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Abstract

Let X be a subset of vertices of an undirected graph G = (V, E). Then G is said
to be X-critical if G and its induced subgraph on X are indecomposable, and each
w € V — X is critical in G, i.e., induced subgraph on V — {w} is decomposable.
This is a generalization of critically indecomposable graphs studied by Schmerl and
Trotter [7].

We present several structural results for this class of graphs and show that
in every X-critical graph the vertices of V' — X can be partitioned into pairs
(a1,b1), (a2,b2), ... (am,by) such that G(V — {a;,,b;,,...,a;,,b;, }) is also an X-
critical graph for arbitrary set of indices {j1,...,jx}. These vertex-pairs are called
commutative elimination sequence. If G is an arbitrary indecomposable graph with
an indecomposable induced subgraph G(X), then the above result establishes the ex-
istence of an indecomposability preserving sequence of vertex pairs (z1,y1),- - -, (Z¢, yt)
such that z;,y; € V—X. As an application of the commutative elimination sequence
of X-critical graph we present algorithms to extend a 3-coloring (similarly, 1-factor)
of G(X) to entire G.

Key words: Indecomposable Graphs, Commutative Elimination Sequence, Critical
Indecomposability, X-critical Graphs.

1 Introduction

An undirected graph G is a 2-tuple (V, E) where V is called the vertex set
and edge set E is a collection of unordered pairs of vertices. If Y is a subset
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of V, then G(Y') denotes the induced subgraph of G on Y, i.e., (Y, E') where
E' ={(u,v) € E:u,v €Y}

A module (or interval) (Fraissé [1]) of an undirected graph G = (V,E) is
a subset of vertices, M C V such that for any a,6 € M and c € V — M
edge (a,c¢) € E if and only if edge (b,c) € E. Singletons and V are mod-
ules vacuously therefore these are called trivial modules. A graph is said to
be indecomposable if it has no non-trivial module. If each maximal module
(a non-trivial module which is not properly contained in another non-trivial
module) is replaced by a single vertex, then we get indecomposable or prime
or base-level graph. There are many graph algorithmic problems which can be
solved for general graphs if it is solved for indecomposable graphs. These in-
clude the problems in domination, matching, coloring, optimal spanning tree,
graph isomorphism etc. Therefore the study of indecomposable graph is very
significant (see [2-6]).

A lot of work has been done toward proving structural properties of indecom-
posable graphs and how indecomposability is inherited by induced subgraphs.
In this regard, the concept of criticality has been studied. In an indecompos-
able graph a vertex is said to be critical if the graph turns decomposable on
the removal of that vertex.

A seminal work in this direction is by Schmerl and Trotter [7]. They study
critically indecomposable graphs, in which every vertex is critical. They showed
that the family of bipartite graphs on vertex set {uq,..., Uy} U{v1,...,0n},
where each u; is adjacent to vy for k > j are critically indecomposable. The
only other graphs which are also critically indecomposable are the complement,
of these graphs. In this work we consider natural generalization of the notion
of critical indecomposability. Let X be a subset of vertices of G. Then G is
X-critical, if G and its induced subgraph on X are indecomposable and all
vertices of V' — X are critical. See figure 1 for an example. As it must be ob-
vious from the definition, every indecomposable graph is X-critical for a suit-
ably chosen set X. The critically indecomposable graphs defined by Schmerl
and Trotter are ()-critical. Through out this paper we will assume that
|X| > 4, because indecomposability on smaller set of vertices cannot be de-
fined meaningfully. An important theorem by Schmerl and Trotter, and by
Ehrenfeucht and Rozenberg follows.

Theorem 1 /8,9,7]

(a) Let G = (V, E) be an indecomposable graph with an indecomposable sub-
graph G(X) s.t. 4 < |X| < |V| — 2. Then there exists a pair of distinct
vertices a,b € V — X s.t. G(X U {a,b}) is indecomposable.

(b) If G = (V, E) is an indecomposable graph such that |V| > 7, then there is
VI CV st |[V=V'=2and G(V') is indecomposable.
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Fig. 1. An X-critical graph.

The motivation for looking at the structure of X-critical graphs comes from
a very interesting result proved by Ille [10], which generalizes part (b) of
Theorem 1.

Theorem 2 [10] Let G = (V, E) be an indecomposable graph and there is a set
X CV of vertices satisfying |V —X| > 6 s.t. G(X) is also indecomposable then
there exist two vertices a,b € V — X s.t. G(V —{a, b}) is also indecomposable.

If |V — X]| is even, then Theorem 2 can be deduced from Theorem 1(a). In
case it is odd, then again from Theorem 1(a) there exists x € V — X such
that G(V — X — {z}) is indecomposable. If we have y € V — X — {z} such
that G(V — {z,y}) is indecomposable, then again the claim of Theorem 2 is
satisfied. The problem arises when G(V — X — {z,y}) is decomposable for all
yeV —X —{z},ie, G(V —{z}) is X-critical.

In this work we study the X-critical graphs and prove some structural theo-
rems and give efficient algorithm to compute a sequence of vertex pairs which
can be removed without disturbing the X-criticality property. These results
give an alternative proof of Theorem 2. We also give efficient polynomial algo-
rithms for computing perfect matching and 3-coloring for X-critical graphs.

2 Critical indecomposability and related notions

This work only considers undirected graph, but it can be generalized to di-
rected graphs. Symmetric 0-1 matrix e will represent adjacency. So, e, = 1 if
and only if edge (u,v) belongs to E.



Definition 3 Let G = (V,E) andY CV andz € Y. If G(Y) is indecompos-
able but G(Y — {z}) is decomposable, then x is said to be critical in Y.

A property of modules trivially deducible from the definition is as follows.

Observation 1 (i) M is a module of G and Y C V. Then M NY is a
module of G(Y').
(i1) If My and My are modules of G such that My N My is non-empty then
M; U My is also a module of G.

Definition 4 Let G = (V,E),Y CV,andz €V =Y. IfVy €Y (z,y) € £
orVy €Y (x,y) ¢ E, then x is said to be global to Y.

The definition of a module can be stated in terms of this concept as follows.
The vertex set M in G is a module if and only if each x € V — M is global to
M. A trivial observation follows.

Observation 2 Let M be a module in G = (V, E) and Vi be a subset of V.
If a verter x € M s global to Vi — M. Then Vi — M is a module in G(V7).

Definition 5 A graph G = (V, E) is said to be marginally decomposable if
(i) there is only one non-trivial module in the graph and, (ii) the size (vertex
cardinality) of the module is either 2 or |V| — 1.

Corollary 6 Let G be a marginally decomposable graph with M being its
unique non-trivial module. If there is a vertexr x € M which is global to V — M,
then |V — M| = 1.

Next we define a notion which is more stringent than X-criticality.

Definition 7 Let G and induced subgraph G(X) be indecomposable for some
X CV. Then G is said to be X -stably-indecomposable (in short X -stable) if
(i) G is indecomposable, and (ii) G(V — {w}) is marginally decomposable for
adlweV-X.

It is obvious that every X-stable graph is X-critical. In Section 3 we will
establish that the two concepts are equivalent.

Lemma 8 Let Y be a subset of 5 or more vertices of G. Then G(Y — {x}) is
indecomposable and G(Y') is decomposable iff G(Y') is marginally decomposable
with the non-trivial module Y — {x} or {z,y} for somey €Y — {z}.

PROOF.

only if Let M be a non-trivial module of G(Y). Subgraph G(Y — {z}) is
indecomposable so M’ = M N (Y —{z}) must be a trivial module of G(Y —



{z}). Thus M’ can be either Y — {z} or y for some y € Y — {z}. Thus
M will be {z,y} or Y — {x}. Next we show that at most one such M is
possible.

Let M; and M, are non-trivial modules of G(Y'). There are two cases to
be considered: (i) M; = {z,y1}, My = {x,y2} and (ii) My = {=z,y}, My =
Y — {z}. In case (i), {y1,y2} is a module of G(Y — {z}) and in case (ii)
Y —{x,y} is a module of G(Y —{z}). In each case the module is non-trivial
so it contradicts the fact that G(Y — {z}) is indecomposable.

if Consider the case where {z,y} is the module of G(Y'). Assume that M is a
non-trivial module of G(Y — {z}). If y € M then M U {z} is a non-trivial
module of G(Y'). Uniqueness requires that M U{z} = {y, 2} thus M = {y},
i.e.,, M is trivial. If y ¢ M, then M is also a non-trivial module of G(Y).
In this case uniqueness requires that M = {x, y} which is also not possible
since y ¢ M.

