captures the specification for which the
planner needs to generate a plan. Next, the manager invokes a
multi-robot planner with the transition systems for the robots
and Φredc

p as the LTL specification. After the plan generation,
the variable replanp is set to false, and the plan’s prefix part
(σpre

p ) is sent to the dispatcher module for execution on robots.
Next, the manager sends the suffix part (σsuf

p ) of the plan
to the dispatcher module and waits for the robots to execute
their trajectories by setting variable readyp to false (line
number 13) while continuously evaluating the group variables.
This way, by updating generated trajectories for the robots
as per the environment trace, the manager aids in generating
continuous trajectories ξr for the robots in response to the
environment trace ξe such that the resulting system trace ξs

satisfies the formula Φ.
1) Grouping of queries: The formula Φ is a conjunction

of n queries. We denote the set of these n queries by
Ω = {Φ1, . . . ,Φn}. The queries assign tasks to the robots.
A query may assign tasks to a single robot or a set of robots.
Two or more queries may assign different tasks to the same
set of robots. We combine these queries into the same group
to generate the correct plan for the multi-robot system. The
LTL formulae Φi and Φj belong to the same group if there
exists at least one robot that is responsible for the satisfaction
of both formulae. To formalize this notion, let us denote by
Σi the set of robots that can contribute to the satisfaction of
the specification Φi. Furthermore, we denote by Λi the set of
atomic propositions involved in Φi. Note that only the robots
in Σi are responsible for satisfying the propositions in Φi.
Mathematically,

Σi = {rk | ∃πi ∈ Πk such that πi ∈ Λi}.

Now, to divide the LTL specifications into groups, we form
a directed graph G by considering each Σi as a node in a
graph. A directed edge between two distinct nodes Σi and Σj

is added to the graph if Σi ∩ Σj ̸= ∅. Subsequently, we find



the strongly connected components in G. For every connected
component, we create a group including each Φi for which Σi

is a node in the corresponding component. The set of all these
specification groups is denoted by Ω, where 1 ≤ |Ω| ≤ n, and
the p-th group, 1 ≤ p ≤ |Ω|, is denoted by ωp, where |ωp| ≥ 1.
We denote the k-th query of the p-th group by

ωp,k ≡ □(ωe
p,k ⇒ ♢(ωr

p,kW¬ωe
p,k)).

So a query Φi is now represented as ωp,k, where ψe
i is

represented as ωe
p,k and ϕri as ωr

p,k. The groups are exhaustive
and pairwise mutually exclusive, i.e.,

|Ω|⋃
p=1

ωp = Ω,

∀p, q. 1 ≤ p, q ≤ |Ω| ∧ p ̸= q : ωp ∩ ωq = ∅.

Now, the formula Φ can be written as:

Φ ≡
|Ω|∧
p=1

ζp, where ζp ≡
|ωp|∧
k=1

ωp,k.

In this way, the specification Φ, which is a conjunction of n
sub-specifications Φi, gets distributed into |Ω| groups. Thus,
to satisfy Φ, each ζp must be satisfied by the robots.

Example III.1. For our example problem in II-D, we get Σ1

={r1, r2}, Σ2={r3}, Σ3={r1, r2}, Σ4={r1}, Σ5={r2} and
Σ6={r3}. Thus, two groups ω1 = {Φ1,Φ3,Φ4,Φ5} and ω2 =
{Φ2,Φ6} are formed using the procedure described above.

2) Generation of Φredc
p : Each ζp is a conjunction of |ωp|

sub-specifications. Thus, for ζp to hold, each ωp,k must be
satisfied by the robots. Now, since sub-specification ωp,k is
of the form in Equation II.2, it holds at every time instant if
ωe
p,k = false. Otherwise, if at any time instant ωe

p,k = true,
then ♢(ωr

p,kW¬ωe
p,k) should hold by the trace starting at

that time instant. Now, on expanding ♢(ωr
p,kW¬ωe

p,k) we get
♢((ωr

p,k U ¬ ωe
p,k) ∨ □ ωr

p,k), which says that eventually
either (ωr

p,k U ¬ ωe
p,k) or □ ωr

p,k should hold true. The
first expression is dependent on ωe

p,k, which consists of a
Boolean expression over sensor variables K, on which the
planner does not have any control. Thus, we consider the
second expression □ ωr

p,k for planning. However, once the
Boolean condition ¬ ωe

p,k holds true, the change in the
flags statusp[k] and replanp invalidate the current plan. The
robot stops executing the plan generated for □ ωr

p,k, without
violating the specification ωp,k as (ωr

p,k U ¬ ωe
p,k) gets

satisfied.
Let ω′

p represent the set of queries in group ωp for which
ωe
p,k is true at the current time instant. Thus,

Φredc
p =

|ω′
p|∧

k=1

♢□(ω′r
p,k).

