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Abstract. A binomial is a polynomial with at most two terms. In this
paper, we give a divide-and-conquer strategy to compute binomial ideals.
This work is a generalization of the work done by the authors in [12, 13]
and is motivated by the fact that any algorithm to compute binomial
ideals spends a significant amount of time computing Gröbner basis and
that Gröbner basis computation is very sensitive to the number of vari-
ables in the ring. The divide and conquer strategy breaks the problem
into subproblems in rings of lesser number of variables than the original
ring. We apply the framework on five problems – radical, saturation, cel-
lular decomposition, minimal primes of binomial ideals, and computing
a generating set of a toric ideal.

1 Introduction

Consider the polynomial ring k[x1, . . . , xn]. A binomial in such a ring is a
polynomial of the form c · xα + d · xβ , where c, d ∈ k and α, β ∈ Nn. An ideal
in the polynomial ring which has a generating set comprising only of binomials
is called a binomial ideal. In this paper, we will be concerned with computing
various binomial ideals.

Binomial ideals, unlike general polynomial ideals, possess rich combinatorial
structure which can be exploited while computing various structures derived
from them, for example Gröbner bases, primary decomposition, and associated
primes [17, 10]. Pure difference binomials are binomials of the form xα−xβ . The
varieties of pure difference prime binomial ideals are exactly the toric varieties.
Hence, such ideals are also known as toric ideals [7, 6]. There is a large literature
studying applications and computations of toric ideals [14, 1]. Moreover, quo-
tients of polynomial rings by pure difference binomial ideals form commutative
semigroup rings [9].

Apart from a purely academic interest in the subject of binomial ideals,
their study is also motivated by the fact that they are often encountered in
interesting problems in diverse fields. These include solving integer programs [11,
3, 18, 16], computing primitive partition identities [14, Chapters 6,7], and solving
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scheduling problems [15]. In algebraic statistics, closures of discrete exponential
families have been identified with nonnegative toric varieties [8].

The theory of binomial ideals was developed in a seminal paper by Eisenbud
and Sturmfels [6]. Their paper not only showed various properties of binomial
ideals – for example, the radicals and associated primes of binomial ideals are
themselves binomial ideals – but they also show how to compute these structures.

In [12], we had dealt with the computation of toric ideals. In [13], we had
extended our approach to compute the saturation of binomial ideals. In this
paper, we present a general framework to compute several of such binomial
ideals, namely radical, saturation, minimal primes and cellular decompositions.
This work is motivated by two crucial observations –

1. Most of these computations involve computing a Gröbner basis of certain
ideals, and

2. Buchberger’s algorithm [2] to compute Gröbner basis is very sensitive to the
number of variables in the underlying polynomial ring.

In the light of these observations, we propose a divide-and-conquer technique to
solve the aforementioned problems, with the hope that this strategy can also
be applied to a host of other problems related to binomial ideals, like com-
puting associated primes, primary decomposition, primary component, and so
on. The essence of the strategy is the following. Consider the polynomial ring
k[x1, . . . , xn], and a binomial ideal I ⊆ k[x1, . . . , xn]. We compute the image
of I under the natural homomorphism in the derived rings k[x2, . . . , xn] and
k[x±

1 , x2, . . . , xn] and perform the same computation on these ideals(Intuitively,
x±
1 implies that we allow both positive and negative integers as exponents for

x1). Then we “lift” the results in the original ring and combine them to compute
a solution of the original problem. Both these rings are isomorphic to polynomial
rings with one less variable [13], hence Gröbner basis (actually such basis does
not exist in some of these new rings but we use a variant for the computations)
can be computed more efficiently.

The paper has been arranged as follows. In the next section, we briefly present
some background required for the paper and define some notations. Section 3
defines two maps from ideals of a Laurent ring to certain derived rings, and
state some useful properties of these maps. These two maps form the basis of
the reduction of the problem into the subproblems, discussed earlier. Section 4
contains the main contribution of the paper – discussion of the proposed divide-
and-conquer framework. In Section 5, we use this framework to compute radical,
saturation, cellular decomposition, minimal primes of binomial ideals, and a
generating set of a toric ideal.

