Case Study: Bayesian Linear Regression and Sparse Bayesian Models

Piyush Rai

Dept. of CSE, IIT Kanpur

(Mini-course: lecture 2)

Nov 05, 2015

Recap

Maximum Likelihood Estimation (MLE)

• We wish to estimate parameters θ from observed data $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$

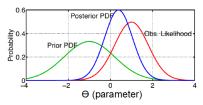
• MLE does this by finding θ that maximizes the (log)likelihood $p(\mathbf{X}|\theta)$

$$\hat{\theta} = \arg\max_{\theta} \log p(\mathbf{X}|\theta) = \arg\max_{\theta} \log \prod_{n=1}^{N} p(\mathbf{x}_{n}|\theta) = \arg\max_{\theta} \sum_{n=1}^{N} \log p(\mathbf{x}_{n}|\theta)$$

ullet MLE now reduces to solving an optimization problem w.r.t. heta

Maximum-a-Posteriori (MAP) Estimation

Incorporating **prior knowledge** $p(\theta)$ about the parameters



• MAP estimation finds θ that maximizes the posterior $p(\theta|\mathbf{X}) \propto p(\mathbf{X}|\theta)p(\theta)$

$$\hat{\theta} = \arg\max_{\theta} \log \prod_{n=1}^{N} p(\mathbf{x}_{n}|\theta) p(\theta) = \arg\max_{\theta} \sum_{n=1}^{N} \log p(\mathbf{x}_{n}|\theta) + \log p(\theta)$$

- MAP now reduces to solving an optimization problem w.r.t. θ
- ullet Objective function very similar to MLE, except for the $\log p(heta)$ term
- In some sense, MAP is just a "regularized" MLE

Bayesian Learning

- ullet Both MLE and MAP only give a point estimate (single best answer) of heta
- How can we capture/quantify the uncertainty in θ ?
- Need to infer the full posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int_{\theta} p(\mathbf{X}|\theta)p(\theta)d\theta} \propto \text{Likelihood} \times \text{Prior}$$

O (parameter)

- Requires doing a "fully Bayesian" inference
- Inference sometimes a somewhat easy and sometimes a (very) hard problem
- Conjugate priors often make life easy when doing inference

$$y_n = f(\mathbf{x}_n, \mathbf{w}) + \epsilon_n$$

• Training data: $\{\mathbf{x}_n, y_n\}_{n=1}^N$. Response is a noisy function of the input

$$y_n = f(\mathbf{x}_n, \mathbf{w}) + \epsilon_n$$

• Assume a data representation $\phi(\mathbf{x}_n) = [\phi_1(\mathbf{x}_n), \dots, \phi_M(\mathbf{x}_n)] \in \mathbb{R}^M$

$$y_n = f(\mathbf{x}_n, \mathbf{w}) + \epsilon_n$$

- Assume a data representation $\phi(\mathbf{x}_n) = [\phi_1(\mathbf{x}_n), \dots, \phi_M(\mathbf{x}_n)] \in \mathbb{R}^M$
- Denote $\mathbf{y} = [y_1, \dots, y_N]^{\top} \in \mathbb{R}^N$, $\mathbf{\Phi} = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_N)]^{\top} \in \mathbb{R}^{N \times M}$

$$y_n = f(\mathbf{x}_n, \mathbf{w}) + \epsilon_n$$

- Assume a data representation $\phi(\mathbf{x}_n) = [\phi_1(\mathbf{x}_n), \dots, \phi_M(\mathbf{x}_n)] \in \mathbb{R}^M$
- Denote $\mathbf{y} = [y_1, \dots, y_N]^\top \in \mathbb{R}^N$, $\mathbf{\Phi} = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_N)]^\top \in \mathbb{R}^{N \times M}$
- Assume linear (in the parameters) function: $f(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^{\top} \phi(\mathbf{x}_n)$

$$y_n = f(\mathbf{x}_n, \mathbf{w}) + \epsilon_n$$

- Assume a data representation $\phi(\mathbf{x}_n) = [\phi_1(\mathbf{x}_n), \dots, \phi_M(\mathbf{x}_n)] \in \mathbb{R}^M$
- Denote $\mathbf{y} = [y_1, \dots, y_N]^{\top} \in \mathbb{R}^N$, $\mathbf{\Phi} = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_N)]^{\top} \in \mathbb{R}^{N \times M}$
- Assume linear (in the parameters) function: $f(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^{\top} \phi(\mathbf{x}_n)$
- Sum of squared error function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} |f(\mathbf{x}_n, \mathbf{w}) - y_n|^2$$

• Training data: $\{\mathbf{x}_n, y_n\}_{n=1}^N$. Response is a noisy function of the input

$$y_n = f(\mathbf{x}_n, \mathbf{w}) + \epsilon_n$$

- Assume a data representation $\phi(\mathbf{x}_n) = [\phi_1(\mathbf{x}_n), \dots, \phi_M(\mathbf{x}_n)] \in \mathbb{R}^M$
- Denote $\mathbf{y} = [y_1, \dots, y_N]^\top \in \mathbb{R}^N$, $\mathbf{\Phi} = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_N)]^\top \in \mathbb{R}^{N \times M}$
- Assume linear (in the parameters) function: $f(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^{\top} \phi(\mathbf{x}_n)$
- Sum of squared error function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} |f(\mathbf{x}_n, \mathbf{w}) - y_n|^2$$