The LTL specification Φredc
p represents the LTL query to be

satisfied on the current environment instance for group ωp.

Here, we satisfy ♢□ωr
p,k till ¬ ωe

p,k becomes true, then we
update the formula accordingly.

Example III.2. Revisiting the example in section II-D, Figure
3 depicts a possible environment trace ξe, which is ξe1 =
⟨T, T, T, F⟩ . . . ξe47 =⟨T, T, T, T⟩ . . . ξe72 =⟨T, T, T, F⟩ . . . . For this
trace, at time instant 1 ≤ t < 47, the reduced query for
group ω1 will be Φredc

1 =♢□(♢p1 ∧♢p2 ∧♢p3 ∧♢p4) and for
group ω2, Φredc

2 =♢□(♢p5 ∧♢p6 ∧♢p7). And for time instant
47 ≤ t < 72, the reduced query for group ω1 is updated to
Φredc

1 =♢□(♢p1 ∧ ♢p2 ∧ ♢p3 ∧ ♢p4) ∧ ♢□(follow) whereas
for group ω2 the query remains unchanged.

3) Multi-Robot Planner: The manager module requires a
static multi-agent LTL path planner to generate plans for a
subset of robots to satisfy Φredc

p . The standard procedure
for solving this planning problem is based on the automata-
theoretic model-checking approach. In this approach, the man-
ager first identifies the subset of robots Σ that are involved in
the satisfaction of the specifications in ω′ as follows:

Σ = {rk | ∃πi ∈ Πk such that πi ∈ Λ},

where Λ denotes the set of atomic propositions involved in
Φredc

p . Subsequently, it creates the joint transition system
T based on the definition introduced in Section II-A2 and
converts Φredc

p to an equivalent Büchi Automaton B. Now,
a product automaton P out of the joint transition system
T and the Büchi Automaton B is computed. Please see
Appendix A for the definitions of Büchi Automaton and
Product Automaton and [14] for more details. The product
automata P captures all possible ways the group of robots Σ
can satisfy the LTL specification Φredc

p . Finally, the manager
uses Dijkstra’s shortest path algorithm on P to compute the
required minimum cost suffix run having a valid prefix. Thus,
the plan generated is of the form Rpref ·(Rsuf )ω . The manager
module maps each state in Rpre and Rsuf , which is a state in
the product automaton P , to the corresponding states in the
joint transition system T to generate robot trajectories σpre

and σsuf . The manager module sends σpre ·σsuf as the high-
level plan to the dispatcher module. Subsequently, the suffix
part σsuf is repeatedly sent until a change is observed in the
environment.

B. Theoretical Guarantee

The soundness guarantee provided by our framework is
captured in the following theorem.

Theorem III.3. Given the transition systems {T1, . . . , Tm}
of m robots and an LTL specification Φ of the form given
in Equation II.1. For any environment trace ξe satisfying the
assumptions listed in the Environment Model, the robot trace
ξr generated by the manager and the dispatcher ensures that
the system trace ξ = ⟨ξe, ξr⟩ satisfies the LTL specification Φ.

Proof. To prove that ξ satisfies Φ, we have to show that each
Φi, i ∈ {1, . . . , n}, is satisfied by ξ. To satisfy Φi by ξ, the
manager has to evaluate the corresponding ψi at all times due
to the ‘□’ operator. If ψi turns out to be false in a time step,
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Fig. 3: A timeline showing the key activities of the framework for persistent surveillance: The solid blue vertical lines denote
the reading of sensor variables. The green and red vertical lines represent the invocation of the planner by the manager and the
operation of the dispatcher, respectively. The dashed and dotted vertical lines are used for robot groups ω1 and ω2, respectively.
The trajectories for the robots are shown in green below the timeline: Continuous lines correspond to the path execution, dotted
lines the repetition of the same behavior, and dashed lines the waiting of the robots when the plan is being computed.

further evaluation of Φi is not required. However, if ψi turns
out to be true in a time step, the infinite trace starting at that
step has to satisfy ♢(ϕriW¬ψe

i ). At that time step, the planner
computes the plan for the specification ♢□ϕri , which provides
the plan in the form of σpre · (σsuf )ω . Depending on the
environment condition, there could now be two cases: (i) ψe

i

never becomes false, and (ii) ψe
i becomes false eventually,

making ¬ψe
i true.