2 Background

A detailed treatment of the background required for the paper, like the notions of
localization, Laurent polynomial rings, or of various kinds of ideals like radical,



prime, saturation, etc., was not included here due to constraint of page limit,
but the reader can refer to [4, 5].

We will just state a few notations used in the paper. For a ringR, if r1, . . . , rs ∈
R, then ⟨ r1, . . . , rn ⟩ will denote the ideal generated by r1, . . . , rn. For an ideal
I ⊆ R,

√
I = { r | rm ∈ I, m ≥ 0 } is the radical of I. I : r∞ = { s | srj ∈

I, for some j ≥ 0 } will denote the saturation of I w.r.t. r.
For a field k, we will use the standard notation of k[x1, . . . , xn] to denote the

polynomial ring in n variables. If U ⊆ R is a multiplicatively closed set of R, then
R[U−1] is the localization of R w.r.t. U . If the ring k[x1, . . . , xn] is localized w.r.t.
x1, . . . , xi, then the partial Laurent polynomial ring k[x±

1 , . . . , x
±
i , xi+1, . . . , xn]

will be denoted by the tuple (k,X,L), where k is the field, X is the set of
variables, and L is the set of variables w.r.t. which k[X] has been localized.

3 Two Ring Homomorphisms

3.1 Modulo Map

Let r be an element of a Noetherian ring R. Then θ : R → R/⟨ r ⟩ denotes the
natural homomorphism θ(a) = [a] = a + ⟨ r ⟩, ∀a ∈ R. Here, [a] or a + ⟨ r ⟩
denotes the coset of a in R/⟨ r ⟩. This induces a map Θ from the ideals in R
containing r and the ideals of R/⟨r⟩ as follows –

Θ(I) = { [a] | a ∈ I },

where I ⊆ R is an ideal containing r. Similarly, we define a map Θ−1 from the
ideals of R/⟨ r ⟩ to the ideals of R containing r as follows –

Θ−1(J) = { x | [x] ∈ J },

where J ⊆ R/⟨ r ⟩ is an ideal. We state, without proof, some basic properties of
Θ.

Lemma 1. The maps Θ and Θ−1 have the following properties –

(i) Θ and Θ−1 preserve set inclusion.
(ii) Θ is a bijection.
(iii) Θ and Θ−1 map primes to primes.
(iv) Θ and Θ−1 distribute over finite intersections.
(v) In a Noetherian ring, Θ(

√
I) =

√
Θ(I)

(vi) Θ−1(⟨ [f1], . . . , [fn] ⟩) = ⟨ f1, . . . , fn ⟩+ ⟨ r ⟩

3.2 Localization map

Let r be a nonzero-divisor of a Noetherian ring R. Let U denote the set of all
powers of r, U = { ri | i ≥ 0 }. Since r is not nilpotent, U does not contain zero.
U is also multiplicatively closed. Therefore R[U−1] is well defined.



Let ϕ : R → R[U−1] be the natural homomorphism given by ϕ(a) = a/1, ∀a ∈
R. We define a map, Φ, induced by ϕ, from the ideals in R saturated w.r.t. r to
the ideals of R[U−1] as follows –

Φ(I) = ⟨ { a/1 | a ∈ I } ⟩,

where I ⊆ R is an ideal saturated w.r.t. r. Similarly, we will define a map, Φ−1,
from the ideals in R[U−1] to the ideals in R which are saturated with respect to
r as follows –

Φ−1(J) = { a | a/rk ∈ J, k ≥ 0 }.

We present some straight forward properties of Φ and Φ−1 without proof.

Lemma 2. The maps Φ and Φ−1 have the following properties –

(i) Φ and Φ−1 preserve set inclusion.
(ii) Φ is a bijection.
(iii) Φ and Φ−1 map primes to primes.
(iv) Φ and Φ−1 distribute over finite intersections.
(v) For x ∈ R,Φ(I : x∞) = Φ(I) : x∞.
(vi) In a Noetherian ring Φ(

√
I) =

√
Φ(I)

(vii) Φ−1(⟨ f1/ra1 , . . . , fn/r
an ⟩) = ⟨ f1, . . . , fn ⟩ : r∞.