Next consider the case of module Y — {z}. In this case z is global to
Y —{z}. Then it is global to any subset M of Y — {z}. If M is a module of
G(Y — {«}), then it must also be a module of G(Y). Thus M =Y — {z},
but this is a trivial module of G(Y — {z}). 0

Lemma 9 Let G = (V, E) be X-critical and subgraph G' = G(V — {a,b}) be
indecomposable for some a,b € V — X. Then G(V — {a, b}) is also X -critical.

PROOF. Suppose G’ is not X-critical. So there exists ¢ € V—X —{a, b} such
that G(V — {a,b,c}) is also indecomposable. Since |V — {a, b, c}| > | X| > 4,
we can use Theorem 1(a) to deduce that there are u,v in {a,b,c} such that
G(V —{a,b,c} U{u,v}) is indecomposable. This graph is G" = G(V — {w})
where w is one of a, b, c. On the contrary, by the definition of X-critical graph,
G" is decomposable. O

Definition 10 If G is X -critical and a,b € V — X such that G(V —{a, b}) is
indecomposable (thus X -critical) then the unordered pair (a,b) will be called a
locked pair of G.

Lemma 11 Let G = (V, E) be X -critical and V — X be non-empty. Then G
has a locked pair.

PROOF. Consider the indecomposable subgraph G(X). From Theorem 1(a)
we know that there is an indecomposable subgraph G(Y") such that X C Y and
Y| = | X|+2. Repeating the argument we find that there is an indecomposable
subgraph G(V') such that X C V' and 1 < |V —V'| < 2. But |V —V’| cannot
be 1 since G is X-critical and V"’ contains X. Suppose V' =V — {a, b}. From
lemma 9 we conclude that (a,b) is a locked pair in G. O



An X-critical subgraph cannot have vertex cardinality equal to |X|+ 1 be-
cause of criticality condition. Combining this fact with Lemma 11 leads to the
following corollary.

Corollary 12 G = (V, E) is an X -critical graph, then |V — X | = 2k for some
k>0.

Let G = (V,E) be a graph and X C V such that G(X) is indecomposable.
Then, from Lemma 8, for any vertex y € V' — X, only one of the following
three cases are possible: (i) G(X U {y}) is indecomposable, (ii) G(X U{y}) is
decomposable with the unique non-trivial module {y, z} for some z € X, and
(iii) G(X U{y}) is decomposable with the unique non-trivial module X, i.e., y
is global to X. We partition the vertices of V' — X based on these cases. If it is
case (i), then y belongs to a class denoted by extn(X), in case of (ii) y belongs
to a class denoted by egx(z), finally in the third case y belongs to a class
denoted by [X]. We denote this partition by C(V — X, X). This terminology
is adopted from [5,11]. By egqx we shall denote the union of all egx (z) classes.

Let G be an X-critical graph and (a, b) be a locked pair. Both G(V —{a}) and
G(V —{b}) are decomposable so neither vertex can belong to extn(V —{a,b}).
Further, both vertices cannot belong to [V — {a, b}] because that would imply
that V — {a, b} is a module of G which is absurd since G is indecomposable.

Observation 3 Let (a,b) be a locked-pair in an X -critical graph G = (V, E).
Then either (i) both a and b are in class eqy_gq 5y o7 (i) one each is in eqy _iq )
and [V — {a, b}].

3 Structural theorem

The main goal of this section is to prove that X-critical and X-stable are
equivalent. Every X-stable is trivially X-critical so we only need to prove
that X-critical implies X-stable property. We shall establish this result by
induction. Suppose G is X-critical and (a, b) is a locked pair. G(X) is trivially
X-stable. To complete the induction we only need to show that if (X-critical
subgraph) G(V — {a,b}) is stable, then G is also stable.

Based on Observation 3 the proof is split into two cases.

3.1 Case of a € [V —{a,b}] and b € eqy_{ap

In this subsection we consider the case where {b, p} is the module of V' — {a}
and V —{a, b} is the module of V' — {b}. Thus ey, # €,, for any z € V —{a, b}



because a cannot be global to V' — {a}. We have a trivial observation.

Observation 4 Let M be a module of V —{w} for any w € V —{a,b}. Then
(i) If b ¢ M then M — {a} is a module of V. — {w}; and (i1) If b € M then
a€ M.

Lemma 13 If p ¢ X, then G(V — {p}) is marginally decomposable and its
module is {a,u} where u is some vertex in V — {a,b,p} — X.

PROOQOF. Let M be a non-trivial module of G(V — {p}). If a and b both
belong to M, then M U {p} will become a non-trivial module of G, because
{b,p} is a module of G(V — {a}), i.e., b and p have same connectivity with
V —{a,b,p}. If neither of the two vertices belong to M, then it is also a non-
trivial module of G because e, = €,,,Vm € M due to a ¢ M. Neither of
these cases are possible because GG is indecomposable. The case of b € M and
a ¢ M is eliminated by Observation 4(ii). So we must have ¢ € M and b ¢ M.

From Observation 4 (i), M —{a} is also a module of G(V —{p}). As {b,p} is a
module of G(V —{a}), M —{a} is also a module of G. The indecomposability
of G and the size of M — {a} implies that |M — {a}| = 1. So M = {a,u},
where u € V — {a, b, p}.

Vertex a is global to V — {a, b} and {a,u} is a module of G(V — {p}) so u is
global to V' — {a, b, p,u}. In particular it is global to X — {u}. If u € X, then
X —{u}is amodule of G(X), which is absurd because G(X) is indecomposable.
Sou ¢ X.

To complete the proof we will show that G(V — {p}) cannot have more than
one non-trivial module. Let {a,u;} and {a,us} be two of its modules. Then
{a, u1,us} is also a module of G(V — {p}). But this contradicts our conclusion
in the last paragraph that all its modules are of the form {a, u}. O

Corollary 14 Ifp ¢ X, then there exists u € V —{a,b, p} — X which is global
toV —{b,p,u}.

Corollary 15 Ifp ¢ X, then the unique non-trivial module of G(V —{a, b, p})
is V. —{a,b,p,u} where u is some verter of V. —{a,b,p} — X.

Corollary 16 If w € V — {a,b,p} — X, then V — {a,b,w,p} cannot be a
module of V — {a,b,w}.

PROOF. If V — {a,b,w,p} is a module of V — {a,b, w}, then p is global
to V —{a,b,w,p}. So p ¢ X because otherwise X — {p} would be a module
of G(X), which is indecomposable. From the lemma, there exists u € V —



{a,b,p} — X such that {a,u} is a module of V — {p}. Vertex a is global to
V —{a, b} so u is global to V — {a, b, p,u}. If u # w, then V — {a, b, w} has a
second module, namely, V' —{a, b, w, p, u} which is non-trivial since it contains
X. Otherwise if v = w, then V — {a, b, p, w} is a module of V' — {a, b} which
is also non-trivial since it contains X. Both situations are impossible because
V —{a, b, w} is marginally decomposable and V' — {a, b} is indecomposable. O

Corollary 17 Let M be a non-trivial module of V. — {w} for some w € V —
X —{a,b,p}. If a ¢ M, then M = {x,z}, where z € V — {a,b,w} and
ze€V —{a,b,w,x}.

PROOF. Given that a does not belong to M, from Observation 4(ii) we know
that b also does not belong to M. Thus M is contained in V — {a, b, w} and
consequently its module. From induction hypothesis V —{a, b, w} is marginally
decomposable so the size of M can be 2 or |V —{a,b,w}|—1 or |V —{a,b,w}|.
In the former case M = {z, z} where z € V—{a,b,w} and z € V—{a, b, w, z}.
In the second case M =V —{a, b, w, z}. From Corollary 16 z cannot be p. As b
is out of M, it is global to M. This implies that p is global to V —{a, b, w, 2, p}.
Therefore V — {a, b, w, z,p} is a module of V' — {a, b, w}, which is not possible
due to its size.

Finally consider the case of M =V — {a,b, w}. Then b is global to M, which
in turn, implies that p is global to V — {a,b,w,p}. So V — {a,b,w,p} is a
module of V — {a, b,w} in contradiction to Corollary 16. O

Lemma 18 Let M be a non-trivial module of V. — {w} for some w € V —
{a,b,p}. Ifae M, M =V —{w,z} for some z € V — {a,b,p, w}.