Case (i): In this case, the dispatcher keeps on repeating the
Rsuf for the robots responsible for satisfying the specification.
Based on the semantics of weak until (‘W ’), this is a right
behavior of an infinite trace to satisfy ϕriW¬ψe

i as the satis-
faction of the property when ¬ψe

i is false requires □ϕri to be
satisfied by the trace. The prefix Rsuf ensures the satisfaction
of the specification ♢(ϕriW¬ψe

i ).
Case (ii): When ¬ψe

i becomes true, the dispatcher stops
sending the current suffix path σsuf to the robots. Any infinite
extension of this trace is correct as based on the semantics of
‘W ’, ϕri has to remain true only till ¬ψe

i becomes true. The
continuation of the repetition of Rsuf is also a correct behavior
according to the semantics of ‘W ’, but that may lead to wrong
behavior of the robots as a false value for ψe

i implies that
some other environment condition ψe

j , j ∈ {1, . . . , n}, j ̸= i
may become true, and the robots need to be available for
such a situation.

IV. EVALUATION

In this section, we present several results to demonstrate
the efficacy of our framework. We implement our framework’s
manager, dispatcher, vehicle-system, and sensors modules as
ROS [13] packages in C++. In the manager module, we use
recently developed scalable multi-agent LTL planner MT∗ [5],
which uses the LTL2TGBA tool [15] as the LTL query to
Büchi automaton converter. In the dispatcher module, we
apply generic collision avoidance techniques from [16] and
generate a collision-free path for each robot.

We provide Gazebo simulations [17] for two use cases
described below. Our experiments use Husky robots [18] for

(a) ξr2≤t≤48

INT

(b) ξr52≤t≤93

INT

(c) ξr98≤t≤122 (d) ξr125≤t≤158

Fig. 4: Robot trajectories ξr generated based on ξe for the
persistent surveillance use case

unmanned ground vehicles (UGVs) and generic hex-copters
for unmanned aerial vehicles (UAVs). For UGVs, we use
the ROS Navigation Stack1 for point-to-point navigation with
TEB [19] as the local planner and model predictive control
(MPC) on UAV for point-to-point navigation.

The results have been obtained on a desktop computer with
a 3.4 GHz quad-core processor with 32 GB of RAM, running
Linux OS Version 20.04.6 LTS.

A. Case Study I: Persistent Surveillance

We use the example problem described in section II-D as
our first case study. Figure 3 represents a global timeline (units

1https://github.com/ros-planning/navigation



in seconds) describing a possible execution of the framework
generating robot trajectories (ξr) in response to environment
trace (ξe) such that the resulting system trace satisfies Φ.
Figure 4 shows the suffix of the trajectories of the robots ξr

generated by the framework considering the environment trace
ξe at different time steps.

The environment starts with ξe1 = ⟨T, T, T, F⟩, denoting that
the batteries of all robots are charged and no intruder has
been detected. All the variables for both groups are initialized.
At this time point, for group ω1, the variables status1[1],
replan1, ready1 are set to true by the update flags()
function. Similarly, for group ω2 the function sets the variables
status2[1], replan2, and ready2 to true. Thus, the planner
is invoked for both groups at time t = 2 (represented in
Figure 3), and Figure 4a depicts the suffix (Rsuf ) part of the
computed plan for both groups {r1, r2} and {r3}. For robot
r1, its prefix Rpre

1 moves it from its starting location p8 to the
starting point of suffix p2. Similarly, for robot r2 and r3, their
Rpref move them from their starting locations p9 and p10 to
the starting point of their suffixes p4 and p5, respectively. The
prefix paths are sent to the robots of both groups for execution
at time t = 4. For group ω1, the robots take 15 s to complete
their Rpref