4 A Divide-and-Conquer Method

In this section, we focus on the main objective of this paper. We present a general
algorithm (Algorithm 1) based on divide-and-conquer technique which is useful
in computing several binomial ideals associated with a given binomial ideal. The
algorithm takes as input the following 3 objects (i) A ring (k,X,L), (ii) A set of
binomials, S, generating an ideal I, and (iii) A set of variables V ⊆ X \L called
forbidden set. The objective of the algorithm is to compute A(⟨ S ⟩), where A is
some object associated with the binomial ideal I. In Section 5 we demonstrate
how Algorithm 1 computes (i) Radical of I, (ii) Saturation of I w.r.t. all the
variables in the ring, (iii) Generating basis of a toric ideal from I, (iv) Minimal
Primes of I, and (v) Cellular decomposition of I.

We restate, from the introduction, the two crucial observations behind this
algorithm –

1. Most computations involving binomial ideals compute Gröbner basis of cer-
tain ideals, and

2. Buchberger’s algorithm [2] to compute Gröbner basis is very sensitive to the
number of variables in the underlying polynomial ring.

The motivation behind the algorithm is to divide the problem suitably into
smaller subproblems, solve these subproblems in rings with less variables than
the original ring, and combine these results to solve the original problem.

Let x ∈ (X \ L) \ V , and consider the maps (i) Θ : (k,X,L) → (k,X \
{x}, L), (ii) Φ : (k,X,L) → (k,X,L ∪ {x}), and (iii) f : (k,X,L) → (k,X,L)



Algorithm 1: A framework for computing binomials ideals – A

Data: A ring (k,X,L), where k is algebraically closed, and char(k) = 0;
forbidden set V ⊆ X \ L; a binomial generating set S of an ideal in the
ring.

Result: A(⟨ S ⟩)
1 if X = ϕ then // The ring is a field

2 Nothing to do ;

3 else if X = L then // Laurent polynomial ring

4 Compute A(⟨ S ⟩) and return ;
5 else if V = X \ L then // No more reductions

6 Compute A(⟨ S ⟩) and return ;
7 end
8 Let x ∈ (X \ L) \ V ;

/* computing A(Θ(⟨ S ⟩+ ⟨ x ⟩)) and lift */

9 Call A with ideal Θ(⟨ S ⟩+ ⟨ x ⟩), ring (k,X \ {x}, L) and forbidden set V ;
10 Compute Θ−1(A(Θ(⟨ S ⟩+ ⟨ x ⟩))) ;

/* computing A(Φ(⟨ S ⟩ : x∞)) and lift */

11 Call A with ideal Φ(⟨ S ⟩ : x∞), ring (k,X,L ∪ {x}) and forbidden set V ;
12 Compute Φ−1(A(Φ(⟨ S ⟩ : x∞)))) ;

/* computing A(f(⟨ S ⟩ : x∞)) */

13 Call A with ideal f(⟨ S ⟩), ring (k,X,L) and forbidden set V ∪ {x} ;
/* Computing A(⟨ S ⟩) */

14 Combine Θ−1(A(Θ(⟨ S ⟩+ ⟨ x ⟩))), Φ−1(A(Φ(⟨ S ⟩ : x∞)))) and A(f(⟨ S ⟩)) to
get A(⟨ S ⟩) ;
/* Return */

15 return A(⟨ S ⟩) ;

which depends on the problem A(). The reduction step involves solution of the
subproblems (i) A(Θ(I+ ⟨ x ⟩)), in ring (k,X \{x}, L) and forbidden set V (step
9), (ii) A(Φ(I : x∞)), in ring (k,X,L ∪ {x}) and forbidden set V (step 11),
(iii) A(f(I)) in ring (k,X,L) and forbidden set V ∪ {x}(step 13). The first
subproblem is in a ring with one less variable compared to the original ring. In
the case of the second subproblem, Gröbner bases are not defined in the context
of partial Laurent polynomial rings (k,X,L). But pseudo-Gröbner bases [13],
briefly discussed later in this section, can effectively substitute Gröbner bases for
binomial ideal computations. The time complexity of the algorithm to compute
pseudo Gröbner basis was shown in that paper to be dependent on the number
of variables in X \ L. Hence, this subproblem is also justifiably “smaller”.