• Classical solution: $\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} E(\mathbf{w}) = (\mathbf{\Phi}^{\top} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\top} \mathbf{y}$

$$y_n = f(\mathbf{x}_n, \mathbf{w}) + \epsilon_n$$

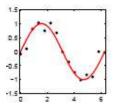
- Assume a data representation $\phi(\mathbf{x}_n) = [\phi_1(\mathbf{x}_n), \dots, \phi_M(\mathbf{x}_n)] \in \mathbb{R}^M$
- Denote $\mathbf{y} = [y_1, \dots, y_N]^{\top} \in \mathbb{R}^N$, $\mathbf{\Phi} = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_N)]^{\top} \in \mathbb{R}^{N \times M}$
- Assume linear (in the parameters) function: $f(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^{\top} \phi(\mathbf{x}_n)$
- Sum of squared error function

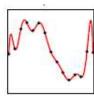
$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} |f(\mathbf{x}_n, \mathbf{w}) - y_n|^2$$

- Classical solution: $\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} E(\mathbf{w}) = (\mathbf{\Phi}^{\top} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\top} \mathbf{y}$
- Classification: replace the least squares by some other loss (e.g., logistic)

Regularization

• Want functions that are "simple" (and hence "generalize" to future data)





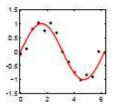
• How: penalize "complex" functions. Use a regularized loss function

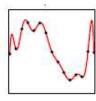
$$\tilde{E}(\mathbf{w}) = E(\mathbf{w}) + \lambda \Omega(\mathbf{w})$$

• $\Omega(\mathbf{w})$: a measure of how complex \mathbf{w} is (want it small)

Regularization

• Want functions that are "simple" (and hence "generalize" to future data)





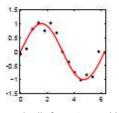
How: penalize "complex" functions. Use a regularized loss function

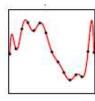
$$\tilde{E}(\mathbf{w}) = E(\mathbf{w}) + \lambda \Omega(\mathbf{w})$$

- $\Omega(\mathbf{w})$: a measure of how complex \mathbf{w} is (want it small)
- ullet Regularization parameter λ trades off data fit vs model simplicity

Regularization

• Want functions that are "simple" (and hence "generalize" to future data)





How: penalize "complex" functions. Use a regularized loss function

$$\tilde{E}(\mathbf{w}) = E(\mathbf{w}) + \lambda \Omega(\mathbf{w})$$

- $\Omega(\mathbf{w})$: a measure of how complex \mathbf{w} is (want it small)
- \bullet Regularization parameter λ trades off data fit vs model simplicity
- For $\Omega(\mathbf{w}) = ||\mathbf{w}||^2$, the solution $\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \tilde{E}(\mathbf{w}) = (\mathbf{\Phi}^{\top}\mathbf{\Phi} + \lambda \mathbf{I})^{-1}\mathbf{\Phi}^{\top}\mathbf{y}$

- Recall: $y_n = f(\mathbf{x}_n, \mathbf{w}) + \epsilon_n$
- Assume a zero-mean Gaussian error

$$p(\epsilon|\sigma^2) = \mathcal{N}(\epsilon|0,\sigma^2)$$

- Recall: $y_n = f(\mathbf{x}_n, \mathbf{w}) + \epsilon_n$
- Assume a zero-mean Gaussian error

$$p(\epsilon|\sigma^2) = \mathcal{N}(\epsilon|0,\sigma^2)$$

• Leads to a Gaussian likelihood model $p(y_n|\mathbf{x}_n,\mathbf{w}) = \mathcal{N}(y_n|f(\mathbf{x}_n,\mathbf{w}),\sigma^2)$

$$p(y_n|\mathbf{x}_n,\mathbf{w}) = \left(\frac{1}{2\pi\sigma^2}\right)^{1/2} \exp\left\{-\frac{1}{2\sigma^2}(f(\mathbf{x}_n,\mathbf{w}) - y_n)^2\right\}$$

- Recall: $y_n = f(\mathbf{x}_n, \mathbf{w}) + \epsilon_n$
- Assume a zero-mean Gaussian error

$$p(\epsilon|\sigma^2) = \mathcal{N}(\epsilon|0,\sigma^2)$$

• Leads to a Gaussian likelihood model $p(y_n|\mathbf{x}_n,\mathbf{w}) = \mathcal{N}(y_n|f(\mathbf{x}_n,\mathbf{w}),\sigma^2)$

$$p(y_n|\mathbf{x}_n,\mathbf{w}) = \left(\frac{1}{2\pi\sigma^2}\right)^{1/2} \exp\left\{-\frac{1}{2\sigma^2}(f(\mathbf{x}_n,\mathbf{w}) - y_n)^2\right\}$$

Joint probability of the data (likelihood)

$$L(\mathbf{w}) = \prod_{n=1}^{N} p(y_n | \mathbf{x}_n, \mathbf{w}) = \left(\frac{1}{2\pi\sigma^2}\right)^{N/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (f(\mathbf{x}_n, \mathbf{w}) - y_n)^2\right\}$$

Let's look at the negative log-likelihood

$$-\log L(\mathbf{w}) = \frac{N}{2}\log \sigma^2 + \frac{N}{2}\log 2\pi + \frac{1}{2\sigma^2}\sum_{n=1}^{N}(f(\mathbf{x}_n, \mathbf{w}) - y_n)^2$$

