Ground-Truth Driven Cyber Security Research: Some Examples

Mustaque Ahamad, Georgia Tech, NYU Abu Dhabi and Pindrop Paul Royal, Georgia Tech Terry Nelms, Georgia Tech & Damballa Roberto Perdisci, University of Georgia Bharat Srinivasan, Georgia Tech Payas Gupta, NYU Abu Dhabi Vijay Balasubramaniyan, Pindrop Security

Background

- Georgia Tech Information Security Center
 - Founded in 1998
 - About a dozen faculty, 30+ PhD students
 - MS degree program in cyber security
- Research philosophy
 - Data-driven and high impact research
- Research thrusts
 - Understanding emerging threats, mobile security, converged networks security & crypto

Data Driven Cyber Security Research

- Security is about assumptions and guarantees
- What assumptions can we make about the nature of threats?
 - Evolution from hackers and criminals to nation-states
- Ground-truth based approach
 - Observe, understand and defend
- Allows validation in a realistic setting

Agenda: Examples of Data-Driven Research

- GTISC MTrace System (Paul Royal)
 - Scalable malware analysis
- ExecScent
 - Malware family attribution via communication templates
- Phoneypot
 - Securing the emerging telephony ecosystem
- Data sharing and coordination challenges

Example 1: Mtrace: Malware Analysis (Paul Royal)

- Malware is the centerpiece of current threats on the Internet
 - Botnets (spamming, DDOS, etc.)
 - Information Theft
 - Financial Fraud
- Used by Real Criminals
 - Criminal Infrastructure
 - Domain of Organized Crime

Malware Cont' d

- There is a pronounced need to understand malicious software behavior
- Malware analysis is the basis for understanding the intentions of malicious programs
 - Threat Discovery and Analysis
 - Compromise Detection
 - Forensics and Asset Remediation

Malware Analysis - Transparency

 Analysis tool/environment detection is a standard malware feature

Transparency Cont' d

- GTISC's Idea: Use Intel VT as a malware analysis technology
 - External
 - No in-guest components to detect
 - Capable
 - Functionality sufficient to build analysis tools
 - "Equivalent"
 - Hardware-assisted nature offers same instruction-execution semantics
- Created tools supporting multiple tracing granularities
 - Coarse-grained tracing via SYSENTER_EIP_MSR displacement
 - e.g., System call tracing
 - Fine-grained tracing via TF injection
 - e.g., Precision automated unpacking

Malware Analysis - Automation

- DIY kits, packing tools, server-side polymorphism vastly increase volume of samples
- GTISC collects over 100,000 new samples each day
 - Collected from crawlers, mail filters, honeypots, user submissions, and malware exchanges
- Volume makes manual analysis untenable

Automation Cont' d

- GTISC has built a horizontally scalable, automated malware analysis framework
 - Each sample executed in a sterile, isolated environment
 - Intel VT used to ensure transparency
 - Structured representations of network actions placed inside intelligence database
 - C&C domains, anomalous outbound netflow, malicious download URLs, malware-generated email subjects, etc.
- Database used by corporate security groups, hosting providers, domain registrars, and law enforcement

Leveraging Intelligence - Mariposa

- Case Study: Mariposa
 - Large, data-stealing botnet
 - Used to steal credit card, banking information
 - Compromises in half of Fortune 1000
 - Before takedown, over 1M members

Mariposa Cont' d

- Takedown Timeline
 - Spring 2009: Mariposa discovery
 - Fall 2009: International Mariposa Working Group (MWG) formed
 - Defence Intelligence, GTISC, Panda Antivirus, FBI, Guardia Civil (Spanish LEO)
 - December 2009: All C&C domains shutdown and sinkholed within hours of the first
 - Operators panic; log into domain management services from home systems
 - Warrants issued to operators' ISP
 - January 2010: Operators arrested
 - 800,000 financial credentials found on one operator's home systems

Example 2: ExecScent: Mining for New C&C Domains in Live Networks with Adaptive Control Protocol Templates

Terry Nelms, Roberto Perdisci and Mustaque Ahamad
Appeared in Usenix Security Symposium, August 2013.