PROOF. M| =MnN(V —{a,b,w}) is a module of V — {a, b, w}. It is given
that a is global to V — {a,b} so M}, =V — {a,b,w} — M is also a module
of V.— {a,b,w} from Observation 2. The two are distinct so at least one of
them is trivial. We conclude that either |(V — {a,b,w}) N M| < 1 or |(V —
{a,b,w}) N M| > 1|V —{a,b,w}| — 1.

Case of [ M N (V —{a,b,w})| < 1:

In this case only possible value of M is either {a,b} or {a,z} where z €
V —{a,b,w}. In the first case b is global to V — {a,b,w}, so p is global
to V. — {a,b,p,w}. In the second case if z = p then again p is global to
V —{a,b,p,w}. In both these cases V —{a, b, p, w} is a module of V —{a, b, w},
which is not possible due to Corollary 16. This leaves the possible form of M
to be {a, z} where z € V — {a, b, w, p}. In this case we have e,, = €4 # €4p =
e.p = €. Thus this case is also, impossible.



Case of [(V — {a,b,w})NM| > |V —{a,b,w}| — 1:

In this case possible values of M are V —{b,w}, V —{b,z,w}, and V —{z, w}
for some z € V — {a,b,w}. In the first case, and in the second and third
cases with z = p, p is global w.r.t. V — {a,b,p,w} which is not possible
since it implies that V' — {a, b, p, w} is a module of V' — {a, b, w} contradicting
Corollary 16. In the second case with z # p, both p and z are global w.r.t.
V —{a,b,p,z,w}. Thus V — {a,b,p, z,w} is a module of V — {a, b, w}, which
is not, possible due to its size. Therefore only possible form of M is V —{z, w}
where z € V — {a, b, p, w}. a

Lemma 19 Let G = (V,E) be X-critical. Let (a,b) is a locked pair with
a €[V —{a,b}] and b € eqv—_(apy). If GV — {a,b}) is X-stable, then G is
also X -stable.

PROOF. G is X-critical so G(V — {w}) has at least one module for each
w € V — X. Hence it is sufficient to show the uniqueness of the module. The
case of w = p is settled in Lemma 13. In case w = a or w = b is also easy
because, from the definition of the locked pair and Lemma 8, V — {a} and
V — {b} are marginally decomposable.

Finally let us consider the case of w € V — {a, b, p}. From Corollary 17 and
Lemma 18, the only possible modules of V' — {w} are: {z,z} and V — {w, z},
where x € V — {a,b,w,p} and z € V — {a,b, w,z}. The unique module of
V — {a,b,w} in these cases is respectively {z,z} and V — {a, b, w,x}. Since
|X| >4 and a,b,w ¢ X, |V — {a,b,w,z}| > 3. Hence if V — {w} has more
than one non-trivial module, then V' — {a, b, w} will also have equal number
of distinct non-trivial modules. But V' — {a, b, w} is marginally decomposable
so V — {w} must also have one non-trivial module. O

3.2 Case of a,b € eqy_{a}

Now we will consider the case where {a, ¢} is the module of V — {b} and {b, p}
is the module of V' — {a}. Vertices p and ¢ must be distinct because otherwise
{a, b, p} will be a module of G which is an indecomposable graph. In this case
we have eg, # €4y = €4p = e the first inequality is because otherwise {b, p}
will become a module in G which is indecomposable, the following equality is
because {a,q} is a module of V — {b} and the last one is based on the fact
that {b,p} is a module of V' — {a}.

We need to show that G(V — {w}) is also marginally decomposable for all
w € V — X. Once again it is sufficient to show that it does not have more
than one module.



3.2.1 Sub-case w € {a, b}

G is X-critical so G(V —{a}) is decomposable. G(V —{a, b}) is indecomposable
so from Lemma 8 we know that G(V —{a}) must be marginally decomposable.
For similar reason G(V — {b}) is also marginally decomposable.

3.2.2 Sub-case w =p wherep ¢ X

The only module of G(V — {a}) is {b,p} so G(V — {a,b}) is isomorphic to
G(V —{a,p}) under the mapping x — z for all x € V — {a, b, p} and p — b.
Thus G(V — {a,p}) is also an X-critical graph. From Lemma 8, G(V — {p})
is marginally decomposable.

For future use, we also observe that the unique module of G(V — {p}) is either
V—{p,a} or {a,u} for some u € V—{p,a}, from Lemma 8. Observe that u # b
because otherwise {a, b, p, ¢} would be a module of G. We have e,;, = eq # egp,
sou#gq.Sou €V —{a,b,p,q}.

The case of w = ¢ is similar.

3.2.8 Sub-case w € V —{a,b,p,q}
This is the most nontrivial case among all. We begin with some useful results.

Lemma 20 {p,q} is not the module of G(V — {a,b,w}) for any w € V —
{a,b,p,q}.

PROOF. Assuming the contrary let {p, ¢} be the module of G(V —{a, b, w})
for some w. Both p and ¢ cannot be inside X otherwise {p, ¢} would be a
module of G(X). Let p € V — X. From the case of w = p above, the unique
non-trivial module of G(V — {p}) is either V — {a,p} or {a,u} for some
u €V —{a,b,p,q}. Therefore either V —{a, b, p, q} or {q, u} is the non-trivial
module of G(V — {a, b, p}), because {a,q} and {b,p} are modules in V — {b}
and V' — {a} respectively.

Case 1 {q,u} is the non-trivial module in G(V — {a, b, p}):

If u # w, then {p,q,u} is a module of G(V — {a,b,w}) which is not possible
since G(V — {a,b,w}) is marginally decomposable. If w = w, then {p,q,u} is
a module of G(V —{a, b}) which is also not possible as it is an indecomposable
graph.

Case 2 V — {a,b,p,q} is the non-trivial module in G(V — {a, b,p}):
In this case q is global to V —{a, b, p}, in particular q is global to V—{a, b, p, w}.
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Therefore V. — {a, b, p,q, w} should be the module of the marginally decompos-
able graph G(V —{a, b, w}) which is impossible because a,b,w ¢ X and |X| > 4
so V. —{a,b,p,q,w} is non-trivial and {p, q} is another module. a

Corollary 21 Let M be a module in G(V —{w}) such that |MN{a,b,p,q}| >
1, then M =V — {z,w} for some x € V — {a,b,w}.

PROOF. First consider the case that V — {w,a,b,p,q} C M. If M is V —
{w,a,b} or V — {w,a,p} or V.—{w,b,q} or V—{w,p,q} then M' =V —
{w,a,b,p,q} will be a module of V' — {w,a,b} which is not possible for a
marginally decomposable graph because of its size. M cannot be V — {w, a}
or V. —A{w,a,q} since ey, # €pe. Similarly V — {w,b} and V — {w, b, p} are
not possible values of M. Therefore possible values for M are V — {w, p} and
V —{w,q}.

Now consider the second case, i.e., ¢ M for some x € V — {w,a, b, p,q}. If
M contains any pair of {a,q} x {b,p}, then M' = (M — {a,b,p,q}) U {p, ¢}
must be a module of V' — {a, b, w}. This module is nontrivial because = does
not belong to it and it has at least 2 elements. From the lemma we know
that M’ cannot be equal to {p, ¢} so M’ must contain more than 2 elements.
Since G(V — {a,b,w}) is marginally decomposable, M' = V — {a,b, w, z}.
Now we will show that only possible value of M is V' — {w, z}. Suppose M is
V —{w,z,a,b} or V —{w,z,p,q} or V—{w,x,a,p} or V—{w,z,b,q}, then
M" =V —{w,z,a,b,p,q} is also a non-trivial module of V —{a, b, w}. But this
is not possible since M" # M' and V' — {a, b, w} is marginally decomposable.
The cases of M N {a,b,p,q} = {a,q} or M N{a,b,p,q} = {a,q,p} are also
not possible because eq; # egp. Similarly M N {a, b, p, ¢} cannot be {b,p} or
{b,p,q}. So the only possible value of M is V — {w, z}. a

We have another result about the structure of the modules of G(V — {w}).

Corollary 22 Let M be a module in G(V — {w}) such that |M| > 2, then
M=V —{z,w} for some x € V — {a, b}.