Let's look at the negative log-likelihood

$$-\log L(\mathbf{w}) = \frac{N}{2}\log \sigma^2 + \frac{N}{2}\log 2\pi + \frac{1}{2\sigma^2}\sum_{n=1}^{N}(f(\mathbf{x}_n, \mathbf{w}) - y_n)^2$$

ullet Minimizing w.r.t. ullet leads to the same answer as the unregularized case

$$\hat{\mathbf{w}} = (\mathbf{\Phi}^{\top}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\top}\mathbf{y}$$

Let's look at the negative log-likelihood

$$-\log L(\mathbf{w}) = \frac{N}{2}\log \sigma^2 + \frac{N}{2}\log 2\pi + \frac{1}{2\sigma^2}\sum_{n=1}^{N}(f(\mathbf{x}_n, \mathbf{w}) - y_n)^2$$

ullet Minimizing w.r.t. ullet leads to the same answer as the unregularized case

$$\hat{\mathbf{w}} = (\mathbf{\Phi}^{\top}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\top}\mathbf{y}$$

• Also get an estimate of error variance

$$\frac{1}{\hat{\sigma}^2} = \frac{1}{N} \sum_{n=1}^{N} (f(\mathbf{x}_n, \hat{\mathbf{w}}) - y_n)^2$$

Specifying a Prior and Computing the Posterior

• Let's assume a Gaussian prior on the weight vector $\mathbf{w} = [w_1, \dots, w_M]$

$$p(\mathbf{w}|\alpha) = \prod_{m=1}^{M} p(w_m|\alpha) = \prod_{m=1}^{M} \left(\frac{\alpha}{2\pi}\right)^{1/2} \exp\left(-\frac{\alpha}{2}w_m^2\right)$$

Specifying a Prior and Computing the Posterior

• Let's assume a Gaussian prior on the weight vector $\mathbf{w} = [w_1, \dots, w_M]$

$$p(\mathbf{w}|\alpha) = \prod_{m=1}^{M} p(w_m|\alpha) = \prod_{m=1}^{M} \left(\frac{\alpha}{2\pi}\right)^{1/2} \exp\left(-\frac{\alpha}{2}w_m^2\right)$$

The posterior

$$p(\mathbf{w}|\mathbf{y}, \alpha, \sigma^2) = \frac{\mathsf{likelihood} \times \mathsf{prior}}{\mathsf{normalizing factor}} = \frac{p(\mathbf{y}|\mathbf{w}, \sigma^2) \times p(\mathbf{w}|\alpha)}{p(\mathbf{y}|\alpha, \sigma^2)}$$

Specifying a Prior and Computing the Posterior

• Let's assume a Gaussian prior on the weight vector $\mathbf{w} = [w_1, \dots, w_M]$

$$p(\mathbf{w}|\alpha) = \prod_{m=1}^{M} p(w_m|\alpha) = \prod_{m=1}^{M} \left(\frac{\alpha}{2\pi}\right)^{1/2} \exp\left(-\frac{\alpha}{2}w_m^2\right)$$

The posterior

$$p(\mathbf{w}|\mathbf{y}, \alpha, \sigma^2) = \frac{\mathsf{likelihood} \times \mathsf{prior}}{\mathsf{normalizing factor}} = \frac{p(\mathbf{y}|\mathbf{w}, \sigma^2) \times p(\mathbf{w}|\alpha)}{p(\mathbf{y}|\alpha, \sigma^2)}$$

• The posterior $p(\mathbf{w}|\mathbf{y}, \alpha, \sigma^2)$ will be Gaussian $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$\mu = (\mathbf{\Phi}^{\top} \mathbf{\Phi} + \sigma^{2} \alpha \mathbf{I})^{-1} \mathbf{\Phi}^{\top} \mathbf{y}$$
$$\mathbf{\Sigma} = \sigma^{2} (\mathbf{\Phi}^{\top} \mathbf{\Phi} + \sigma^{2} \alpha \mathbf{I})^{-1}$$

Instead of a single estimate, we now have a distribution over w

Maximizing the Posterior

• Recall: Gaussian prior on the weight vector $\mathbf{w} = [w_1, \dots, w_M]$

$$p(\mathbf{w}|\alpha) = \prod_{m=1}^{M} p(w_m|\alpha) = \prod_{m=1}^{M} \left(\frac{\alpha}{2\pi}\right)^{1/2} \exp\left(-\frac{\alpha}{2}w_m^2\right)$$

• The likelihood $p(\mathbf{y}_n|\mathbf{w},\mathbf{x}_n,\sigma^2) \propto \exp\left\{-\frac{1}{2\sigma^2}(f(\mathbf{x}_n,\mathbf{w})-y_n)^2\right\}$

Maximizing the Posterior

• Recall: Gaussian prior on the weight vector $\mathbf{w} = [w_1, \dots, w_M]$

$$p(\mathbf{w}|\alpha) = \prod_{m=1}^{M} p(w_m|\alpha) = \prod_{m=1}^{M} \left(\frac{\alpha}{2\pi}\right)^{1/2} \exp\left(-\frac{\alpha}{2}w_m^2\right)$$

- The likelihood $p(\mathbf{y}_n|\mathbf{w},\mathbf{x}_n,\sigma^2) \propto \exp\left\{-\frac{1}{2\sigma^2}(f(\mathbf{x}_n,\mathbf{w})-y_n)^2\right\}$
- Maximizing the posterior $p(\mathbf{w}|\mathbf{y}, \alpha, \sigma^2) \propto p(\mathbf{y}|\mathbf{w}, \sigma^2) \times p(\mathbf{w}|\alpha)$ w.r.t \mathbf{w} is equivalent to minimizing

$$E_{MAP}(\mathbf{w}) = \frac{1}{2\sigma^2} \sum_{n=1}^{N} \{f(\mathbf{x}_n, \mathbf{w}) - y_n\}^2 + \frac{\alpha}{2} \sum_{m=1}^{M} w_m^2$$