1 and start executing Rsuf
1 at time t = 19, whereas

for group ω2 the robot takes 4 s to complete execution for its
Rpref

2 and starts executing Rsuf
2 at time t = 8. At time t = 27,

group ω2’s robot completes executing its Rsuf
2 and executes

the same suffix as there is no change in ξe trace.
Robot r3 detects an intruder at time t = 27, and the en-

vironment state changes to ξe47=⟨T, T, T, T⟩. This leads to ωe
1,2

being true. Accordingly, the flags status1[2] and replan1 are
set to true for group ω1 by the function update flags(),
but since the robots are already executing their previous task,
the manager module waits for ready1 flag to become true.
It is set to true at time t = 49 when robots r1 and r2
complete execution of their earlier Rsuf

1 and the re-planning
is performed for group ω1. Figure 4b shows the suffixes of the
new plan. As per the updated plan, robot r2 moves from its
current location to the neighbouring cell of the intruder’s last
known location as part of Rpre

1 and follows the intruder as part
of Rsuf

1 whereas robot r1 patrols the proposition locations p1,
p4, p3, p2 as part of Rsuf

1 . The plan has no Rpre
1 for robot

r1 as the robot starts at the suffix starting point. The robots
starts executing the plan at time t = 51. Currently, for the
robot in group ω2, there is no change in its flags, and it keeps
executing its Rsuf

2 . It completes the execution at time t = 60
and re-executes the same Rsuf

2 since there is no change in the
group’s variables.

At time t = 72, robot r2 assumes that the intruder is lost
as it cannot find it, and thus the environment trace changes
to ξe72=⟨T, T, T, F⟩. The update flags() function updates the
variable status1[2] to false and variable replan1 to true,
and the manager module waits for ready1 to become true

for group ω1. The voltage of robot r3’s battery dips below the
threshold at time t = 78, and the environment trace changes to
ξe78=⟨T, T, F, F⟩. Accordingly, the flags status2[2] and replan2

are set to true and status2[1] is set to false by the function

TABLE II: LTL Specifications for Use-Case 2

i ψe
i ϕri

1 b1 ∧ i1
((♢p1 ∧ ♢sd1 ) ∧ □((p1 → ⃝(¬p1 ∪
sd1 )) ∧ (sd1 → ⃝(¬sd1 ∪ p1))))

2 b1 ∧ i2 ∧ ¬i1
((♢p2 ∧ ♢sd2 ) ∧ □((p2 → ⃝(¬p2 ∪
sd2 )) ∧ (sd2 → ⃝(¬sd2 ∪ p2))))

3 b1 ∧ i3 ∧ ¬i1 ∧ ¬i2
((♢p3 ∧ ♢sd3 ) ∧ □((p3 → ⃝(¬p3 ∪
sd3 )) ∧ (sd3 → ⃝(¬sd3 ∪ p3))))

4 ¬ b1 ♢ g1

5 b2 ∧ d1
((♢sp1 ∧♢d)∧□((sp1 → ⃝(¬sp1∪
d)) ∧ (d→ ⃝(¬d ∪ sp1))))

6 b2 ∧ d2 ∧ ¬d1
((♢sp2∧♢d)∧□((sp2 → ⃝(¬sp2∪
d)) ∧ (d→ ⃝(¬d ∪ sp2))))

7 b2 ∧ d3 ∧¬d1 ∧¬d2
((♢sp3∧♢d)∧□((sp3 → ⃝(¬sp3∪
d)) ∧ (d→ ⃝(¬d ∪ sp3))))

8 ¬b2 ∧ b1 ♢g2
9 b3 (♢p1 ∧ ♢p2 ∧ ♢p3 ∧ ♢d)
10 ¬b3 ♢a

update flags() and the manager module waits for ready2
to become true for group ω2. At time t = 94, ready2 is
set to true as the robot r3 has executed its Rsuf

2 . Now, re-
planning is done for group ω2, and as per the new plan, the
robot r3 visits p10 and stays there. Figure 4c shows the Rsuf

of the plans for the robots after the re-planning. Similarly,
at time t = 122, ready1 becomes true, and re-planning is
performed for group ω1, and the Rsuf of the updated plans
for the robots are shown in Figure 4d. This way, the execution
moves forward, generating ξr in response to ξe.

A video of the Gazebo Simulation is available at https://
youtu.be/9Yg GgSUvlg.