The role of the forbidden set of variables is that reduction must not be done
with respect to these variables. Thus, if V = X \ L, then the computation
A(I) must be easy to perform without further reduction. In addition, the third
subproblem should be such that it does not require the computation of a Gröbner
basis since in this case the ring is same as in the original problem and involves
no reduction in ring size. Here is a motivating example to justify the use of
forbidden set. Suppose we want to compute the saturation, I : (x1 · · ·xn)

∞,



while I is already saturated w.r.t. x1, x2. Then reduction with these variables is
futile. Hence we can put these variables in the forbidden set.

Next, the algorithm computes the inverse images of A(Θ(I + ⟨ x ⟩)) (step
10) and A(Φ(I : x∞)) (step 12) in the original ring (k,X,L). In the applications
discussed in the next section, A(I) is either an ideal (as in the case of radical of
I) or a set of ideals (as in the case of minimal primes of I). Hence these images
are well defined. Abusing notation, we denote these inverse images respectively
by Θ−1(A(Θ(I + ⟨ x ⟩)) and Φ−1(A(Φ(I : x∞)).

Finally in step 14, A(I) is to be constructed from these images and A(f(I)).
One can easily observe that the algorithm terminates, as in each step either
cardinality of X decreases, or that of L or V increases. This algorithm is a
general method and can be tuned to a particular problem by specifying the
following three steps in the context of that problem –

(steps 4, 6) V = X \L: Give the method to compute A(I) in these base cases.

(step 13) : Specify function f .

(step 14) : Show how to combine the results of the subproblems.

In the next few subsections we show how to compute Θ, Φ, and their inverses
using a generating set of the input ideal.

4.1 Computing Modulo

Let L = {y1, . . . , yk} and X = {x1, . . . , xl} ∪ {z} ∪ L. Maps θ and Θ from
(k,X,L) → (k,X \ {z}, L) are computed as follows. Consider an arbitrary poly-
nomial in (k,X,L), f =

∑
i x

αiyβi +
∑

j x
αjyβjzcj . Then, θ(f) =

∑
i x

αiyβi .
Further, suppose S ⊂ (k,X,L) is a set of binomials. Then, Θ(⟨ S ⟩) = ⟨ θ(f) |
f ∈ S ⟩. Conversely, if S′ ⊂ (k,X \{z}, L), then Θ−1(⟨ S′ ⟩) = ⟨ S′∪{z} ⟩, from
Lemma 1.

4.2 Computing Localization

Consider the ring (k,X,L) as defined in the previous subsection. If g ∈ (k,X,L),
then ϕ(g) = g/1.

Computing Φ and Φ−1 is also easy. For any S ⊂ (k,X,L), Φ(⟨ S ⟩) =
⟨ { g/1 | g ∈ S } ⟩. In the reverse direction, for any S′ ⊂ (k,X,L ∪ {z}), we
define Φ−1(⟨ S′ ⟩) as follows. Let S′ = {g1/za1 , . . . , gk/z

ak}. Then Φ−1(⟨ S′ ⟩) =
⟨ g1, . . . , gk ⟩ : z∞. The correctness follows from Lemma 2.

To see how we can compute saturation with respect to z in a partial Laurent
polynomial ring, we briefly revisit the results on pseudo-Gröbner basis in [13].

4.3 pseudo-Gröbner Basis

Gröbner bases are defined for ideals in rings k[x1, . . . , xn] ([4, Chapter 2]). This
notion has been generalized for binomial ideals in partial Laurent polynomial



rings, called pseudo-Gröbner bases in [13, Section 5]. Here we reproduce some
relevant results.