Maximizing the Posterior

• Recall: Gaussian prior on the weight vector $\mathbf{w} = [w_1, \dots, w_M]$

$$p(\mathbf{w}|\alpha) = \prod_{m=1}^{M} p(w_m|\alpha) = \prod_{m=1}^{M} \left(\frac{\alpha}{2\pi}\right)^{1/2} \exp\left(-\frac{\alpha}{2}w_m^2\right)$$

- The likelihood $p(\mathbf{y}_n|\mathbf{w},\mathbf{x}_n,\sigma^2) \propto \exp\left\{-\frac{1}{2\sigma^2}(f(\mathbf{x}_n,\mathbf{w})-y_n)^2\right\}$
- Maximizing the posterior $p(\mathbf{w}|\mathbf{y}, \alpha, \sigma^2) \propto p(\mathbf{y}|\mathbf{w}, \sigma^2) \times p(\mathbf{w}|\alpha)$ w.r.t \mathbf{w} is equivalent to minimizing

$$E_{MAP}(\mathbf{w}) = \frac{1}{2\sigma^2} \sum_{n=1}^{N} \{f(\mathbf{x}_n, \mathbf{w}) - y_n\}^2 + \frac{\alpha}{2} \sum_{m=1}^{M} w_m^2$$

 \bullet Will lead to an identical solution as ridge-regression with $\lambda=\sigma^2\alpha$

$$p(\mathbf{w}|y_1, y_2, y_3) \propto p(y_1, y_2, y_3|\mathbf{w})p(\mathbf{w})$$

$$p(\mathbf{w}|y_1, y_2, y_3) \propto p(y_1, y_2, y_3|\mathbf{w})p(\mathbf{w})$$

$$= p(y_2, y_3|\mathbf{w})p(y_1|\mathbf{w})p(\mathbf{w})$$

$$p(\mathbf{w}|y_1, y_2, y_3) \propto p(y_1, y_2, y_3|\mathbf{w})p(\mathbf{w})$$

$$= p(y_2, y_3|\mathbf{w})p(y_1|\mathbf{w})p(\mathbf{w})$$

$$= p(y_2, y_3|\mathbf{w})p(\mathbf{w}|y_1)$$

```
p(\mathbf{w}|y_1, y_2, y_3) \propto p(y_1, y_2, y_3|\mathbf{w})p(\mathbf{w})
= p(y_2, y_3|\mathbf{w})p(y_1|\mathbf{w})p(\mathbf{w})
= p(y_2, y_3|\mathbf{w})p(\mathbf{w}|y_1)
= likelihood w.r.t. y_2 & y_3 \times posterior after seeing y_1
```

Let's Compare Predictions

Ridge regression

$$\mathsf{prediction} = f(\hat{\mathbf{w}}, \mathbf{x}_*)$$

Let's Compare Predictions

Ridge regression

$$prediction = f(\hat{\mathbf{w}}, \mathbf{x}_*)$$

• MAP estimation (or "Pseudo" Bayesian)

prediction =
$$p(y_*|\mathbf{w}_{MAP}, \mathbf{x}_*, \sigma^2)$$

Let's Compare Predictions

Ridge regression

$$prediction = f(\hat{\mathbf{w}}, \mathbf{x}_*)$$

• MAP estimation (or "Pseudo" Bayesian)

prediction =
$$p(y_*|\mathbf{w}_{MAP}, \mathbf{x}_*, \sigma^2)$$

True Bayesian

prediction =
$$p(y_*|\mathbf{x}_*, \mathbf{y}, \mathbf{X}, \sigma^2, \alpha) = \int p(y_*|\mathbf{w}, \mathbf{x}_*, \sigma^2) p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \alpha, \sigma^2) d\mathbf{w}$$

• The true Bayesian way integrates out or marginalizes/averages over the uncertain variables (w in this case) to get a predictive distribution

Not Quite Done Yet...

- We haven't really averaged over all unknowns (which also include α , σ^2)
- Ideally, would like to get the posterior over all the unknowns

$$p(\mathbf{w}, \alpha, \sigma^2 | \mathbf{y}) = \frac{p(\mathbf{y} | \mathbf{w}, \sigma^2) p(\mathbf{w} | \alpha) p(\alpha) p(\sigma^2)}{p(\mathbf{y})}$$

where $p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha) p(\alpha) p(\sigma^2) d\mathbf{w} d\alpha d\sigma^2$ (hard to compute)

Not Quite Done Yet..

- We haven't really averaged over all unknowns (which also include α , σ^2)
- Ideally, would like to get the posterior over all the unknowns

$$p(\mathbf{w}, \alpha, \sigma^2 | \mathbf{y}) = \frac{p(\mathbf{y} | \mathbf{w}, \sigma^2) p(\mathbf{w} | \alpha) p(\alpha) p(\sigma^2)}{p(\mathbf{y})}$$

where $p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha) p(\alpha) p(\sigma^2) d\mathbf{w} d\alpha d\sigma^2$ (hard to compute)

Making prediction for new data points. The predictive distribution:

$$p(y_*|\mathbf{y}) = \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}, \alpha, \sigma^2|\mathbf{y}) \ d\mathbf{w} \ d\alpha \ d\sigma^2$$

.. again, hard to compute

Not Quite Done Yet..