PROOF. If |IMn{a,b,p,q}| > 1 then we conclude the desired claim from the
previous corollary. So assume that |MN{a,b,p,q}| < 1.If [MN{a,b,p,q}| =0
then M is also a module of V' — {a,b,w}, but that is not possible since its
size is less than |V — {a,b,w}| — 1. Finally consider the case where |M N
{a,b,p,q}| = 1. Let that element be z. Suppose z = a. Let = be any element
of M —{a,b,p,q,w}. S0 ezp = €qp # €qp = €yp. But this is not possible since
€zp = €pg. Similarly z cannot be b. If 2 = p, then M is also a module of
V —{a,b,w}. Since ¢ ¢ M, M is non-trivial. By virtue of M being a module,
b is global w.r.t. M. So p is global to M — {p}. Hence M' = M — {p} is also
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a non-trivial module of V' — {a, b, w}, since |M'| > 2. This is not possible
because V — {a, b, w} is marginally decomposable. Similarly we can show that
z = q is also not possible. O

The above two results imply that any non-trivial module M of V —{w} can be
only one of the following: {z,y},{a,z},{q,z},{b, 2}, {p, 2}, V — {p,w},V —
{q,w}, and V — {w, 2}, where z,y are arbitrary vertices from the set V —
{a,b,p,q,w}. In the respective cases the unique module of V' — {a,b, w} will
be {:U, y}’ {q, CC}, {q, CC}, {p, x}’ {pa m}’ V- {a, bap, w}a V- {a'a ba q, w}’ and V —
{a,b,z,w}. This indicates that V' — {w} can have more than one module in
two cases: (i) when {g, z} is a module of V' — {a, b, w} then {a,z} and {q, z},
both, may be modules of V —{w}; (ii) when {p, z} is a module of V —{a, b, w},
there may be two modules of V — {w}, namely, {b,z} and {p, z}. If {a,z} and
{¢,z} both are modules of V — {w}, then e, = ew # ep = €. So this is
not possible. Similarly the second case is not possible. Thus we conclude that
V' — {w} has at most one module.

Combining the three sub-cases we have the following lemma.
Lemma 23 Given that G = (V, E) is X -critical. If (a,b) is a locked pair with

a and b both in eqy_(qpy and if G(V — {a,b}) is X-stable, then G is also
X-stable.

The main result of this section follows.

3.8 Main Theorem

From Observation 3 and Lemmas 11, 19, 23, and the fact that G(X) is vacu-
ously X-stable if it is indecomposable, we deduce the following theorem using
induction.

Theorem 24 FEvery X -critical graph is X -stable.

In this section we have shown that if an X-critical graph G has a locked
pair (a,b) and G(V — {a,b}) is X-stable, then G is also X-stable. The proof
explicitly constructs the unique module of V' — {w} for each w ¢ X. In Table
1 we summarize the module M of G(V — {w}) and the module M’ of G(V —

{a,b,w}) for w ¢ {a, b} for various cases, which will be useful in Section 5.
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Table 1

Module M’ of V — {a,b, w} corresponding to module M of V — {w}

weV—{a,b} | M M’
Case: a € [V — {a,b}],b € eqy_{ap)

w=p {a,z} z €V —{abp}—X V —{a,b,p,z}
w ¢ {a,b,p} | {z,y} z,y €V —{a,b,w} {z,y}

V —A{w,z} z €V —{a,bp,w} V —A{a,b,w,z}

Case: a,b € eqy_(q,}

w=p {a,x} z €V —{abp,q} {g, 2}

V —{a,p} V —{a,b,p,q}
w=gq {b, z} z €V —{abp,q} {p,x}

V—{a.q} V —{a,b,p,q}
w ¢ {a,b,p,q} | {zy} z,y €V —{a,b,w,p,q} | {z,y}

{z,p} or {z,b} | x €V —{a,b,w,p,q} || {z,p}

{z,q} or {z,a} | €V —{a,b,w,p,q} | {z,q}

V —A{w,x} z €V —{a,b,w} V —{a,b,w,z}

4 A commutative elimination sequence

Proposition 25 Let G be a X -critical graph, then (a,b) is a locked pair of G
iff a,b € V=X and the unique non-trivial module of G(V —{b}) is V —{a,b}
or {a,q} for some q €V —{a,b}.

PROOF. (if) Due to Lemmas 8 and 9. (only if) from Lemma 8.

Lemma 26 Let (a,b) and (c,d) be locked pairs in an X -critical graph G, with
no common vertex. Then (a,b) is also a locked pair in G(V — {c,d}).

PROOF. At least one of a and b is in eqy_q,1. Without loss of generality
assume that {a, ¢} is the module of G(V — {b}). If ¢ ¢ {c,d}, then {a,q} is
also the module in G(V — {b,c,d}). From Proposition 25, (a,b) is a locked
pair in G(V — {¢,d}).

Now consider the case g € {c,d}. Without loss of generality ¢ = ¢. Consider

the module of G(V — {d}). From Proposition 25, it is either V' — {¢,d} or
{c,e} for some e € V — {¢,d}. In the former case c is global to V' — {a,b, ¢}
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consequently V —{¢,d, a,b} is a module of G(V — {c¢, d, b}). From Proposition
25 (a, b) is a locked pair in G(V — {c¢,d}).

The latter case is as follows. {a, ¢} is the module in G(V — {b}), {c, e} is the
module in G(V — {d}). If e = a then {a,c} will be a module of G which is
not possible. If e = b then {a, b, c} will be a module of G(V — {d}) which is
not possible since G(V — {d}) is marginally decomposable. Thus we find that
e €V —{a,b,c,d}. Then {a,e} is the module of G(V — {¢, d,b}). Once again
from Proposition 25 (a,b) is a locked pair in G(V — {¢, d}). O

From Corollary 12 we know that in an X-critical graph V' — X has even number
of vertices. Let V = X U{a1, b1, ., ax, bp}. Then set {(a1,b1),---, (ax, bx)} is
called a X-criticality preserving commutative elimination sequence if G(V —
{aj;, b5, ..., aj,b;}) is X-critical for any subset {j1,j2,...,7:} of {1,...,k}.

Corollary 27 Let G be an X -critical graph with V- = X U{a1,b1,...,ax, bi}-
Then {(a1,b1), ..., (ak, by)} is a commutative elimination sequence iff (a;,b;)
s a locked pair of G for all j.

Lemma 28 Let G be X-critical and (a,b) be a locked pair in it. If G(V —
{a,b}) has a commutative elimination sequence, then so does G.

PROOF. Suppose ES’ is a commutative elimination sequence of G(V —
{a, b}). We will first show that at most one locked pair in F'S” may not remain
a locked pair of G.

Consider any locked pair (¢,d) € ES’ in which at least one vertex v is such
that neither {v, a} is a module in G(V — {b}) nor {v, b} is a module in G(V —
{a}). Let w be the other vertex of {¢,d}. The module M’ of G(V — {a, b, w})
must be either V' — {a, b,w,v} or {v,z} for some = because G(V — {a, b, w})
is marginally decomposable. From Table 1 (rows of w ¢ {a,b,p} and w ¢
{a,b,p, q}) we find that the module M of G(V —{w}) is given by: M = M'" if
M ={v,z}; M =V — {w,v} when M' =V — {a,b,w,v}. Thus M is either
V —{w,v} or {v,z} for some z € V — {a,b, w,v}. From Proposition 25 we
deduce that (w,v) (which is same as (c,d)) remains a locked pair in G. If all
pairs on E’ are found to remain locked pairs in G, then ES = ES"U {(a,b)}
is a commutative elimination sequence of G.

In case not all locked pairs of G(V — {a,b}) are locked pairs of G then the
exception must be only one pairs (p, ¢) where {a, ¢} is the module of G(V —{b})
and {b, p} is the module of G(V —{a}). From Table 1 (second row of w = p), if
{¢,u}is the module of G(V —{a, b, p}), then {a, u} is the module of G(V —{p}).
Thus (a, p) is a locked pair of G. Similar argument shows that (b, ¢) is a locked
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pair of G. In this case E = E' — {(p,q)} U {(a,p), (b,q)} is a commutative
elimination sequence. U

Vacuously, the subgraph G(X) of X-critical G has a commutative elimination
sequence. By induction and using lemma 28 we have a trivial conclusion that
every X-critical graph has a commutative elimination sequence.

Theorem 29 FEvery X -critical graph has a commutative elimination sequence.

Theorem 30 The commutative elimination sequence in a X -critical graph is
UNLQUe.