B. Case Study II: Warehouse Management

In this case study, we apply our methodology to solve the
logistics problem in a warehouse where UAVs and UGVs are
used to pick up and drop items. The workspace W is shown in
Figure 5. It deals with three different types of items. Item i is
produced at production zone pi and stored at the storage zone
si. The produced item i is dropped at sdi for storage, and the
same item is picked from spi for delivery whenever required.
Moreover, d represents the delivery location, a represents the
UAV charging location, and g1 and g2 represent charging
locations for UGVs.

We illustrate this use case using three robots: r1(UGV),
r2(UGV), and r3(UAV). Here Π1 = {p1, p2, p3, sd1

, sd2
, sd3

,
g1}, Π2 = {sp1 , sp2 , sp3 , d, g2}, and Π3 = {p1, p2, p3, a}.
Robot r1 links between the production and storage zone, r2
links between storage and delivery location, and r3 mon-
itors the production zones. We use nine sensor variables
K = {b1, b2, b3, i1, i2, i3, d1, d2, d3}. Sensor variables bj=1,2,3

represent the battery state of robot rj , ij=1,2,3 represents the
presence of items at the jth production zone pj , whereas
dj=1,2,3 represents the delivery required of items from j-th
storage zone. The functionality of the batteries is the same as
described in subsection II-D. Sensor variable ij set to true

represents that item j is to be moved from the production zone
to the storage zone, and dj set to true represents that item j
is to be moved from the storage zone to the delivery location.

https://youtu.be/9Yg_GgSUvlg
https://youtu.be/9Yg_GgSUvlg


The queries in Table II represent the tasks to be achieved
by the system. As per queries ϕ1, ϕ2, and ϕ3, robot r1 should
pick item j from location pj and drop the item to the storage
drop-up area (denoted by sdj

) if it has sufficient battery and
sensor variable ij is set to true. Similarly, queries ϕ5, ϕ6,
and ϕ7 say that robot r2 should pick items from storage
drop-up area spj

depending on sensor variables sj and drop
the item to the dispatch location if it has sufficient battery
voltage. Here, priority is given to the item with the lower
index for both storage as well as delivery. According to query
ϕ9, robot r3 should continuously visit production zones and
report if production is available for the jth item by updating
the corresponding sensor variable if it has sufficient battery
voltage. Queries ϕ4, ϕ8, and ϕ10 ask the robots to move
to their corresponding charging locations when their battery
sensor indicates a low battery charge.

We present a detailed description of this use case in Ap-
pendix B. A video of the Gazebo Simulation is available at
https://youtu.be/HQn30q98ROA

C. Scalability Experiments

We conduct a series of scalability experiments using our
framework, employing scenarios that closely resemble those
discussed in Section II-D. In all the experiments, we logically
divided the workspace into 4 quadrants, where a set of UGVs
are responsible for patrolling and following intruders in a
quadrant, whereas the UAVs are responsible for patrolling
the whole workspace. These experiments involve varying the
dimensions of the workspace and the number of robots.
The results of these experiments are presented in Table III,
providing valuable insights into our framework’s scalability
and performance under various conditions.

In Table III, WS stands for workspace size, #R represents
the total number of robots, including UGVs and UAVs, #K
represents the number of environmental sensor variables, #AP
represents the count of atomic propositions within Φ, and
#Events denote the average number of sensor events observed
during an experiment run. For example, in the first experiment,
#K includes 5 sensor variables representing the battery status
(1 per robot) and 4 sensor variables (1 per quadrant) repre-
senting the quadcopter’s intrusion detection status. The set of
atomic propositions AP comprises 5 charging locations (1 per
robot), 5 atomic propositions per quadrant (4 patrolling points
and a “follow” proposition) for the UGVs, and 6 additional
propositions denoting the patrolling locations for the UAVs.
During the experiments, 5 sensor events were observed on
average. Moreover, PT (Planning Time) refers to the total
planning time (in seconds), and RT (Response Time) measures
the average time between a sensor event and the time instant
when the computation of the plan corresponding to the sensor
event gets completed (in seconds). Thus, the response time
includes the planning time and the time required to complete
the execution of the previous suffix loop.