- We haven't really averaged over all unknowns (which also include α , σ^2)
- Ideally, would like to get the posterior over all the unknowns

$$p(\mathbf{w}, \alpha, \sigma^2 | \mathbf{y}) = \frac{p(\mathbf{y} | \mathbf{w}, \sigma^2) p(\mathbf{w} | \alpha) p(\alpha) p(\sigma^2)}{p(\mathbf{y})}$$

where $p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha) p(\alpha) p(\sigma^2) d\mathbf{w} d\alpha d\sigma^2$ (hard to compute)

• Making prediction for new data points. The predictive distribution:

$$p(y_*|\mathbf{y}) = \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}, \alpha, \sigma^2|\mathbf{y}) \ d\mathbf{w} \ d\alpha \ d\sigma^2$$

- .. again, hard to compute
- Approx. Bayesian inference (Type-II maximum likelihood, Laplace approximation, MCMC, variational Bayes, etc.) saves the day.

$$p(y_*|\mathbf{y}) = \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}, \alpha, \sigma^2|\mathbf{y}) d\mathbf{w} d\alpha d\sigma^2$$

$$p(y_*|\mathbf{y}) = \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}, \alpha, \sigma^2|\mathbf{y}) d\mathbf{w} d\alpha d\sigma^2$$
$$= \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha, \sigma^2, \mathbf{y}) p(\alpha, \sigma^2|\mathbf{y}) d\mathbf{w} d\alpha d\sigma^2$$

$$p(y_*|\mathbf{y}) = \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}, \alpha, \sigma^2|\mathbf{y}) d\mathbf{w} d\alpha d\sigma^2$$

$$= \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha, \sigma^2, \mathbf{y}) p(\alpha, \sigma^2|\mathbf{y}) d\mathbf{w} d\alpha d\sigma^2$$

$$\approx \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha, \sigma^2, \mathbf{y}) \delta(\alpha_{MP}, \sigma_{MP}^2) d\mathbf{w} d\alpha d\sigma^2$$

$$p(y_*|\mathbf{y}) = \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}, \alpha, \sigma^2|\mathbf{y}) d\mathbf{w} d\alpha d\sigma^2$$

$$= \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha, \sigma^2, \mathbf{y}) p(\alpha, \sigma^2|\mathbf{y}) d\mathbf{w} d\alpha d\sigma^2$$

$$\approx \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha, \sigma^2, \mathbf{y}) \delta(\alpha_{MP}, \sigma_{MP}^2) d\mathbf{w} d\alpha d\sigma^2$$

$$= \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha_{MP}, \sigma_{MP}^2, \mathbf{y}) d\mathbf{w}$$

• Making prediction for new data points

$$p(y_*|\mathbf{y}) = \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}, \alpha, \sigma^2|\mathbf{y}) d\mathbf{w} d\alpha d\sigma^2$$

$$= \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha, \sigma^2, \mathbf{y}) p(\alpha, \sigma^2|\mathbf{y}) d\mathbf{w} d\alpha d\sigma^2$$

$$\approx \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha, \sigma^2, \mathbf{y}) \delta(\alpha_{MP}, \sigma_{MP}^2) d\mathbf{w} d\alpha d\sigma^2$$

$$= \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha_{MP}, \sigma_{MP}^2, \mathbf{y}) d\mathbf{w}$$

• Recall: $p(\mathbf{w}|\alpha_{MP}, \sigma^2_{MP}, \mathbf{y})$ is a Gaussian; so is $p(y_*|\mathbf{w}, \sigma^2)$

$$p(y_*|\mathbf{y}) = \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}, \alpha, \sigma^2|\mathbf{y}) d\mathbf{w} d\alpha d\sigma^2$$

$$= \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha, \sigma^2, \mathbf{y}) p(\alpha, \sigma^2|\mathbf{y}) d\mathbf{w} d\alpha d\sigma^2$$

$$\approx \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha, \sigma^2, \mathbf{y}) \delta(\alpha_{MP}, \sigma_{MP}^2) d\mathbf{w} d\alpha d\sigma^2$$

$$= \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha_{MP}, \sigma_{MP}^2, \mathbf{y}) d\mathbf{w}$$

- Recall: $p(\mathbf{w}|\alpha_{MP}, \sigma_{MP}^2, \mathbf{y})$ is a Gaussian; so is $p(y_*|\mathbf{w}, \sigma^2)$
- Can thus now compute $p(y_*|\mathbf{y}) = \int p(y_*|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha_{MP}, \sigma_{MP}^2, \mathbf{y}) d\mathbf{w}$, which is again a Gaussian $\mathcal{N}(y_*|\mu_*, \sigma_*^2)$

$$\mu_* = f(\mathbf{x}_*, \mathbf{w})$$

$$\sigma_*^2 = \sigma_{MP}^2 + \phi(\mathbf{x}_*)^\top \mathbf{\Sigma} \phi(\mathbf{x}_*)$$

Marginal Likelihood

- ullet Hyperparameters $lpha, \sigma^2$ are estimated by maximizing the marginal likelihood
- Marginal likelihood (averaged over the prior on w) is

$$\begin{split} \rho(\mathbf{y}|\alpha,\sigma^2) &= \int p(\mathbf{y}|\mathbf{w},\sigma^2) p(\mathbf{w}|\alpha) d\alpha \\ &= \frac{1}{(2\pi)^{N/2}} |\sigma^2 \mathbf{I} + \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^\top|^{-1/2} \exp(-\frac{1}{2} \mathbf{y}^\top (\sigma^2 \mathbf{I} + \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^\top|^{-1} \mathbf{y}) \end{split}$$