Definition 1. A binomial axα + bxβ ∈ (k,X,L) is said to be balanced if xi ∈
X \ L implies αi = βi.

Definition 2. For every finite binomial set G, G1 and G2 will denote its parti-
tion, where the former will represent the set of non-balanced binomials and the
latter will represent the set of balanced binomials of G.

Definition 3. A binomial basis G = (G1, G2) of a binomial ideal I will be called
a pseudo Gröbner basis with respect to a given term-order, if G1 reduces every
binomial of I to 0(mod(G2)).

Theorem 1. [13, Theorem 3] Every binomial ideal in (k,X,L) has a pseudo-
Gröbner basis with respect to any term-order.

The Buchberger’s algorithm to compute Gröbner basis has been adopted to
compute pseudo-Gröbner basis in [13, Algorithm 4]. Finally, the following theo-
rem shows that saturation can be computed in similar way as in k[x1, . . . , xn].

Theorem 2. [13, Theorem 3] Let (G1, G2) be a pseudo Gröbner basis of a homo-
geneous binomial ideal in (k,X,L) with respect to a graded reverse lexicographic
term order with the variable xi /∈ L being the least. Then (G′

1 = G1 ÷ x∞
i , G′

2 =
G2 ÷ x∞

i ) is a pseudo Gröbner basis of I : x∞
i .

Here S ÷ x∞ is the result of the division of each polynomial in S by the
largest possible power of x.

5 Computing A(I)

As mentioned in the previous section, we will describe the steps 4, 6, 13 and
14 of the algorithm in context of five problems – (i) radical of a binomial ideal,
(ii) the saturation of a binomial ideal with respect to all variables in the ring,
(iii) computing toric ideal, (iv) the minimal prime ideals of a binomial ideal, and
(v) cellular decomposition of a binomial ideal.

5.1 Radical Ideal: A = Radical

Theorem 3. Let R be a Noetherian ring, r ∈ R a non-zero-divisor, and I ⊆ R
be an ideal. Then,

√
I + ⟨ r ⟩ ∩

√
I : r∞ =

√
I, for some r ∈ R.

Proof. We know that every radical ideal in a Noetherian ring has a prime decom-
position. Let the prime decomposition of

√
I be

√
I = P1∩P2∩ . . .∩Pn. Let the

collection of the primes in the decomposition be denoted by P. Define two ideals
Pr = (∩r∈P∈PP ) , and Pr = (∩r/∈P∈PP ). It is easy to see that I + ⟨ r ⟩ ⊆ Pr.
Hence,

√
I + ⟨ r ⟩ ⊆ Pr. Next, we want to show that

√
I : r∞ ⊆ Pr.



Let f ∈ I : r∞. Then, rnf ∈ I for some n ≥ 0. This implies that for
all P ∈ P, rnf ∈ P . In particular, if r /∈ P , then f ∈ P . We deduce that
I : r∞ ⊆ Pr, and hence

√
I : r∞ ⊆ Pr. Putting the two observation together we

have
√

I + ⟨ r ⟩ ∩
√
I : r∞ ⊆ Pr ∩ Pr =

√
I

The converse containment
√
I ⊆

√
I + ⟨ r ⟩ ∩

√
I : r∞ is obvious. ⊓⊔

The following theorem will help us in the formulation of step 14.

Theorem 4. Let R be a Noetherian ring, r ∈ R a non-zero-divisor, and I ⊆ R
be an ideal. Then,

√
I = Θ−1(

√
Θ(I + ⟨ r ⟩)) ∩ Φ−1(

√
Φ(I : r∞)).