PROOF. Let ES; and ES; be two distinct commutative elimination se-
quences. Assume {a;,b;} is a locked pair in E'S; which is not a locked pair in
ES, then there must be pairs {a1, b2} and {as, b1} in ES,.

If V — {b:} has a module of size |V — {b;}| — 1, then that module should be
V' —{a1, b1} since (ay,b1) is a locked pair in G. But (ag,b1) is also a locked
pair so the module should be V' — {as, b}, implying that a; = ay which is
not true. So The module size must be 2. Since (a1,b;) is a locked pair so
M = {ay,z}. Similarly (ag, by) is also a locked pair so M = (ag,y). Thus M =
(a1, a9). Similarly V' — {by} also has (ai,as) as its unique module. Together
these assertions imply that (a;, as) is a module of entire G, which is absurd.
O

4.1  Computing elimination sequences in X -critical graphs

We give here a method to calculate a commutative elimination sequence. This
algorithm is similar to the O(n + mlogn) algorithm by Cournier and Habib
[11] for the computation of maximal modular decomposition.

Let G = (V, E) be an X-critical graph and z,y be a pair of vertices in V — X
such that G(V — {xz,y}) is also X-critical, then {z,y} is called a locked pair
in GG. We have observed that at least one of the vertices of the pair is from
class eqy_{z4}- The other will be either from eqy_ (5, or from [V — {z, y}].

Algorithm 1 computes the commutative elimination sequence of an X-critical
graph. Starting from Y = X we expand Y to V identifying one locked pair
in each step. The basic technique is based on computing C(V — YY), see
paragraph following Corollary 12. If C denotes C(V —Y,Y) and x € V - Y/,
then update(C,a) computes C(V —Y — {a},Y U {a}) from C(V - Y,Y).
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Data: X-critical graph G, set X

Result: Commutative elimination sequence
.C=C(V-X,X);

ertn(X) will be empty

3.V = X;
fori=1to k= (|V|—|X|)/2 do

4. (C'=¢C;

5. Select any vertex a; from some class eq(u) of C;

6. C = update(C,a;);

7. b; = An arbitrary vertex from extn(Y U {a;});

8. C = update(C, b;);

9. Ifa; €eq(u) and b; € eq(v) in C' and (u,v) = (a;, b;) for some j < i

then (a;,b;) = (a;,v) and (a;, ;) = (u, b;);
10. Y = YU{ai,bi}
11. return (a1, b1), ..., (ag, bg)

Algorithm 1. Computation of elimination sequence

Step 5 is based on the fact that at least one vertex of every locked pair is from
class eq(). Step 9 ensures that if (a1, b1),...,(a; 1,b; 1) is the commutative
elimination of G(Y;_1), then (a1, b1),...,(a; 1,b; 1), (a;, b;) is the elimination
sequence of G(Y;), which is based on the proof of Lemma 28.

The update steps take O(n) time. The first step takes O(n? + m) time since
for each x € V' — X it needs to be found out if X is a module of G(X U{z}) or
if there there is u € X such that {z,u} is a module of G(X U {z}) or neither.
Therefore the entire process costs O(n?).

Theorem 31 The commutative elimination sequence for an X -critical graph
can be computed in O(n?).

4.2 1lle’s theorem: an alternate proof

In this section we shall show that if an indecomposable graph G = (V, F') has
an indecomposable subgraph G(X) with |V — X| > 5 then a pair of vertices
a,b € V — X can be computed in O(n(n + m)) time such that G(V — {a, b})
is also indecomposable.

To find a pair of vertices from V' — X such that the reduced graph after
deleting the pair remains indecomposable, we may randomly delete a vertex
and test the resulting graph for indecomposability. If this test fails for every
vertex in V' — X, then the graph is X-critical and we have already seen how
to find a locked pair. If it succeeds for some vertex a, then we repeat this step
on G(V — {a}). If this succeeds again, then we have the desired pair. The
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difficult case is when after deleting one vertex the graph reduces to X-critical.
Following result addresses the problem of locating such a pair in these graphs.

Theorem 32 Let G be an indecomposable graph on (V,E), X is a subset
of V.and V — X = {a,a1,b,a9,by,a3,b3} where G(V — {a}) is X-critical
and p1 = {a1,b1},p2 = {as,b2},ps = {as, b3} is a commutative elimination
sequence in G(V — {a}). Then for at least one locked pair, p; = {a;,b;},
G(V —{a;,b;}) is indecomposable.

PROOF. Assume the contrary. Denote V — p; by Z;. From the assumption
G(Z;) is decomposable but G(V — {a} — p;) is indecomposable (actually X-
critical) from the definition of commutative elimination sequence. It is known
from Lemma 8 that if a subgraph G(A) is indecomposable and G(A U {a}) is
decomposable, then the latter has a unique module and it is either A or {a, b}
for some b € A. Therefore either a € [Z; — {a}] or a € eqz,_{q}(u;) for each i
where u; is some vertex in Z; — {a}.

Assume that a € [Z; —{a}] and a € [Zy — {a}]. Since (Z, — {a}) N (Zy — {a})
is non-empty, (Z; — {a}) U (Zs — {a}) = V — {a} is a module of G which is
absurd as G is indecomposable. Therefore a € [Z; — {a}] for no more than one
i. Without loss of generality, either a belongs to [Z; — {a}], eqz,—{a}(u2), and
eqz,—{a}(u3); or a belongs to eqz,_{q}(u;) for all ¢. In the following discussions
we show that these possibilities also lead to conflicts.

If uj = up = u for some j # k, then {a,u} is a module of G, which is not
possible as G is indecomposable. Thus u; # uy, for j # k.

Further if u; and u; both belong to V' — p; — py, then {a,u;} and {a,us}
are both modules in G(V — p, — p3) therefore {u;, u;x} must be a module in
G(V —{a} — p; — px). This is impossible since the definition of commutative
elimination sequence requires that G(V — {a} — p; — px) is X-critical. So we
conclude that either u; € py or u, € p;. These observations lead to only two
possibilities.

Case 1: Assume that V — p; — {a}, {a,us} and {a,u3} be the modules of
G(Z1), G(Z,) and G(Z3) respectively. From the previous paragraph we know
that us € py or us € p3. Without loss of generality assume the latter. The
facts that V — p; — {a} is a module in G(V — p;) and {a, us} is a module in
G(V —py) imply that V —p; —ps — {a, us} is a module in G(V —p; —py —{a}).
This is absurd because G(V — p; — po — {a}) is X-critical.

Case 2: Assume that {a,u;} is the module in G(V — p;) for all i. From the
earlier observation all u; are distinct and the following are true:

(1) uy € py or uy € py,
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(i) ug € p3 or ug € py, and
(iii) us € py or uy € ps.

These condition require that u; € po, us € p3,u3 € p1 Or Uy € p3, U € P1,us €
p2. Without loss of generality assume the first with u; = ag, us = as, uz = ay,
as there is nothing here to distinguish between a; from b;.

Here, {a,u1} = {a,as} is a module in G(V — p;) and {a, a3} is a module in
G(V — p2). Combining the two we have {a, as, a3} is a module in G(V — p; —
{b2}). Similarly {a,as,a:} is a module in G(V — p, — {b3}) and {a,a;,as}
is a module in G(V — p3 — {b1}). Together they imply that {a,ai,as,as}
is a module in G(V — {b1,bs,b3}). We can derive another fact from these
three modules. {a,as,a3} is a module in G(V — p; — {b2}) so {az,a3} is a
module in G(V — {a} — p1 — {b2}). While {as, a3} cannot be a module of
G(V —{a}—p1) because the latter is X -critical, it is necessary that €45, # €q3p, -
Since {a, a1, as} is a module in G(V — p3s — {b1}), €asy = €asb, = €arp,- Lhese
relations and similar other relations are stated below:

(1) €aby = €a1by = €ayby ?é €asbs
(11) €aby = €azby = €a1by ?é €asb; (1)
(111) €abs = Cazbs = Cagbs 7é €a;bs

As {a1,b,} is a locked pair in G(V — {a}), either a; € [V — {a} — p1] or
{ai,v1} is a module in G(V — {a, b }) for some v; € V — {a, a,b;}. Assume
the former, i.e., a1 € [V — {a} — p1]. We know that {a, a1,as} is a module in
G(V — ps — {b1}) so as must be in [V — p; — p3 — {a, az}]. This implies that
G(V — {a} — p1 — p3) is decomposable which is not true as it is X-critical.
So {a1,v1} must be the module in G(V — {a, b }). Similarly there exist v, vs
such that {as, v} is the module in G(V — {a, bs}) and {as3,vs} is the module
in G(V — {a, bs}).

