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Recap
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Maximum Likelihood Estimation (MLE)

We wish to estimate parameters θ from observed data {x1, . . . , xN}

MLE does this by finding θ that maximizes the (log)likelihood p(X|θ)

θ̂ = arg max
θ

log p(X|θ) = arg max
θ

log
N∏

n=1

p(xn|θ) = arg max
θ

N∑
n=1

log p(xn|θ)

MLE now reduces to solving an optimization problem w.r.t. θ
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Maximum-a-Posteriori (MAP) Estimation

Incorporating prior knowledge p(θ) about the parameters

MAP estimation finds θ that maximizes the posterior p(θ|X) ∝ p(X|θ)p(θ)

θ̂ = arg max
θ

log
N∏

n=1

p(xn|θ)p(θ) = arg max
θ

N∑
n=1

log p(xn|θ) + log p(θ)

MAP now reduces to solving an optimization problem w.r.t. θ

Objective function very similar to MLE, except for the log p(θ) term

In some sense, MAP is just a “regularized” MLE
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Bayesian Learning

Both MLE and MAP only give a point estimate (single best answer) of θ

How can we capture/quantify the uncertainty in θ?

Need to infer the full posterior distribution

p(θ|X) =
p(X|θ)p(θ)

p(X)
=

p(X|θ)p(θ)∫
θ
p(X|θ)p(θ)dθ

∝ Likelihood× Prior

Requires doing a “fully Bayesian” inference

Inference sometimes a somewhat easy and sometimes a (very) hard problem

Conjugate priors often make life easy when doing inference
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Warm-up: Least Squares Regression

Training data: {xn, yn}Nn=1. Response is a noisy function of the input

yn = f (xn,w) + εn

Assume a data representation φ(xn) = [φ1(xn), . . . , φM(xn)] ∈ RM

Denote y = [y1, . . . , yN ]> ∈ RN , Φ = [φ(x1), . . . , φ(xN)]> ∈ RN×M

Assume linear (in the parameters) function: f (xn,w) = w>φ(xn)

Sum of squared error function

E (w) =
1

2

N∑
n=1

|f (xn,w)− yn|2

Classical solution: ŵ = arg minw E (w) = (Φ>Φ)−1Φ>y

Classification: replace the least squares by some other loss (e.g., logistic)
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Classical solution: ŵ = arg minw E (w) = (Φ>Φ)−1Φ>y

Classification: replace the least squares by some other loss (e.g., logistic)

Piyush Rai (IIT Kanpur) Bayesian Linear Regression and Sparse Bayesian Models 6



Warm-up: Least Squares Regression

Training data: {xn, yn}Nn=1. Response is a noisy function of the input

yn = f (xn,w) + εn

Assume a data representation φ(xn) = [φ1(xn), . . . , φM(xn)] ∈ RM

Denote y = [y1, . . . , yN ]> ∈ RN , Φ = [φ(x1), . . . , φ(xN)]> ∈ RN×M

Assume linear (in the parameters) function: f (xn,w) = w>φ(xn)

Sum of squared error function

E (w) =
1

2

N∑
n=1

|f (xn,w)− yn|2
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Regularization

Want functions that are “simple” (and hence “generalize” to future data)

How: penalize “complex” functions. Use a regularized loss function

Ẽ (w) = E (w) + λΩ(w)

Ω(w): a measure of how complex w is (want it small)

Regularization parameter λ trades off data fit vs model simplicity

For Ω(w) = ||w||2, the solution ŵ = arg minw Ẽ (w) = (Φ>Φ + λI)−1Φ>y
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Piyush Rai (IIT Kanpur) Bayesian Linear Regression and Sparse Bayesian Models 7



A Probabilistic Framework for Regression

Recall: yn = f (xn,w) + εn

Assume a zero-mean Gaussian error

p(ε|σ2) = N (ε|0, σ2)

Leads to a Gaussian likelihood model p(yn|xn,w) = N (yn|f (xn,w), σ2)

p(yn|xn,w) =

(
1

2πσ2

)1/2

exp

{
− 1

2σ2
(f (xn,w)− yn)2

}

Joint probability of the data (likelihood)

L(w) =
N∏

n=1

p(yn|xn,w) =

(
1

2πσ2

)N/2

exp

{
− 1

2σ2

N∑
n=1

(f (xn,w)− yn)2

}
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A Probabilistic Framework for Regression

Let’s look at the negative log-likelihood

− log L(w) =
N

2
log σ2 +

N

2
log 2π +

1

2σ2

N∑
n=1

(f (xn,w)− yn)2

Minimizing w.r.t. w leads to the same answer as the unregularized case

ŵ = (Φ>Φ)−1Φ>y

Also get an estimate of error variance

1

σ̂2
=

1

N

N∑
n=1

(f (xn, ŵ)− yn)2
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ŵ = (Φ>Φ)−1Φ>y