Proof. We will continue to use the notations defined in the previous theorem.
From the proof of Theorem 3, we have I + ⟨r⟩ ⊆ Pr. From the containment
preserving property and the commutation with intersection property of Θ, we
have Θ(I + ⟨r⟩) ⊆ Θ(∩r∈P∈PP ) = ∩r∈P∈PΘ(P ). Similarly

√
Θ(I + ⟨r⟩) ⊆√

∩r∈P∈PΘ(P ) = ∩r∈P∈P
√
Θ(P ). The last equality is due to the fact that

intersection of radicals is equal to the radical of intersections.
As the P s are primes, from Lemma 1 we know that the Θ(P )s are primes and

since prime ideals are radical, we have
√
Θ(I + ⟨r⟩) ⊆ (∩r∈P∈PΘ(P )). Hence

Θ−1(
√
Θ(I + ⟨r⟩)) ⊆ Pr.

Similarly, starting from the following relation given in the proof of theorem
3 I : r∞ ⊆ Pr we can deduce that Φ−1(

√
Φ(I : r∞)) ⊆ Pr. Combining the two

results gives Θ−1(
√
Θ(I + ⟨r⟩)) ∩ Φ−1(

√
Φ(I : r∞)) ⊆

√
I.

To prove the converse, from Lemmas 1 and 2 we have√
I ⊆ Θ−1(

√
Θ(I + ⟨ r ⟩ ∩ Φ−1(

√
Φ(I : r∞). ⊓⊔

We will not use the A(f(I)) branch of the reduction for this problem. Thus,
Theorem 3 shows that the combine step (step 14) is intersection. Also, we will
have V = ∅. The base case computation in step 4 of the algorithm is trivial
because all binomial ideals in a Laurent polynomial ring are already radical as
shown below.

Theorem 5 (Corollary 2.2, [6]). Let J be a binomial ideal in the ring (k,X, ϕ).
Then, if k is algebraically closed and char(k) = 0, then J : (Πx∈Xx)∞ is radical.

Corollary 1. Let k be an algebraically closed field, with char(k) = 0. Then, all
binomial ideals in (k,X,X) are radical.

Proof. Let J be a binomial ideal in the ring (k,X,X), where X = {x1, . . . , xn}.
Consider the ideal localization map, Φn, from (k,X,X \ {xn}) to (k,X,X).
Under this map, we know that Φ−1

n (J) is saturated w.r.t xn. Similarly, if we
consider the map Φn−1 from (k,X,X \ {xn−1, xn}) to (k,X,X \ {xn}), then the
ideal Φ−1

n−1(Φ
−1
n (J)) is saturated w.r.t. xn−1. So we have Φ−1

n (J) = Φ−1
n (J) : x∞

n .

Hence, Φ−1
n−1(Φ

−1
n (J)) = Φ−1

n−1(Φ
−1
n (J) : x∞

n ) = Φ−1
n−1(Φ

−1
n (J)) : x∞

n (Lemma

2) Thus, Φ−1
n−1(Φ

−1
n (J)) is saturated w.r.t. {xn−1, xn}. Continuing this argu-

ment we see that Φ−1
1 (· · · (Φ−1

n (J)) · · · ), in the ring (k,X, ϕ), is saturated w.r.t.
{x1, . . . , xn}. From the previous theorem Φ−1

1 (· · · (Φ−1
n (J))) is radical. Now, by

repeated application of Lemma 2 we deduce that J is radical too. ⊓⊔



Analysis: The proposed algorithm uses two out of the three branches of the
Divide-and-Conquer strategy (Algorithm 1), so if n is the number of variables in
the input ideal, this algorithm requires 2n Gröbner basis computations. Compare
this with n! computations in [6, Algorithm 9.1].

5.2 Saturation : A = Saturation

Suppose I is saturated with respect to {xi1 , . . . , xij} then we begin the com-
putation with V = {xi1 , . . . , xij}. For this problem, we only use the A(I : x∞)
branch of the reduction. The base case for this algorithm occurs when X \L = V
(step 6). As Φ preserves saturation (Lemma 2), the ideal is already saturated in
this case. Since the algorithm uses only one branch of the reduction, step 14 is
redundant.