Next we will show that v; is b; for some j # i. Firstly, {a;, v} is a module
of G(V — {a,b1}) so eqp, = €y,p,- From relations (1) we find that v; # as.
Similarly eq,p, = €4,p, implies that v; # ay. Similar arguments establishes that
{v1,v2,v3} N{a1,az,a3} = 0. Secondly, suppose v; € V — p; — ps — p3 — {a}.
Using the fact that {a, a1, a2} is a module of G(V — p3 — {b1}) we can deduce
that {v1,as} is a module of G(V — {a} — p; — p3) which is not possible for
an X-critical graph. As {ai, v} is a module in V' — {a, b1}, v; # b;. Thus we
find that vy € {by,b3}. Similarly vy € {bs,b:} and vy € {by,bs}. We further
show that all v; are distinct. Let v; = vz = by. Now {a1, v} is a module in
G(V —{a,b1}) S0 €gga; = €agpy,- Also, {az,vs} is a module of G(V —{a,b3}) so
€aras = €aiby- 1hiS means eq p, — €44 ,, Which contradicts first of relations 1.
Thus {Ul, Vo, U3} = {bl, bg, bg}

Finally we put together the facts that {a;,v;} is a module of G(V — {a, b;}),
{a, a1, as,a3} is a module of G(V — {by, b, bs3}), and {vy, vo, v3} = {b1, bo, b3 }.
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Consequently {a, a1, as, as, b1, ba, b3} is a module of G, which is absurd as we
had started with the assumption that GG is indecomposable. So case 2 is also
impossible. O

Corollary 33 Let G be an indecomposable graph with a € V' such that G(V —
{a}) is X-critical and (a1, by1), (ag,bs), ..., (ax, by) is its commutative elimina-
tion sequence. Then out of any three locked pairs of the sequence, there exists
at least one pair (aj,b;) such that G(V — {a;.b;}) is indecomposable.

Corollary 34 Let G = (V,E) be an indecomposable graph containing an
indecomposable subgraph G(X) and |V — X| > 5. Then a pair of vertices
a,b € V— X can be computed in O(n(n + m)) time such that G(V — {a,b})
s also indecomposable.

PROOF. For each vertex a € V — X check if G(V — {a}) is indecomposable
until one such vertex is located. If no such vertex exists, then G is X criti-
cal and from Lemma 31 we can compute a complete elimination sequence in
O(n?) time. So total cost of the computation is O(n(n + m) + n?) because in-
decomposability can be tested in (n-+m). If a vertex a is located, then locate a
vertex b in V — X —{a} such that G(V —{a, b}) is indecomposable. If one such
vertex is located then a, b is the desired pair and the cost of the computation
is O(n(n+m)). Otherwise G(V —{a}) is X critical. Since |V —{a}| > 4, there
are at least three locked pairs in the elimination sequence of G(V — {a}). Let
(a1,b1), (ag, by), (as, bg) are any three pairs in the sequence. From the previous
corollary we know that at least one of these pairs can be removed from G while
preserving indecomposability. Therefore we compute the commutative elimi-
nation sequence of G(V —{a}) in O(n?) time and check the indecomposability
of G(V—{a;, b;}), for i = 1,2, 3. Then the desired pair is a;, b; if G(V —{a;, b;})
is indecomposable. The testing of indecomposability of the three subgraphs
costs O(n +m), so total cost in this case is O(n(n+m) +n?) = O(n(n+m)).

An obvious consequence of this result is that an indecomposability preserving
elimination sequence can be computed in O(n?(n + m)).

Corollary 35 Let G = (V, E) be an indecomposable graph containing an inde-
composable subgraph G(X) with |V —X| > 5. Then a sequence Dy, D, ..., Dy
of vertez sets can be computed in O(n?(n + m)) such that these are mutually
exclusive, |D;| =2, D; CV — X, G(V — Dy — Dy ... — D;) is indecomposable
for1<i<k,and |V —X —D;—...— Dg| <5.
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5 Maximal X-critical subgraph

Let G = (V, E) be an arbitrary graph which has an indecomposable subgraph
G(X). In this section we will discuss the computation of a maximal X-critical
subgraph of G.

Table 2
Necessary and sufficient test for G(Y') to be X-critical
w M’ M Condition
Case: a € [Y'],b € eqy(p)
w=p Y'—{p,z} | {a,z} zeY' —{p} €ab = Egb
w ¢ {a,b,p} | {2y} {z,y} z,y €Y' —{w} €ob = €ap
Y'—{w,z} | Y —{w,z} | z €Y' — {p,w} €aw 7 Cvw
Case: a € eqy'(q),b € eqy’(p)
w=p {g,x} {a,z} z €Y' —{p,qw} €aqg = €aq
V' —{p.q} | Y —{a,p} €ag = €ab
w=gq {p,x} {b,z} z €Y' —{p,qw} €bp = Exp
Y'—{p.q¢t | Y —{bg} ebp = €ba
w ¢ {a,b,p,q} | {z,y} {z,y} z,y €Y' —{w,p,q} | true
{z,p} {z,b} zeY' —{w,p,q} | e =ep
&eaz = €qb
{z,p} {z,p} zeY' —{w,p,q} | e =ep
&eaz # €ap
{z,q} {z,a} €Y' —{w,p,q} | €ar = eaq
& epy = epa
{z,q} {z,q} z €Y' —{w,p,q} | € =¢qq
& ey # €pa
Y —{w,z} | Y —{w,z} | z €Y' —{w,p,q} true
V' —{w,p} | Y —{w,p} €op = €qp
V' —{w,q} | Y —{w,q} €ag = €pq

Let G(Y') be an X-critical subgraph and a,b € V — Y’ such that G(Y) be
indecomposable where Y = Y'U{a, b}. In addition, either a € [Y'] and b € egy-
or both a,b belong to egy:, satisfying the condition: (i) if a € [Y'], then
eay 7 €qp (i) if @ € egy(q), then ey, = ep; # eqp, where b € egy(p). Then
graph G(Y) is X-critical iff G(Y — {w}) is marginally decomposable for all
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Data: Arbitrary graph G = (V, E) with indecomposable subgraph G(X)
Result: A maximal X-critical subgraph of G
Y'=X;
W=V;
C'=C(W-X,X),
initialize M[w] Vw € V — X to be empty;
While eqcr is non-empty do
select any vertex b from some class ege (p) for some p € Y';
C = update(C', b);
foundpair = false;
Repeat
Select next a € extne — extner;
Perform the test of Table 1 for {a,b};
if test succeeds then
C' = update(C, a);
Y'=Y'U{a,b};
W =W —{a,b};
update M[w] Yw € Y — X;
foundpair = true;
Until foundpair or extne — extne: is exhausted;
If (foundpair = false) {W =W — {b}; C' =C" — b};
return Y’;

Algorithm 2. Computing a maximal X-critical subgraph

w € Y — X. Due to the choice of a, b it is sufficient to test the condition for
weY —X.

Table 1 enlisted the module M’ of G(Y' — {w}) corresponding to the module
M of G(Y — {w}). To check that G(Y — {w}) is marginally decomposable
we must ensure that M given in the table is its unique module. Table 2 lists
the necessary and sufficient condition for the same. The conditions given in
the table establishes the existence and uniqueness of M as the module. The
conditions are derived using the fact that M N Y’ is either M’ or a trivial
module.

Algorithm 2 computes a maximal X-critical subgraph of an arbitrary graph
G which contains an indecomposable subgraph G(X). The algorithm starts
with the subgraph G(Y') = G(X) which is vacuously X-critical. Initially we
compute C(V — X, X) and initialize M to empty array, where M [w] will store
the unique module of Y’ — {w} for each w € Y’ — X. In each cycle we locate
a new pair of vertices to be appended to Y and stop when no addition is
possible.

If the current Y is not a maximal X-critical subgraph of G, then there must
be a maximal X-critical G(V') which contains Y. So the vertices of V' —
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Y’ should form a commutative elimination sequence, say {a1, b1}, {as, b2}, .. ..
Each {a;, b;} is a locked pair in G(Y' U {a;, b;}). Without loss of generality
assume that b; is from class eqy- since at least one must be from these classes.
Since G(Y' U {a;, b;}) is X-critical, a; must belong to extn(Y”' U {b;}).