Also get an estimate of error variance

1

σ̂2
=

1

N

N∑
n=1

(f (xn, ŵ)− yn)2
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Specifying a Prior and Computing the Posterior

Let’s assume a Gaussian prior on the weight vector w = [w1, . . . ,wM ]

p(w|α) =
M∏

m=1

p(wm|α) =
M∏

m=1

( α
2π

)1/2
exp

(
−α

2
w2
m

)

The posterior

p(w|y, α, σ2) =
likelihood× prior

normalizing factor
=

p(y|w, σ2)× p(w|α)

p(y|α, σ2)

The posterior p(w|y, α, σ2) will be Gaussian N (µ,Σ)

µ = (Φ>Φ + σ2αI)−1Φ>y

Σ = σ2(Φ>Φ + σ2αI)−1

Instead of a single estimate, we now have a distribution over w
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Maximizing the Posterior

Recall: Gaussian prior on the weight vector w = [w1, . . . ,wM ]

p(w|α) =
M∏

m=1

p(wm|α) =
M∏

m=1

( α
2π

)1/2
exp

(
−α

2
w2
m

)
The likelihood p(yn|w, xn, σ2) ∝ exp

{
− 1

2σ2 (f (xn,w)− yn)2
}

Maximizing the posterior p(w|y, α, σ2) ∝ p(y|w, σ2)× p(w|α) w.r.t w is
equivalent to minimizing

EMAP(w) =
1

2σ2

N∑
n=1

{f (xn,w)− yn}2 +
α

2

M∑
m=1

w2
m

Will lead to an identical solution as ridge-regression with λ = σ2α
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Evolution of the Posterior

Posterior updates have a naturally online flavor..

p(w|y1, y2, y3) ∝ p(y1, y2, y3|w)p(w)

= p(y2, y3|w)p(y1|w)p(w)

= p(y2, y3|w)p(w|y1)

= likelihood w.r.t. y2 & y3 × posterior after seeing y1
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Let’s Compare Predictions

Ridge regression
prediction = f (ŵ, x∗)

MAP estimation (or “Pseudo” Bayesian)

prediction = p(y∗|wMAP , x∗, σ
2)

True Bayesian

prediction = p(y∗|x∗, y,X, σ2, α) =

∫
p(y∗|w, x∗, σ2)p(w|y,X, α, σ2)dw

The true Bayesian way integrates out or marginalizes/averages over the
uncertain variables (w in this case) to get a predictive distribution
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Not Quite Done Yet..

We haven’t really averaged over all unknowns (which also include α, σ2)

Ideally, would like to get the posterior over all the unknowns

p(w, α, σ2|y) =
p(y|w, σ2)p(w|α)p(α)p(σ2)

p(y)

where p(y) =
∫
p(y|w, σ2)p(w|α)p(α)p(σ2) dw dα dσ2 (hard to compute)

Making prediction for new data points. The predictive distribution:

p(y∗|y) =

∫
p(y∗|w, σ2)p(w, α, σ2|y) dw dα dσ2

.. again, hard to compute

Approx. Bayesian inference (Type-II maximum likelihood, Laplace
approximation, MCMC, variational Bayes, etc.) saves the day..
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Approximating the Predictive Distribution

Making prediction for new data points

p(y∗|y) =

∫
p(y∗|w, σ2)p(w, α, σ2|y) dw dα dσ2

=

∫
p(y∗|w, σ2)p(w|α, σ2, y)p(α, σ2|y) dw dα dσ2

≈
∫

p(y∗|w, σ2)p(w|α, σ2, y)δ(αMP , σ
2
MP) dw dα dσ2

=

∫
p(y∗|w, σ2)p(w|αMP , σ
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Marginal Likelihood

Hyperparameters α, σ2 are estimated by maximizing the marginal likelihood

Marginal likelihood (averaged over the prior on w) is

p(y|α, σ2) =

∫
p(y|w, σ2)p(w|α)dα

=
1

(2π)N/2
|σ2I + ΦA−1Φ>|−1/2 exp(−1

2
y>(σ2I + ΦA−1Φ>|−1y)

Maximizing p(y|α, σ2) w.r.t. α and σ2 gives αMP and σ2
MP , respectively

Maximization can be done using gradient-based methods

Can assume uniform priors on α, σ2 and compute marginal model probability

p(y|M) =

∫
p(y|α, σ2)p(α)p(σ2)dαdσ2

p(y|M) ≈ 1

S

S∑
s=1

p(y|αs , σ
2
s ) (useful for model-selection)
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Sparse Modeling

Want very few elements in w to be nonzero
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Sparse Bayesian Regression

Recall the Gaussian prior on w

p(w|α) =
M∏

m=1

p(wm|α) =
M∏

m=1

( α
2π

)1/2
exp

(
−α

2
w2
m

)
Each component of w is a zero-mean Gaussian p(wm|α) = N (wm|0, α−1)