Marginal Likelihood

- ullet Hyperparameters $lpha, \sigma^2$ are estimated by maximizing the marginal likelihood
- Marginal likelihood (averaged over the prior on w) is

$$p(\mathbf{y}|\alpha, \sigma^2) = \int p(\mathbf{y}|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha) d\alpha$$

$$= \frac{1}{(2\pi)^{N/2}} |\sigma^2 \mathbf{I} + \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^\top|^{-1/2} \exp(-\frac{1}{2} \mathbf{y}^\top (\sigma^2 \mathbf{I} + \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^\top|^{-1} \mathbf{y})$$

- Maximizing $p(\mathbf{y}|\alpha, \sigma^2)$ w.r.t. α and σ^2 gives α_{MP} and σ^2_{MP} , respectively
- Maximization can be done using gradient-based methods

Marginal Likelihood

- ullet Hyperparameters $lpha, \sigma^2$ are estimated by maximizing the marginal likelihood
- Marginal likelihood (averaged over the prior on w) is

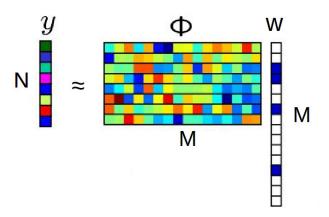
$$p(\mathbf{y}|\alpha, \sigma^2) = \int p(\mathbf{y}|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha) d\alpha$$

$$= \frac{1}{(2\pi)^{N/2}} |\sigma^2 \mathbf{I} + \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^\top|^{-1/2} \exp(-\frac{1}{2} \mathbf{y}^\top (\sigma^2 \mathbf{I} + \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^\top|^{-1} \mathbf{y})$$

- Maximizing $p(\mathbf{y}|\alpha, \sigma^2)$ w.r.t. α and σ^2 gives α_{MP} and σ^2_{MP} , respectively
- Maximization can be done using gradient-based methods
- ullet Can assume uniform priors on $lpha, \sigma^2$ and compute marginal model probability

$$\begin{array}{lcl} p(\mathbf{y}|\mathcal{M}) & = & \int p(\mathbf{y}|\alpha,\sigma^2)p(\alpha)p(\sigma^2)d\alpha d\sigma^2 \\ \\ p(\mathbf{y}|\mathcal{M}) & \approx & \frac{1}{S}\sum_{s=1}^S p(\mathbf{y}|\alpha_s,\sigma_s^2) & \text{(useful for model-selection)} \end{array}$$

Sparse Modeling



 \bullet Want very few elements in \boldsymbol{w} to be nonzero

Sparse Bayesian Regression

Recall the Gaussian prior on w

$$p(\mathbf{w}|\alpha) = \prod_{m=1}^{M} p(w_m|\alpha) = \prod_{m=1}^{M} \left(\frac{\alpha}{2\pi}\right)^{1/2} \exp\left(-\frac{\alpha}{2}w_m^2\right)$$

- Each component of **w** is a zero-mean Gaussian $p(w_m|\alpha) = \mathcal{N}(w_m|0,\alpha^{-1})$
- ullet Same hyperparameter lpha on each entry of ullet . Can't impose sparsity on ullet

Sparse Bayesian Regression

Recall the Gaussian prior on w

$$p(\mathbf{w}|\alpha) = \prod_{m=1}^{M} p(w_m|\alpha) = \prod_{m=1}^{M} \left(\frac{\alpha}{2\pi}\right)^{1/2} \exp\left(-\frac{\alpha}{2}w_m^2\right)$$

- Each component of **w** is a zero-mean Gaussian $p(w_m|\alpha) = \mathcal{N}(w_m|0,\alpha^{-1})$
- ullet Same hyperparameter lpha on each entry of ullet . Can't impose sparsity on ullet
- ullet Let's have a separate inverse variance $lpha_{\it m}$ for each component of ${f w}$

$$p(\mathbf{w}|\alpha) = \prod_{m=1}^{M} p(w_m|\alpha_m) = \prod_{m=1}^{M} \left(\frac{\alpha_m}{2\pi}\right)^{1/2} \exp\left(-\frac{\alpha_m}{2}w_m^2\right)$$

• We now have M hyperparameters $\alpha = [\alpha_1, \dots, \alpha_M]$ individually controlling the variance of each component w_m of \mathbf{w}

• Our new hierarchical prior on w

$$p(\mathbf{w}|\alpha) = \prod_{m=1}^{M} p(w_m|\alpha_m) = \prod_{m=1}^{M} \left(\frac{\alpha_m}{2\pi}\right)^{1/2} \exp\left(-\frac{\alpha_m}{2}w_m^2\right)$$

• We will assume a gamma prior on α_m : $p(\alpha_m) \propto \alpha_m^{a-1} \exp^{-\alpha_m/b}$

Our new hierarchical prior on w

$$p(\mathbf{w}|\alpha) = \prod_{m=1}^{M} p(w_m|\alpha_m) = \prod_{m=1}^{M} \left(\frac{\alpha_m}{2\pi}\right)^{1/2} \exp\left(-\frac{\alpha_m}{2}w_m^2\right)$$

- We will assume a gamma prior on α_m : $p(\alpha_m) \propto \alpha_m^{a-1} \exp^{-\alpha_m/b}$
- ullet The marginal prior on each weight w_m after averaging over $p(lpha_m)$

$$p(w_m) = \int p(w_m | \alpha_m) p(\alpha_m) d\alpha_m$$
 (will be a Student-t distribution)