We start a pass of while-loop with an arbitrarily selected candidate for b;.
In for-loop a compatible a; is searched. If no suitable a; is found, then there
does not exist any X-critical extension of Y containing b; so it is deleted from
future consideration.

Since new C' computation and the test of Table 2 are performed O(n?) time
and each step takes O(n) time, we have following result.

Theorem 36 Algorithm 2 computes a mazimal X -critical subgraph of a given
graph in O(n®) time.

6 Two algorithmic problems on X-critical graphs

6.1 Perfect Matching

Theorem 37 Let G be an X-critical graph. If X has a perfect matching then
so has G. Given the matching on X a matching on G can be computed in
O(n + mlogn).

PROOF. We prove the existence of the matching by induction on |V|. If
V' = X then there is nothing to show. Let us assume that G(Z) is a X-critical
subgraph having a perfect matching M. Now we extend this graph by two
vertices s.t. G(Z U {a,b}) is also X-critical. We will show that G(Z U {a, b})
has also got a perfect matching M'.

If (a,b) € E then we can easily extend the matching to include these new
vertices M' = M U {(a,b)}. If (a,b) ¢ E then we need to consider two cases
depending upon the kind of vertices a and b are (Lemma 3).

Case 1 a €[Z],b € eqz(p). As (a,b) € E, (a,2) € E,Nz € Z. Let (p,c) € M
(p is matched to some ¢ in M ). Then the new matching is given by M' =

M — {(pa C)} U {(a:p)7 (bﬂ C)}

Case 2 a € eqz(q),b € eqz(p). As (a,b) & E, (a,p),(b,q) € E and hence
(p,q) € E. If (p,q) € M then a new matching can be given by M' = M —
{p,q} U{(a,p), (b,q)}. Else let (g,c), (p,d) € M then (a,c), (b,d) € E and the
new matching is given by M' = M — {(p,d), (¢,¢)} U{(p, q), (a,c¢), (b,d)}.
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A matching on X can be extended to a matching on G in the same way.
The dominating factor in the time complexity of this problem is due to the
computation for finding the new pairs which we are going to be added. As
calculation of an elimination sequence has complexity O(n + mlInn), we can
extend the matching in the same complexity (we are doing constant work
while extending the matching if the elimination sequence is given).

Remark 38 The converse of the theorem is not true. For example the graph
in figure 1 has a perfect matching, while G(X) does not.

6.2 3-coloring

Toft [13] had conjectured in 1974 that every graph which is free from any
odd-subdivision of K, as its subgraph, is 3-colorable. Zang [14] had proved
this conjecture. In this section we give an O(n(n + m)) algorithm to 3-color
an X-critical graph which is free from odd subdivisions of K, if a 3-coloring
of G(X) is given.

We begin with a simple but very useful result.

Lemma 39 Let G = (V, E) be a graph and z € V.

(i) G is 3-colorable iff each of the strongly connected components (blocks) of
G is 3-colorable.

(ii) Let G be 3-colorable. Let (11, E,),...,(Ts, E;) be the strongly connected
components (blocks) of G which share verter x. Let F' : Uf_,T; — {1,2,3} be
a 3-coloring for these components. Then G has a 3-coloring F: V — {1,2,3}
such that F(y) = F'(y) for all y € Ui_,T;.

The claim is obvious once we observe that any two strongly connected com-
ponents share at most one vertex which is a cut-vertex of the graph.

Theorem 40 Let G be an X -critical graph and a 3-coloring of G(X) is given.
Then in O(n(n + m)) time either a 3-coloring of G can be computed or a
subgraph of G can be computed which is an odd sub-division of K.

PROOF. As in Theorem 37 we will present an iterative algorithm. Starting
with Z = X and a locked pair (a,b) of commutative elimination sequence of
G, we will show that a 3-coloring of G(Z U {a, b}) can be computed or show
that G(Z U {a, b}) contains an odd sub-division of K, as its subgraph.

The proof requires the consideration of a large number of cases. For simplifying

the structure of the proof, Figure 3 shows the case-tree. The three cases which
need discussion follow.
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Fig. 2. An example of odd-subdivision of Ky

3-colouring G(Z U {a,b})

b ineq(p), a in eq(q) bineq(p), ain [Z]
\ \ \ \
(b,p) not in E, (a,q) not in E (b,p) inE a connected to Z a not connected to Z
‘ (a,b) notin E (a,b)inE
Z must be bipartite.
Colour Z by 1/2;
Col(a) = Col(b) = 3,
(b,p) inE, (a,g) notinE (b,p)inE, (a,q)inE (b,p) in E (b,p) not in E
[Case | discussed herej [Case 11 discussed here] Strongly conn. components | | Col(b) = Col(p);
Containing p are bipartite. | {COl(a) = Col(p) (mod 3) + 1.
Colour them by 1/2;
Extend the colouring to Z;
\ Coll) =3
(a,b) notin E (ab)inE Col(a) =1or2.

Left to the reader ‘

Col(p) = Col(q) Col(p) not equal to Col(q)

Case Il discussed here COl(a) = Col(q);

Col(b) = Col(p).

Fig. 3. Case-Tree for 3-coloring proof
I) Case of (b,p) € FE and (a,q) ¢ E.

Assume G(ZU{a,b}) does not contain any odd subdivision of K. This means
that p belongs to no odd cycles in G(Z). Consider strongly connected compo-
nents containing p, we have two different cases. Either ¢ belongs to them or it
does not.

Let ¢ belong to a strongly connected component of p. As all strongly connected
components containing p are bipartite, these can be colored by any two colors,
say 1,2. Extend the coloring to entire Z, see Lemma 39. This leaves color 3
for b. We color a by the same color as q.

Let ¢ does not belong to the strongly connected component of p. Again we
color the strongly connected components containing p by 1,2. Also, we color
b by 3. If the color of ¢ is not 3 then we color a by the same color.

Otherwise, let z be the cut vertex in the connected components of p which
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separates p from q. Without loss of generality assume that x is colored by 1.
Switch the colors 2 and 3 in the component of G(V — {z}) containing ¢g. Now
q has color 2. Set color of a to be 2.

IT) Case of (b,p) € E and (a,q) € E.

Assume G(ZU{a,b}) does not contain any odd subdivision of K. This means
that neither p nor ¢ belong to any odd cycles in G(Z). Consider strongly
connected components containing p and g. Both these components are bi-
partite. we have two different cases. Either ¢ and p belong to a common
strongly connected component or not.

Let ¢ and p do not share a component. Again we color the strongly connected
components containing p by 1,2. Also, we color b by 3. Again let z be the
cut vertex in a component of p which separates P from ¢. Without loss of
generality assume that x is colored by 1. Extend the coloring to entire Z such
that the strongly connected components of ¢ are also colored by two colors. If
these components are colored by 1,3, then color a by 2. If these components
are colored by 2,3, then color a by 1. In case these components are colored by
1,2, then switch the colors 2 and 3 in component of G(V — {x}) containing q.
Now components of ¢ are colored by 1,3. Set the color of a to be 2.

Finally consider the case where ¢ and p share a component. In this case we
color the strongly connected components of p and ¢ by 1,2 again. Without
loss of generality we assume that g gets the color 2. Note that we can recolor
all neighboring vertices of ¢ by 3 without harming the rest of the coloring.
Extend the coloring to entire Z. This will leave color 1 for a and 3 for b, if
N(q) N N(p) = 0. If not then we cannot color b by 3. In this case (a, b, p, u)
form an odd subdivision of K, where u a common neighbor of p and ¢, see
figure 4. Note that the segment connecting m,n is even-length and it exists
because p and ¢ are at least on one even cycle in Z.

a b

m < 4

Fig. 4. (a,b,p,u) form an odd subdivision of k4

III) Case of (b,p) ¢ F and (a,q) ¢ E and (ab) € E and col(p) = col(q).
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In this case, without loss of generality let the colors of both p and ¢ be 1.
Let S; and Sy denote the sets of 2-colored and 3-colored vertices respectively,
which are adjacent to both, ¢ and p. S3 and S, are sets of 2-colored and 3-
colored vertices which are adjacent to p but not ¢. Similarly S5 and Sg, which
are adjacent to ¢ but not p.

In the following, we will either recolor the original graph (without adding a
and b) such that p and ¢ have different colors, or we will find a subdivision
of Ky, (a,b,c,d), where these paths may meet only at the end vertices. If we
succeed in getting col(p) # col(q) then set col(a) = col(q) and col(b) = col(p).