Modern Malware Networking

ExecScent Goals & Observations

Goals:

- Network detection domains & hosts.
- Malware family attribution.

Observations:

- C&C protocol changes infrequently.
- HTTP C&C application layer protocol.

Adaptive Control Protocol Templates

Structure of the protocol.

Self-tuning.

Entire HTTP request.

Template Learning Process

Malware C&C Traces

Request Generalization

Request Generalization

(a) Request 1:

GET /Ym90bmV0DQo=/cnc.php?v=121&cc=IT

Host: www.bot.net

User-Agent: 680e4a9a7eb391bc48118baba2dc8e16

. . .

Request 2:

GET /bWFsd2FyZQ0KDQo=/cnc.php?v=425&cc=US

Host: www.malwa.re

User-Agent: dae4a66124940351a65639019b50bf5a

. . .

(b) Request 1:

GET /<Base64;12>/cnc.php?v=<Int;3>&cc=<Str;2>

Host: www.bot.net

User-Agent: <Hex;32>

...

Request 2:

GET /<Base64;16>/cnc.php?v=<Int;3>&cc=<Str;2>

Host: www.malwa.re User-Agent: <Hex;32>

. . .

Request Clustering

Labeled C&C Domains

Labeled C&C Domains

Generating CPTs

Generating CPTs

Labeled CPTs

Labeled CPT

- T1) Median URL path: /<Base64;14>/cnc.php
- T2) URL query component: {v=<Int,3>, cc=<String;2>}
- **T3) User Agent**: {<Hex;32>}
- T4) Other headers: {(Host;13), (Accept-Encoding;8)}
- **T₅) Dst nets**: {172.16.8.0/24, 10.10.4.0/24, 192.168.1.0/24}

Malware family: {*Trojan-A*, *BotFamily-1*}

URL regex: GET /.*\?(cclv)=

Background traffic profile:

specificity scores used to adapt the CPT to the deployment environment

Template Matching

- Similarity
 - Measures likeness
 - Components
 - Weighted average
 - Match threshold
- Specificity
 - Measures uniqueness
 - Dynamic weights
 - Self-tuning

Input: req, CPT

Similarity: $s(req_i, CPT_i)$, for each component *i*

Specificity: $\delta(\text{req}_i, \text{CPT}_i)$, for each component *i*

Match-Score: *f*(sim, spec)

If Match-Score > Θ: Georgia

Similarity & Specificity Examples

- Example A (High Similarity, Low Specificity):
 - -/index.html Request
 - /index.html CPT
- Example B (Low Similarity, High Specificity):
 - /downloads/9908-7623-0098/images Request
 - /VGVycnkgTmVsbXMK (<Base64, 16>) CPT
- Example C (High Similarity, High Specificity)
 - /Ui4gUGVyZGlzY2kK (<Base64, 16>)- Request
 - /VGVycnkgTmVsbXMK (<Base64, 16>)- CPT

Evaluation Deployment Networks

	UNETA	UNETB	FNET
Distinct Src IPs	7,893	27,340	7,091
HTTP Requests	34,871,003	66, 298, 395	58,019,718
Distinct Domains	149, 481	238,014	113,778

- Evaluation ran for two weeks.
- CPTs updated daily beginning two weeks prior to evaluation.

Ground Truth

Commercial C&C blacklist.

Pruned Alexa top 1 million.

Professional threat analysts.

Finding C&C Domains

New vs. Blacklist Domains

New vs. Blacklist Infected Hosts

ISP Deployment

 Deployed the 65 newly discovered C&C domains on 6 ISP networks for one week.

 Counted the number of distinct source IP addresses contacting the domains daily.

Identified 25,584 new potential malware infections.

Model Comparison - True Positives

Model Comparison – False Positives

Limitations

 Dependence on malware traces and labeled domains.

 Implement a new protocol when the C&C domain or IP address changes.

Blend into background traffic.

Inject noise into the protocol.

Conclusion

 Majority of C&C domains and infections discovered were not on a blacklist.

- C&C domains and IP addresses change more frequently than the protocol structure.
- Adaptive templates yield a better trade-off between true and false positives.

ExecScent is currently deployed.