Our new hierarchical prior on w

$$p(\mathbf{w}|\alpha) = \prod_{m=1}^{M} p(w_m|\alpha_m) = \prod_{m=1}^{M} \left(\frac{\alpha_m}{2\pi}\right)^{1/2} \exp\left(-\frac{\alpha_m}{2}w_m^2\right)$$

- We will assume a gamma prior on α_m : $p(\alpha_m) \propto \alpha_m^{a-1} \exp^{-\alpha_m/b}$
- ullet The marginal prior on each weight w_m after averaging over $p(lpha_m)$

$$p(w_m) = \int p(w_m | \alpha_m) p(\alpha_m) d\alpha_m$$
 (will be a Student-t distribution)

Gaussian prior

Marginal prior: single $\boldsymbol{\alpha}$

Independent α

Our new hierarchical prior on w

$$p(\mathbf{w}|\alpha) = \prod_{m=1}^{M} p(w_m|\alpha_m) = \prod_{m=1}^{M} \left(\frac{\alpha_m}{2\pi}\right)^{1/2} \exp\left(-\frac{\alpha_m}{2}w_m^2\right)$$

- We will assume a gamma prior on α_m : $p(\alpha_m) \propto \alpha_m^{a-1} \exp^{-\alpha_m/b}$
- ullet The marginal prior on each weight w_m after averaging over $p(lpha_m)$

$$p(w_m) = \int p(w_m | \alpha_m) p(\alpha_m) d\alpha_m$$
 (will be a Student-t distribution)

Marginal prior: single α

Gaussian prior

Independent $\boldsymbol{\alpha}$

• Akin to penalizing $\sum_{m=1}^{M} \log |w_m|$. Leads to sparse solutions for **w**

Sparse Bayesian Regression

Likelihood model

$$p(\mathbf{y}|\mathbf{w}, \sigma^2) = (2\pi\sigma^2)^{-N/2} \exp\left\{-\frac{1}{2\sigma^2}||\mathbf{y} - \mathbf{\Phi}\boldsymbol{\mu}||^2\right\}$$

- Prior on w: Gaussian-gamma (Student-t)
- Posterior

$$p(\mathbf{w}, \alpha, \sigma^2 | \mathbf{y}) = \frac{p(\mathbf{y} | \mathbf{w}, \alpha, \sigma^2) p(\mathbf{w}, \alpha, \sigma^2)}{p(\mathbf{y})}$$

Sparse Bayesian Regression

Likelihood model

$$p(\mathbf{y}|\mathbf{w}, \sigma^2) = (2\pi\sigma^2)^{-N/2} \exp\left\{-\frac{1}{2\sigma^2}||\mathbf{y} - \mathbf{\Phi}\boldsymbol{\mu}||^2\right\}$$

- Prior on w: Gaussian-gamma (Student-t)
- Posterior

$$p(\mathbf{w}, \alpha, \sigma^2 | \mathbf{y}) = \frac{p(\mathbf{y} | \mathbf{w}, \alpha, \sigma^2) p(\mathbf{w}, \alpha, \sigma^2)}{p(\mathbf{y})}$$

• Posterior $p(\mathbf{w}, \alpha, \sigma^2 | \mathbf{y})$ is further decomposed as

$$p(\mathbf{w}, \alpha, \sigma^2 | \mathbf{y}) = p(\mathbf{w} | \mathbf{y}, \alpha, \sigma^2) p(\alpha, \sigma^2 | \mathbf{y})$$

The Posterior

• Posterior over weights will be Gaussian

$$p(\mathbf{w}|\mathbf{y}, \alpha, \sigma^2) = \frac{p(\mathbf{y}|\mathbf{w}, \sigma^2)p(\mathbf{w}|\alpha)}{p(\mathbf{y}|\alpha, \sigma^2)}$$
$$= (2\pi)^{(N+1)/2} |\mathbf{\Sigma}|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{w} - \boldsymbol{\mu})\mathbf{\Sigma}^{-1}(\mathbf{w} - \boldsymbol{\mu})\right\}$$

where
$$\mathbf{\Sigma} = (\sigma^{-2}\mathbf{\Phi}^{\top}\mathbf{\Phi} + \mathbf{A})^{-1}$$
, $\boldsymbol{\mu} = \sigma^{-2}\mathbf{\Sigma}\mathbf{\Phi}^{\top}\mathbf{y}$, $\mathbf{A} = \operatorname{diag}(\alpha_1, \alpha_2, \dots, \alpha_M)$

• Note: if $\alpha_m = \infty$ then $\mu_m = 0$

Hyperparameter Re-estimation

- Posterior over **w**: $p(\mathbf{w}|\mathbf{y}, \alpha, \sigma^2) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Marginal likelihood (averaged over the prior on w) is

$$\begin{split} \rho(\mathbf{y}|\alpha,\sigma^2) &= \int p(\mathbf{y}|\mathbf{w},\sigma^2) p(\mathbf{w}|\alpha) d\alpha \\ &= \frac{1}{(2\pi)^{N/2}} |\sigma^2 \mathbf{I} + \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^\top|^{-1/2} \exp(-\frac{1}{2} \mathbf{y}^\top (\sigma^2 \mathbf{I} + \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^\top|^{-1} \mathbf{y}) \end{split}$$