For each scenario, we repeat the experiment 10 times and
report the average and standard deviation in Table III. For
the 20 × 20 and 40 × 40 workspaces, each experimental

TABLE III: Efficiency of the framework

WS #R #K #AP #Events PT (s) RT (s)

20× 20 4 + 1 9 31 5± 1 0.12± 0.01 41.89± 17.62
8 + 2 14 36 5± 1 0.27± 0.02 34.50± 11.60

40× 40 4 + 1 9 41 5± 2 0.11± 0.04 153.9± 45.00
8 + 2 14 46 6± 2 1.11± 0.06 114.3± 25.59
12 + 4 20 52 7± 1 15.26± 4.35 90.0± 50.79

trial spans for 600s and 900s, respectively. From Table III,
we observe that the planning time, which increases with
both the size of the workspace and the number of robots,
is small compared to the response time (RT) thanks to the
splitting of the specifications into disjoint groups as presented
in Section III-A1. We have also attempted to compute the plan
without splitting the specifications into independent groups.
However, for this monolithic approach, the generation of the
Büchi automata took 19min, showing the necessity of group-
ing the specifications. In smaller workspaces, response time
tends to be faster, with relatively swift responses. It increases
with high variation if workspace size is increased. For a fixed
workspace, with an increase in the number of robots, the
response time decreases. This observation highlights that the
complexity of the environment and the robot count play crucial
roles in influencing the system’s response time.

D. Real Experiment

We conduct a real outdoor experiment with two ground
robots and a quadcopter. In our experiment, we use the first
three LTL specifications in Table I, excluding the specifications
involving battery charges. Figure 1a presents the top view of
the experimental arena. The details of the robots have been
provided in Appendix C. A video of the experiment is available
at https://youtu.be/ZaPIQ6qd57U.

V. RELATED WORK

Linear Temporal Logic has been widely used to capture
the specification for task and path planning for multi-robot
systems(e.g., [1]–[6], [20]). These works use linear temporal
logic to capture the task specifications, and the goal is to
synthesize the trajectories for the robots so that they satisfy
the LTL specifications. However, these papers consider a static
environment and the absence of any events appearing online.

To deal with the dynamism in the environment, researchers
have adopted the reactive synthesis technique [21] to synthe-
size a high-level controller from a subset of LTL called GR(1),
which captures the specification in terms of environmental
assumptions and the tasks of the robots to be performed against
different environmental events. The first work on applying
reactive synthesis for synthesizing a high-level robot controller
from the GR(1) subset of LTL is due to Kress-Gazit et al. [7].
To deal with the scalability limitation of the reactive synthesis
method, Wongpiromsarn et al. [9] propose a receding horizon
approach where the planning task is split into multiple smaller
planning tasks. Livingston et al. [10] address the problem
of using plans generated by reactive synthesis in a dynamic
environment where the synthesized plan may become invalid.

https://youtu.be/HQn30q98ROA
https://youtu.be/ZaPIQ6qd57U


They propose µ-calculus based local planning strategy to deal
with new observations in the environment that do not fit
with the original assumptions on the environmental behavior.
DeCastro et al. [11] extend the reactive synthesis methodology
to multiple robots. Subsequently, the idea of reactive synthesis
has also been applied to robot swarms to synthesize high-level
plans for the robots from temporal logic specifications [22],
[23]. However, the major limitation of reactive synthesis is that
this approach scales poorly with both the size of the workspace
and the number of robots.

To circumvent the scalability limitation of reactive synthe-
sis, the Satisfiability Modulo Theory (SMT) based approach
has been adopted in several prior works to deal with the dy-
namism in the environment. For example, SMT-based frame-
works were introduced for switching to another specification
satisfying paths to avoid collisions with dynamic obstacles in
the workspace [24] and to deal with the recharge requirement
of a robot [25]. Unlike our framework, these papers deal with
a very specific environmental event. The closest to our work
is Antlab [26], which is a framework for managing a group of
robots as resources and utilizing them to satisfy incoming LTL
requirements. However, unlike our framework, Antlab does not
support sensing events and considers incoming LTL specifica-
tions to be independent of each other. Recently, Kalluraya et
al. [27] present an adaptive sampling-based methodology for
optimal path planning for multi-robot systems to satisfy LTL
specifications, capturing requirements for completing tasks
collaboratively amidst uncertain semantic targets governed by
stochastic dynamics.