In the following i/j-path denotes an alternating path with colors i and j.

If there is a 2/3 path from z € S; to y € Sy then (a,b,x,y) is a subdivision
of Kj. If there is none then in the 2/3 graph we exchange the color of the
components which contain vertices of Sy. This reduces Sy to ). Now either
S1 = 0 or not. We consider both these cases separately.

Case 1 S; #(

If Sy = 0 then the color of p can be changed from 1 to 3. Also, if there is no
2/3 path from any vertex in S; U Sy to any vertex in Sy, we can change p’s
color to 3 (after changing colors of components containing S, vertices in the
2/8 graph). Furthermore, if there is a 2/8 path from u € S3 to v € Sy which
does not pass through at least one w € Sy then (p,b,u,v) is a subdivision of
K, with pwab being the path from p to a.

Now we have the following, every 2/8 path, if there is any, from any vertezx of
S3 to any vertex of Sy passes through all vertices of S1. And there is at least
one vertex in Sy which has a 2/3 path to some vertex in S;.

In this case, we do the following, in 2/3 graph exchange the color of compo-
nents which contain at least one vertex of Sy but no vertex of S;. See that the
colors of original S1 and Ss vertices will remain unchanged. The new Sy will
be a subset of old Sy and new S3 will be a superset of old S5. Most importantly
every verter of (new) Sy will have a 2/3 path to Si, and then new Sy will be
non-empty.

If there is no 1/3 path from Sy to Sg then in 1/3 graph exchange the color of
the component containing p. Now p is colored 3 but q s still colored 1.

Otherwise, let there be a 1/3 path, L, from u in Sg to v in Sy. As shown
earlier, every vertex of Sy has a 2/3 path to Sy. Let M be a 2/3 path from w
in S1 towv in Sy. Clearly L N M is non-empty since v belongs to it. Starting
from u, let x be the first vertex on L which is also on M. Let My be the section
of M from x to w; My be the section of M from x to v; and L, be the section
of L from x to u.
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Observe that x is colored 3, My is odd length path, and L, and M, are even
length paths. Further, My, My, and L, share only one vertex, namely, x. Then
(a,b,w,x) is the subdivision of K4 where the path from x to w is My, path
from x to b is My.b, and the path from x to a is L;.a.

Case 2 S; =0 and S, =10
In all these cases we can recolor p or q so their colors are different.

e There is no 2/8 path from Ss to Sy: Swap the colors of the 2/3 component
containing p, t.e., all color-2 vertices be given color-3 and vice-versa in this
component.

e There is no 2/8 path from Ss to Se: Swap the colors of the 2/3 component
containing q.

e There is no 1/2 path from Sy to Ss: Swap the color of 1/2 component con-
taining p.

e There is no 1/3 path from Sy to Sg: Swap the color of 1/3 component con-
taining p.

Now if all of the above path exist, we exchange colors in 2/3 components of the
graph (components of the graph induced by vertices colored 2 and 8) containing
Sy vertices but no Ss vertices. Now every vertex in new Sy will have a 2/3 path
to S3.

In the new graph still there will be a 1/2 path from some vertex of S3 to some
vertex of Ss but it is possible that there is no 1/8 path from Sy to Se. In
that case exchange the colors of the component of 1/3 graph which contains p.
Otherwise the graph will have following properties: there will be at least one
2/8 path between Ss and Se; at least one 1/2 path between S and Ss; at least
one 1/3 path between Sy and Sg; every Sy-vertex will have a 2/8 path to Ss;
and Ss,54,55,5¢ are all non-empty.

Let M be path av+ 1/8 path v to u where v is some verter of Sg and u is
in Sy. Let N be a 2/3 path from u to some vertex w in Ss3. Note this exists
because each vertex of Sy has such a path to Ss. Let L' be a path ay+ 1/2 path
from y to x where y is some vertex in Sy and x is some vertex in S3. If v = w
then L=1L" else L = L' p.w.

Starting from a along L, suppose z is the first vertex common with N (note
there has to be such a verter as w is common); starting from a along M, let
r be the first common with N. Starting from z toward a along L, let s be the
first vertex which is common with a-to-r section of M (this exists since a is
common,). Denote s to q section of L by Ly; and s to r section of M by M.

Partition N into 8 parts as follows: if z is nearer to w (compared to r) then
bw+section of N from w to z is denoted by Ny, bu+ the section of N from u
to r is denoted by N3, and the section of N from z to r is denoted by No. In
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case r is closer to w on N, then Ny is bu+ section of N from u to z is Ny,
bw+ the section of N from w to r is N3; and the section from z to r is Ns.

Finally let O denote the path constituted by the s-to-a section of L +ab, when
a 18 not same as s; otherwise O 1is ab.

Now we claim (s,b,z,7) is a subdivision of K, where path from b to s is O;
from b to z is N1, b to r is N3, z to r is Ny, s to z is L1, and s to r is M;.
See that all paths are odd and they meet only at end-points.

7 Conclusion

In this paper we generalized the concept of critically indecomposable graphs
to X-critical graphs for arbitrary subset X such that G(X) is indecompos-
able. The main result of this paper shows the existence and uniqueness of a
commutative elimination sequence. Using this we showed that in an indecom-
posable graph a pair of vertices z,y € V — X can be calculated in O(n(n+m))
time such that G(V — {x,y}) is also indecomposable. We also use commuta-
tive elimination sequence to give efficient algorithms for perfect matching and
3-coloring.

Some open problems that need to be addressed next include the discovery
of similar structural properties of infinite X-critical graphs on the lines of
Schmerl and Trotter [7] and Ille [15]. Also, it will be worthwhile to find al-
gorithm for testing X-criticality more efficiently than O(n(n + m)), the time
taken by brute-force method.

References

[1] R. Fraissé, L’intervalle en théorie des relations, ses généralizations, filtre
intervallire et cloture d’une relation, Orders, Description and Roles 6 (North-
Holland, Amsterdam, 1984) 313-342.

[2] R. H. Mohring, H. A. Buer, A fast algorithm for the decomposition of graphs
and posets, Math. Oper. Res. 8 (1983) 170-184.

[3] M. Habib, Substitution des structures combinatoires, théorie et algorithmes,
Ph.D. Thesis, Université Pierre et Marie Curie, Paris VI.

[4] D. P. Sumner, Graphs indecomposable with respect to the z-join, Discrete
Mathematics 6 (1973) 281-298.

[5] J. Spinrad, p4-trees and substitution decomposition, Discrete Applied Math. 39
(1992) 263-291.

28



[6] R. H. Mohring, F. J. Radermacher, Substitution decomposition for discrete
structures and connections with combinatorial optimization, Ann. Discrete

Mathematics 19 (1984) 257-356.

[7] J. H. Schmerl, W. T. Trotter, Critically indecomposable partially ordered
sets, graphs, tournaments and other binary relational structures, Discrete
Mathematics 113 (1993) 191-205.

[8] A. Ehrenfeucht, G. Rozenberg, Primitivity is hereditry for 2-structures,
Theoritical Computer Science 3 (70) (1990) 343-358.

[9] A. Ehrenfeucht, G. Rozenberg, Theory of 2-structures, parts i and ii, Theoritical
Computer Science 70 (1990) 277-303 and 305-342.

[10] P. Ille, Indecomposable graphs, Discrete Mathematics 173 (1997) 71-78.

[11] A. Cournier, M. Habib, An efficient algorithm to recognize prime undirected
graphs., in: E. W. Mayr (Ed.), WG, Vol. 657 of Lecture Notes in Computer
Science, Springer, 1992, pp. 212-224.

[12] C. K. Dubey, S. K. Mehta, J. S. Deogun, Conditionally critical indecomposable
graphs., in: COCOON, Vol. 3595 of Lecture Notes in Computer Science, 2005,
pp. 690-700.

[13] B. Toft, Problem 10, Academia Praha, New York, 1975.

[14] W. Zang, Proof of toft’s conjecture: Every graph containing no fully odd k4 is
3-colorable., in: W.-L. Hsu, M.-Y. Kao (Eds.), COCOON, Vol. 1449 of Lecture
Notes in Computer Science, Springer, 1998, pp. 261-268.

[15] P. Ille, Graphes indécomposables infinis, C. R. Acad. Sci. Paris Sér. I 318 (1994)
499-503.

29