Example 3: Telephony Going the Internet Way

- Telephony used to be a trusted channel
 - We exactly knew the call path from source to its destination
- The new telephony landscape
 - Massive scale calling at little or no cost
 - Services like caller-id spoofing are widely available
 - Voice communication will increasingly become embedded into online applications
 - Hard to know "Who Calls me?"
- Have we seen something like this before?
 - Cyber criminals send email spam at massive scale, steal and monetize data, sell fake goods and even launch denial-of-service attacks.

Stealing Money with the Telephone

- Incoming Calls (Fraudster → Victim)
 - Robocalling allows a fraudster to reach large number of targets
 - Telemarketers use it to to reach potential customers/victims
- Outgoing Calls (Victim → Fraudster)
 - Driving traffic to premium numbers (IRSF)
 - Stealing data from victims who respond
- Fraud facilitating call centers (https://blogs.rsa.com/fraudster-operated-call-centers-emerge-in-the-underground-economy-to-facilitate-phone-fraud/)

Do We Have Data to Better Understand the Problem?

- FTC data has over five million records
 - Obtained a copy for research use, each complaint record has some information about the nature of the call, calling number (only 7 digits) and a timestamp
- Phoneypot: Georgia Tech/NYUAD/Pindrop/SUM/IIITD Telephony Honeynet
 - Using "seed" numbers that are carefully publicized at a variety of places
 - Using grey numbers
- Data from the web channel
 - Phone numbers in email spam, Youtube comments, Tweets?
- Crowd sourced data
 - 800notes.com, whocallsme.com etc.

Early Results of Data Analysis

- Are these the same guys we have seen elsewhere?
 - Nature of calls (e.g., what did a victim complain about)
- Is there evidence of caller-id spoofing?
 - How do we know for sure?
- How are victim numbers being harvested?
 - Web channel?

Nature of Services/Offers

Data Source	Keywords
FTC	 Credit Card, Bankcard, Lower interest, Cardholder services – over 60% Home Alarm, Home protection, Emergency medical alert Canadian pharmacy, Rx assistance
Twitter (analysis of about one million tweets that have phone numbers)	 Money, credit, bills, Rachael from card holder services Drugs Warranty Education, degrees

Phoneypot Story So Far (Pindrop/Georgia Tech only)

- Over 800 unsolicited calls over about two months
 - Received Rachel Calls, Pharmacy Calls, Free trip calls among other social engineering calls.
 - More VoIP calls but also good number of landline and cellular calls
 - About 1/3 calls were from outside of the United States

Other Observations from Phoneypot

- We are receiving dozens of calls, including on numbers that we added to do-not-call list
- Numbers are being scraped from the web channel
- Life history of a phone number seems to matter (qualifying process?)
- Calls from bored people who have nothing better to do with their time?

Detecting Caller-Id Spoofing via Acoustic Fingerprints [Pindrop Security]

Is there Caller-id Spoofing?

Using Caller-id Spoofing to Craft Call Center Attacks

- Call centers have moved on to stronger authentication
 - Knowledge-based authentication
- Social engineering or weak KBA leads to password resets via the phone channel
- New password is used to attack the web channel
 - Funds transfer from online accounts

Next Steps

- How do we gain access to data to better understand the threat landscape?
- How do we "convict" or "blacklist" phone numbers like IP addresses or domains?
 - How do we stop calls coming from blacklisted phone numbers?
 - How do we stop people from going to bad numbers?
- How do we build stronger accountability (Know Your Caller)?
- How do we enhance trust in the telephony ecosystem?
 - Technology? Policy? Regulation? Awareness?

Getting Back to Data-Driven Research

- Data Sharing Challenges
 - Proprietary data and privacy issues
 - Going from data to actionable information
- Coordination
 - Building human trust networks
 - Proactive intelligence sharing
- Academic research centers are great places for facilitating data-driven research
 - Neutral, trusted places where industry, government and academia can come together

Conclusions

- Cyber threats are constantly evolving
- Getting ahead of the threats
 - Access to data from real networks
 - Effective analytics
 - Offering actionable intelligence
- Infrastructure for data collection, sharing and coordination
- Data is an excellent enabler for great research