VI. CONCLUSION

We have presented a task and path planning framework
for multi-robot systems where the robots need to respond to
environmental events by adapting their behavior dynamically.
To capture the specifications of the desirable reactive behavior
of the multi-robot system, we have introduced a restricted
fragment of LTL, which has the potential to be applicable to a
wide range of practical problems requiring automation to deal
with the dynamic nature of the environment, as evident from
the case studies and the real experiment we have presented in
the paper. In the future, we plan to explore the possibility of
using large language models (LLM) [28] to create a natural
language interface for our framework.
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APPENDIX

A. Büchi Automaton and Product Automaton

In this section, we provide the formal definition of a Büchi
Automaton Bϕ and the Product Automata P for a transition
system T and a Büchi Automaton Bϕ.

1) LTL to Büchi Automaton: Given an LTL specification ϕ,
a Büchi Automaton Bϕ models ϕ. A Büchi automaton is rep-
resented as a tuple Bϕ = (QB , q0, A, δ, F ), where (i) QB is a
finite set of states, (ii) q0 ∈ QB is the initial state, (iii) A is the
set of input alphabets, (iv) δ : QB ×A −→ QB is a transition
function, and (v) F ⊆ QB is the set of accepting (final) states.
A run ω over an infinite input sequence a0a1 . . . ai ∈ A, is
a sequence of automaton states ρ = q0q1 . . ., qi ∈ QB with
q0 = qB0 and q1 = δ(q0, a0), q2 = δ(q1, a1) and so on, where
ai ∈ A. An infinite input sequence η is said to be accepted by
Büchi Automaton Bϕ iff there exists a run in which at least
one state in F is visited infinitely often.

2) Product Automaton: The Product Automaton P between
the joint transition system T := (ST , s0, ET ,ΠT , LT , wT )
and the Büchi automaton Bϕ = (QB , q0, A, δ, F ) is defined
as P := (SP , SP,0, EP , FP , ωp), where (i) SP = ST × QB

(ii) SP,0 = (s0, q0) is an initial state, (iii) EP ⊆ SP × SP ,
where ((si, qk), (sj , ql)) ⊆ EP if and only if (si, sj) ⊆
ET and (qk, LT (sj), ql) ⊆ δB , (iv) FP = ST × Qf set
of final states, and (v) ωP : EP −→ N>0 such that
ωP ((si, qk), (sj , ql)) = ωT (si, sj). To generate a trajectory
in T , which satisfies the LTL query ϕ, we can refer to P .

The task of satisfying ϕ in W can be accomplished by
finding a cycle consisting of any final state f ∈ FP in the
product graph P . The path from the initial state to one of
the final states of the graph is called the prefix path and is
denoted by Rpref . A non-trivial cycle from the final location
to itself is called the suffix cycle and is denoted by Rsuff .
Thus, an infinite run R over P can then be written as R =
Rpref .(Rsuff )

ω , where Rpref is traversed once, and Rsuff

is traversed infinitely.

B. Description of Warehouse Management Case Study

In this section, we describe how our framework enables the
robots to accomplish the tasks in Warehouse Management.
To explain the working of Algorithm 1 on this use case, we
take a possible initial environment trace ξe given by ξe1= ⟨T,
T, T, F, F, F, F, F, F⟩ . . . ξe10=⟨T, T, T, F, T, F, F, F, F⟩ . . . ⟨ξe20=
⟨T, T, T, F, T, F, T, F, F⟩ . . . ξe79=⟨T, T, T, F, T, T, T, F, F⟩ . . . ⟨ξe96
=⟨T, T, T, T, T, T, T, F, F⟩ . . .. As per this trace, initially, the
robots start with full battery charge, and none of the items
is present in the production zone, neither is delivery of any
item required. At time t = 10, item i2 becomes available at
production zone p2. Next, at time t = 20, delivery is required
for items from storage zone s1. Similarly, at time t = 79,
item i3 becomes available at production zone p3, and at time
t = 96, i1 becomes available at production zone p1.