Same hyperparameter α on each entry of w. Can’t impose sparsity on w

Let’s have a separate inverse variance αm for each component of w

p(w|α) =
M∏

m=1

p(wm|αm) =
M∏

m=1

(αm

2π

)1/2
exp

(
−αm

2
w2
m

)
We now have M hyperparameters α = [α1, . . . , αM ] individually controlling
the variance of each component wm of w
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A Hierarchical Prior

Our new hierarchical prior on w

p(w|α) =
M∏

m=1

p(wm|αm) =
M∏

m=1

(αm

2π

)1/2
exp

(
−αm

2
w2
m

)
We will assume a gamma prior on αm: p(αm) ∝ αa−1

m exp−αm/b

The marginal prior on each weight wm after averaging over p(αm)

p(wm) =

∫
p(wm|αm)p(αm)dαm (will be a Student-t distribution)

Akin to penalizing
∑M

m=1 log |wm|. Leads to sparse solutions for w
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Sparse Bayesian Regression

Likelihood model

p(y|w, σ2) = (2πσ2)−N/2 exp

{
− 1

2σ2
||y −Φµ||2

}
Prior on w: Gaussian-gamma (Student-t)

Posterior

p(w, α, σ2|y) =
p(y|w, α, σ2)p(w, α, σ2)

p(y)

Posterior p(w, α, σ2|y) is further decomposed as

p(w, α, σ2|y) = p(w|y, α, σ2)p(α, σ2|y)

Piyush Rai (IIT Kanpur) Bayesian Linear Regression and Sparse Bayesian Models 20



Sparse Bayesian Regression

Likelihood model

p(y|w, σ2) = (2πσ2)−N/2 exp

{
− 1

2σ2
||y −Φµ||2

}
Prior on w: Gaussian-gamma (Student-t)

Posterior

p(w, α, σ2|y) =
p(y|w, α, σ2)p(w, α, σ2)

p(y)

Posterior p(w, α, σ2|y) is further decomposed as

p(w, α, σ2|y) = p(w|y, α, σ2)p(α, σ2|y)

Piyush Rai (IIT Kanpur) Bayesian Linear Regression and Sparse Bayesian Models 20



The Posterior

Posterior over weights will be Gaussian

p(w|y, α, σ2) =
p(y|w, σ2)p(w|α)

p(y|α, σ2)

= (2π)(N+1)/2|Σ|−1/2 exp

{
−1

2
(w − µ)Σ−1(w − µ)

}
where Σ = (σ−2Φ>Φ + A)−1, µ = σ−2ΣΦ>y, A = diag(α1, α2, . . . , αM)

Note: if αm =∞ then µm = 0
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Hyperparameter Re-estimation

Posterior over w: p(w|y, α, σ2) = N (µ,Σ)

Marginal likelihood (averaged over the prior on w) is

p(y|α, σ2) =

∫
p(y|w, σ2)p(w|α)dα

=
1

(2π)N/2
|σ2I + ΦA−1Φ>|−1/2 exp(−1

2
y>(σ2I + ΦA−1Φ>|−1y)

Maximize the marginal likelihood p(y|α, σ2) w.r.t. α = [α1, . . . , αM ] and σ2

αnew
m =

γm
µ2
m

(σ2)new =
||y −Φµ||2

N −
∑M

m=1 γm

where γm = 1− αmΣmm

Alternate between estimating w, α, and σ2
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Approximate Bayesian Inference

Bayesian learning routinely needs to deal with intractable integrals, e.g.,

Normalization: when computing the posterior distribution

p(θ|D) =
p(D|θ)p(θ)

p(D)
=

p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

where the denominator is rarely available in closed analytical form

Marginalization:

p(θ|D) =

∫
p(θ, φ|D)p(φ)dφ

Expectations:

Ep(θ|D)[f (x)] =

∫
f (x)p(θ|D)dθ
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Approximate Bayesian Inference

Several ways to do approximate inference in Bayesian models

Sampling based approximations: Monte Carlo methods, Markov-Chain
Monte Carlo (MCMC) methods (e.g., Gibbs sampling)

Deterministic approximations: Laplace approximation, Variational Bayes
(VB), Expectation Propagation (EP). Treats inference as an optimization
problem of finding the parameters of the closest distribution from a family.

A very active area of research, lot of recent work on scalable inference (online
and distributed Bayesian inference)
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Being Bayesian

Piyush Rai (IIT Kanpur) Bayesian Linear Regression and Sparse Bayesian Models 25



Other Recent Advances in Bayesian Learning

Bayesian Optimization

Used for optimization problems where the objective function is unknown and
expensive to evaluate

Closed connections to other “hot” areas in ML, e.g.,

Dropout in Deep Learning vs approximate Bayesian inference

A lot of ongoing work to automate Bayesian inference

Probabilistic Programming: computer programs to express probabilistic models

Nonparametric Bayesian modeling (or “letting the data speak for itself”)
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Next Talk

Introduction to nonparametric Bayesian modeling

Nonparametric Bayesian regression: Gaussian Process (GP) regression
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Thanks! Questions?
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