Hyperparameter Re-estimation

- Posterior over **w**: $p(\mathbf{w}|\mathbf{y}, \alpha, \sigma^2) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- ullet Marginal likelihood (averaged over the prior on ullet) is

$$\begin{split} p(\mathbf{y}|\alpha,\sigma^2) &= \int p(\mathbf{y}|\mathbf{w},\sigma^2) p(\mathbf{w}|\alpha) d\alpha \\ &= \frac{1}{(2\pi)^{N/2}} |\sigma^2 \mathbf{I} + \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^\top|^{-1/2} \exp(-\frac{1}{2} \mathbf{y}^\top (\sigma^2 \mathbf{I} + \mathbf{\Phi} \mathbf{A}^{-1} \mathbf{\Phi}^\top|^{-1} \mathbf{y}) \end{split}$$

• Maximize the marginal likelihood $p(\mathbf{y}|\alpha, \sigma^2)$ w.r.t. $\alpha = [\alpha_1, \dots, \alpha_M]$ and σ^2

$$\alpha_m^{\text{new}} = \frac{\gamma_m}{\mu_m^2}$$
$$(\sigma^2)^{\text{new}} = \frac{||\mathbf{y} - \mathbf{\Phi}\boldsymbol{\mu}||^2}{N - \sum_{m=1}^M \gamma_m}$$

where $\gamma_m = 1 - \alpha_m \mathbf{\Sigma}_{mm}$

• Alternate between estimating **w**, α , and σ^2

Bayesian learning routinely needs to deal with intractable integrals, e.g.,

• Normalization: when computing the posterior distribution

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})} = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta)p(\theta)d\theta}$$

where the denominator is rarely available in closed analytical form

Bayesian learning routinely needs to deal with intractable integrals, e.g.,

Normalization: when computing the posterior distribution

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})} = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta)p(\theta)d\theta}$$

where the denominator is rarely available in closed analytical form

• Marginalization:

$$p(heta|\mathcal{D}) = \int p(heta,\phi|\mathcal{D})p(\phi)d\phi$$

Bayesian learning routinely needs to deal with intractable integrals, e.g.,

• Normalization: when computing the posterior distribution

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})} = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta)p(\theta)d\theta}$$

where the denominator is rarely available in closed analytical form

• Marginalization:

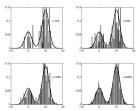
$$p(\theta|\mathcal{D}) = \int p(\theta,\phi|\mathcal{D})p(\phi)d\phi$$

• Expectations:

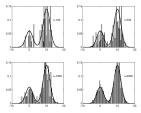
$$\mathbb{E}_{p(\theta|\mathcal{D})}[f(\mathbf{x})] = \int f(\mathbf{x})p(\theta|\mathcal{D})d\theta$$

Several ways to do approximate inference in Bayesian models

- Several ways to do approximate inference in Bayesian models
 - Sampling based approximations: Monte Carlo methods, Markov-Chain Monte Carlo (MCMC) methods (e.g., Gibbs sampling)

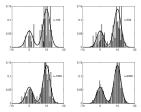


- Several ways to do approximate inference in Bayesian models
 - Sampling based approximations: Monte Carlo methods, Markov-Chain Monte Carlo (MCMC) methods (e.g., Gibbs sampling)



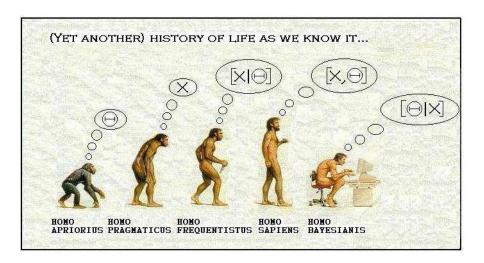
 Deterministic approximations: Laplace approximation, Variational Bayes (VB), Expectation Propagation (EP). Treats inference as an optimization problem of finding the parameters of the closest distribution from a family.

- Several ways to do approximate inference in Bayesian models
 - Sampling based approximations: Monte Carlo methods, Markov-Chain Monte Carlo (MCMC) methods (e.g., Gibbs sampling)



- Deterministic approximations: Laplace approximation, Variational Bayes (VB), Expectation Propagation (EP). Treats inference as an optimization problem of finding the parameters of the closest distribution from a family.
- A very active area of research, lot of recent work on scalable inference (online and distributed Bayesian inference)

Being Bayesian



- Bayesian Optimization
 - Used for optimization problems where the objective function is unknown and expensive to evaluate

- Bayesian Optimization
 - Used for optimization problems where the objective function is unknown and expensive to evaluate
- Closed connections to other "hot" areas in ML, e.g.,
 - Dropout in Deep Learning vs approximate Bayesian inference

- Bayesian Optimization
 - Used for optimization problems where the objective function is unknown and expensive to evaluate
- Closed connections to other "hot" areas in ML, e.g.,
 - Dropout in Deep Learning vs approximate Bayesian inference
- A lot of ongoing work to automate Bayesian inference
 - Probabilistic Programming: computer programs to express probabilistic models

- Bayesian Optimization
 - Used for optimization problems where the objective function is unknown and expensive to evaluate
- Closed connections to other "hot" areas in ML, e.g.,
 - Dropout in Deep Learning vs approximate Bayesian inference
- A lot of ongoing work to automate Bayesian inference
 - Probabilistic Programming: computer programs to express probabilistic models
- Nonparametric Bayesian modeling (or "letting the data speak for itself")

Next Talk

- Introduction to nonparametric Bayesian modeling
- Nonparametric Bayesian regression: Gaussian Process (GP) regression

Thanks! Questions?