From Φ, we get Σ1 = Σ2 = Σ3 = Σ4={r1}, Σ5 = Σ6 =
Σ7 = Σ8 = {r2} and Σ9 = Σ10 = {r3}. So three groups ω1

={Φ1,Φ2,Φ3,Φ4}, ω2 ={Φ5,Φ6,Φ7,Φ8} and ω3={Φ9,Φ10}

are formed in line number 1 in Algorithm 1 using the
procedure described in Section III-A1. Figure 5 depicts the
Rsuf of the plan generated at different time instances by the
manager module. The environment starts with ξe1 , and all the
variables for the three groups are initialized. For group ω3,
the variables status3[1], replan3, ready3 are set to true

by the update flags() function, whereas for groups ω1

and ω2, the variables ready1 and ready2 are set to true

respectively. Thus, we get Φredc
3 as ♢□(♢p1∧♢p2∧♢p3∧♢d)

whereas Φredc
1 and Φredc

2 is empty (i.e., true), and the plan
generated is shown in Figure 5a. Here, no plan is generated
for robots r1 and r2, while Rsuf

3 is to patrol the proposition
locations p1, p2, and p3. At time t = 10, the instance of
ξe changes to ξe10, and the variables status1[2], replan1,
ready1 are set to true by the update flags() function for
group ω1. We get Φredc

1 as ♢□((♢p2 ∧ ♢sd2
) ∧ □((p2 →

⃝(¬p2 ∪ sd2
)) ∧ (sd2

→⃝(¬sd2
∪ p2)))) and the generated

plan is shown in Figure 5b, where robot r1 picks item i2
from p2 and drops it at sd2

. Next, when the instance of ξe

changes to ξe20, the variables status2[1], replan1, ready1
are set to true by the update flags() function for group
ω2 and Φredc

2 is computed as ♢□((♢sp1
∧ ♢d) ∧ □((sp1 →

⃝(¬sp1 ∪ d)) ∧ (d → ⃝(¬d ∪ sp1)))). Thereby planning is
done for Φredc

2 , and the plan is shown in Figure 5c where
robot r2 picks item i1 from sp1

and drops it at d. At time
t = 79, when the instance of ξe changes to ξe79, no change
is done to Rsuf as Rsuf is still valid as per Φ. Next when
the instance of ξe changes to ξe96, and the variables status1[1],
replan1, ready1 are set to true and status1[2] is set to false

by the update flags() function for group ω1. Φredc
1 is now

computed as ♢□((♢p1 ∧ ♢sd1
) ∧□((p1 →⃝(¬p1 ∪ sd1

)) ∧
(sd1 →⃝(¬sd1 ∪ p1)))). Accordingly, planning is done, and
the plan is shown in Figure 5d where robot r1 now picks item
i1 from p1 and drops it at sd1

. This way, the execution moves
forward, generating ξr in response to ξe.

C. Hardware Details for the Real Experiments

Here, we provide the details of the hardware used in our
outdoor experiment. We use 0xDelta robots 2 as UGVs and
an assembled quadcopter based on the TAROT3 Ironman 650
Multi-rotor airframe with Orange-cube4 autopilot running PX4
firmware 5. Each UGV is attached with a Zed2 6 camera and
two 360◦ Lidars 7 as sensors with Intel NUC8 and Jetson
Xavier NX 9 as compute modules. On the quadcopter, we

2http://www.nex-robotics.com/products/0x-series-robots/0x-delta-rugged-
all-terrain-robot.html

3http://www.tarotrc.com/?lang=en
4https://docs.cubepilot.org/user-guides/autopilot/the-cube-module-overview
5https://docs.px4.io/main/en/flight controller/cubepilot cube orange.html
6https://www.stereolabs.com/zed-2/
7http://bucket.download.slamtec.com/f19ea8efcc2bb55dbfd5839f1d307e

34aa4a6ca0/LD601 SLAMTEC rplidar datasheet S1 v1.4 en.pdf
8https://www.intel.in/content/www/in/en/products/details/nuc.html
9https://www.nvidia.com/en-in/autonomous-machines/embedded-

systems/jetson-xavier-nx/
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(a) ξr1≤t≤10
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(b) ξr11≤t≤20
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(c) ξr21≤t≤79
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(d) ξr80≤t≤104

Fig. 5: Trajectories generated based on ξe for Warehouse
Management use case

(a) UAV (b) UGV

Fig. 6: Robots used for the real experiment

use Here 3 GPS10, Go-pro Hero 7 camera 11, Benawake TF-
02 distance sensor 12, and ODROID XU4 13 as a compute
module.

10https://docs.cubepilot.org/user-guides/here-3/here-3-manual
11https://gopro.com/content/dam/help/hero7-

black/manuals/HERO7Black UM ENG REVA.pdf
12http://wiki.amperka.ru/ media/products:lidar-tf02-pro:lidar-tf02-pro-

product-manual.pdf
13https://wiki.odroid.com/odroid-xu4/odroid-xu4
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