Analysis: In this proposed algorithm, the number of variables in the image space
is 1 in the first iteration, 2 in the second iteration, and so on. Symbolically, if
G(k) denotes the time complexity of Buchberger’s algorithm in a k variable ideal,
then the cost of the proposed algorithm is

∑n
k=1 G(k), where n is the number of

variables in input ideal. On the other hand, the cost of the Sturmfels’ algorithm
[14, Lemma 12.1] is nG(n).

5.3 Toric Ideals: A = Toric

Pure difference prime binomial ideals are called toric ideals. So, they are a special
class of general binomial ideals and, as pointed out in Section 1, perhaps the
most useful of all binomial ideals from an application perspective. The goal in
this case is also to saturate a given binomial ideal, but we are guaranteed that
the saturated ideal will be a toric ideal. The solution of Section 5.2 applies to
toric ideals as well and our proposed algorithm do not exploit the fact that the
solution is known to be a toric ideal. But there are algorithms that do, namely
the project and lift algorithm due to Hemmecke and Malkin [10], and it is much
faster than the Sturmfels’ Algorithm alluded to in the previous section.

Analysis: Using the notation G(k) introduced in the previous section, the cost
of project and lift algorithm is

∑n
i=k G(i) + kG(k), where k is dependant on the

input. n, as in the previous cases, denote the number of variables in the input
ideal. We note that the cost of the proposed algorithm is

∑n
i=1 G(i). Thus, the

proposed algorithm matches project and lift in the worst case, and does better
in all other cases.

5.4 Prime Decomposition: A = Prime

In this case, as in the computation of a radical, the A(f(I)) branch will not be
used. We will first handle the base case, i.e. how to compute the minimal primes
of a binomial ideal in a Laurent polynomial ring (step 4). To do this, we will
mention (without proof) a set of results from [6].



Definition 4. A partial character on Zn is a homomorphism ρ from a sublattice
Lρ of Zn to the multiplicative group k∗(= k\{0}). A partial character will always
refer to the tuple (ρ, Lρ).

For a binomial ideal I in (k,X,X), let L(I) = { α | xα − c ∈ I }. It
is easy to verify that L(I) is a lattice. We define a function ρ as ρ(α) =
c, where xα − c ∈ I. Thus, (ρ, L(I)) is a partial character. Conversely, given a
partial character (ρ, L), we will define a binomial ideal as I(ρ) = ⟨xα − c|α ∈
L, ρ(α) = c⟩.

Theorem 6. For any proper binomial ideal in (k,X,X), there is a unique par-
tial character ρ on Zn such that I = I(ρ).

Definition 5. If L is a sublattice of Zn, then the saturation of L is the lattice
Sat(L) = { m ∈ Zn | dm ∈ L for some d ∈ Z }.

We can compute Sat(L) for any lattice L by a change of variables in (k,X,X).

Definition 6. If (ρ, Lρ) is a partial character, any partial character (ρ′, Sat(Lρ))
is called a saturation of (ρ, Lρ) if ρ

′ coincides with ρ when restricted to Lρ.

Theorem 7. If g is the order of the group Sat(Lρ)/Lρ, then there are g distinct
saturations of ρ: ρ1, . . . , ρg. Also I(ρ) = ∩g

j=1I(ρj).

Theorem 8. The radical of a cellular ideal is of the form I(ρ) + M(E )(d) (d
is vector with all 1s), and its minimal primes are the lattice ideals with the
saturations of ρ.

So in a Laurent polynomial ring, to determine the set of minimal primes of
a binomial ideal I = I(ρ), all we need to do is to compute the saturations of ρ.
The lattice ideals corresponding to these saturations are the associated primes
of I(ρ). The minimal of these ideals constitute the prime decomposition.

Now, let us discuss how we can combine the results from the modulo and
the localization branch (step 14). From the recursive calls of the algorithm we
have computed the minimal primes of Θ(I + ⟨ r ⟩) and Φ(I : r∞). Let the
set of minimal primes be denoted by PΘ and PΦ, respectively. So, we have√

Θ(I + ⟨ r ⟩) = ∩P∈PΘ
P,

√
Φ(I : r∞) = ∩P∈PΦ

P . From Theorem 4, we have√
I = Θ−1(

√
Θ(I + ⟨ r ⟩)) ∩ Φ−1(

√
Φ(I + ⟨ r ⟩)). Thus I = (∩P∈PΘ

Θ−1(P ))
∩ (∩P∈PΦΦ

−1(P )). We know that Θ and Φ map primes to primes (Lemmas 1
and 2). The desired set of prime ideals is { Θ−1(P ) | P ∈ PΘ } ∪ {Φ−1(P ) |
P ∈ PΦ}. We just need to remove the redundant ones.
Analysis: In this case we have only used the modulo and localization branches.
So, the cost of the algorithm is 2n Gröbner basis computations for an input
ideal containing n variables. The cost of algorithm 9.2 proposed in [6] is 2n

iterations, where in each iteration a Gröbner basis and a cellular decomposition
is computed. Our proposed solution, thus, has gotten rid of the necessity of
computing cellular decomposition in each of the 2n iterations.



5.5 Cellular Decomposition: A = Cellular

In this section we will generalize the notion of cellular ideals to partial Laurent
polynomial rings, establish that every ideal has a cellular decomposition, and
use our framework to compute such a decomposition.

Let (k,X,L) be the underlying partial Laurent polynomial ring. For a given
set of variables E ⊆ (X \ L) and an integer vector d = (di)i∈(X\L)\E , the ideal

M(E )(d) is defined as ⟨ { xdi
i | i ∈ (X \ L) \ E } ⟩.

Definition 7. An ideal I of (k,X,L) is cellular if for some E ⊆ (X \ L), we
have I = I : (

∏
i∈E xi)

∞ and I contains M(E )(d) for some vector d.

Observation 1. An ideal I is cellular iff ∃E ⊆ (X \ L) and an integer vector
d = (di)i∈(X\L)\E , such that I = (I + M(E )d) : (

∏
i∈E xi)

∞. It is denoted by

I
(d)
E .

Lemma 3. Φ−1 preserves cellular ideals.

Proof. Let Φ−1 be a map from (k,X,L) to (k,X,L \ {x}), where x ∈ L, and

consider the cellular ideal I = I
(d)
E in (k,X,L). As Φ−1(I) is saturated w.r.t. x,

it corresponds to the cellular ideal Φ−1(I)
(d′)
E∪{x}, where d′ is the same vector as

d, except that it does not contain the component corresponding to x. ⊓⊔

Lemma 4. Let s ∈ N be such that I : rs = I : r∞ in some Noetherian ring R.
Then, I = (I + ⟨ rs ⟩) ∩ (I : rs).

Proof. Let g ∈ (I+⟨ rs ⟩)∩(I : rs). Then g = i+hrs ∈ I : rs for some i ∈ I, h ∈
R =⇒ grs = irs + hr2s ∈ I. This, coupled with the fact that I : r2s = I : rs,
we have g ∈ I. ⊓⊔

Now we state how to compute a cellular decomposition of I. The computation
will not use A(Θ(I)) branch of the reduction. f(I) is defined as I+ ⟨ xs ⟩, where
s ∈ N is such that I : xs = I : x∞. By using Lemma 3, we see that cellular
decomposition of Φ(I : x∞) gives us a cellular decomposition of I : xs. To
combine the decompositions of A(I : xs) and A(f(I)), we use Lemma 4.

Ideals in the base cases (i.e.,X = L∪V ) are already cellular because variables
in V = X\L are nilpotents of the ideals. Hence, there is no computation required
in steps 4 and 6.

Analysis: As our algorithm uses only two branches, the cost of our algorithm
is 2n Gröbner basis computations for an input ideal containing n variables.
Algorithm 9.3 of [6] also needs to perform the same number of Gröbner basis
computations. So, in this case, we do not see an improvement in the performance
of our algorithm over existing algorithms. Advantage, if any, is the proposed gen-
eralized and unified approach which, according to the authors, is much simpler
and cleaner.
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