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Machine Learning

Detecting trends/patterns in the data

Making predictions about future data

Two schools of thoughts

Learning as optimization: fit a model to minimize some loss function

Learning as inference: infer parameters of the data generating distribution

The two are not really completely disjoint ways of thinking about learning
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Plan for the mini-course

A series of 4 talks

Introduction to Probabilistic and Bayesian Machine Learning (today)

Case Study: Bayesian Linear Regression, Approx. Bayesian Inference (Nov 5)

Nonparametric Bayesian modeling for function approximation (Nov 7)

Nonparam. Bayesian modeling for clustering/dimensionality reduction (Nov 8)
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Machine Learning via Probabilistic Modeling

Assume data X = {x1, . . . , xN} generated from a probabilistic model:

Data usually assumed i.i.d. (independent and identically distributed)

x1, . . . , xN ∼ p(x |θ)

For i.i.d. data, probability of observed data X given model parameters θ

p(X|θ) = p(x1, . . . , xN |θ) =
N∏

n=1

p(xn|θ)

p(xn|θ) denotes the likelihood w.r.t. data point n

The form of p(xn|θ) depends on the type/characteristics of the data
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Some common probability distributions
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Maximum Likelihood Estimation (MLE)

We wish to estimate parameters θ from observed data {x1, . . . , xN}

MLE does this by finding θ that maximizes the (log)likelihood p(X|θ)

θ̂ = arg max
θ

log p(X|θ)

= arg max
θ

log
N∏

n=1

p(xn|θ) = arg max
θ

N∑
n=1

log p(xn|θ)

MLE now reduces to solving an optimization problem w.r.t. θ

MLE has some nice theoretical properties (e.g., consistency as N →∞)
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Injecting Prior Knowledge

Often, we might a priori know something about the parameters

A prior distribution p(θ) can encode/specify this knowledge

Bayes rule gives us the posterior distribution over θ: p(θ|X)

Posterior reflects our updated knowledge about θ using observed data

p(θ|X) =
p(X|θ)p(θ)

p(X)
=

p(X|θ)p(θ)∫
θ
p(X|θ)p(θ)dθ

∝ Likelihood× Prior

Note: θ is now a random variable
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Maximum-a-Posteriori (MAP) Estimation

MAP estimation finds θ that maximizes the posterior p(θ|X) ∝ p(X|θ)p(θ)

θ̂ = arg max
θ

log
N∏

n=1

p(xn|θ)p(θ) = arg max
θ

N∑
n=1

log p(xn|θ) + log p(θ)

MAP now reduces to solving an optimization problem w.r.t. θ

Objective function very similar to MLE, except for the log p(θ) term

In some sense, MAP is just a “regularized” MLE
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Bayesian Learning

Both MLE and MAP only give a point estimate (single best answer) of θ

How can we capture/quantify the uncertainty in θ?

Need to infer the full posterior distribution

p(θ|X) =
p(X|θ)p(θ)

p(X)
=

p(X|θ)p(θ)∫
θ
p(X|θ)p(θ)dθ

∝ Likelihood× Prior

Requires doing a “fully Bayesian” inference

Inference sometimes a somewhat easy and sometimes a (very) hard problem
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A Simple Example of Bayesian Inference

We want to estimate a coin’s bias θ ∈ (0, 1) based on N tosses

The likelihood model: {x1, . . . , xN} ∼ Bernoulli(θ)

p(xn|θ) = θxn(1− θ)1−xn

The prior: θ ∼ Beta(a, b)

p(θ|a, b) =
Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1

The posterior p(θ|X) ∝
∏N

n=1 p(xn|θ)p(θ|a, b)

∝
∏N

n=1 θ
xn(1− θ)1−xnθa−1(1− θ)b−1

= θa+
∑N

n=1 xn−1(1− θ)b+N−
∑N

n=1 xn−1

Thus the posterior is: Beta(a +
∑N

n=1 xn, b + N −
∑N

n=1 xn)

Here, the posterior has the same form as the prior (both Beta)

Also very easy to perform online inference
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Conjugate Priors

Recall p(θ|X) = p(X|θ)p(θ)
p(X)

Given some data distribution (likelihood) p(X|θ) and a prior p(θ) = π(θ|α)..

The prior is conjugate if the posterior also has the same form, i.e.,

p(θ|α,X) =
P(X|θ)π(θ|π)

p(X)
= π(θ|α∗)

Several pairs of distributions are conjugate to each other, e.g.,

Gaussian-Gaussian
Beta-Bernoulli
Beta-Binomial
Gamma-Poisson
Dirichlet-Multinomial
..
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A Non-Conjugate Case

Want to learn a classifier θ for predicting label x ∈ {−1,+1} for a point z

Assume a logistic likelihood model for the labels

p(xn|θ) =
1

1 + exp(−xnθ>zn)

The prior: θ ∼ Normal(µ,Σ) (Gaussian, not conjugate to the logistic)

p(θ|µ,Σ) ∝ exp(−1

2
(θ − µ)>Σ−1(θ − µ))

The posterior p(θ|X) ∝
∏N

n=1 p(xn|θ)p(θ|µ,Σ) does not have a closed form

Approximate Bayesian inference needed in such cases

Sampling based approximations: MCMC methods

Optimization based approximations: Variational Bayes, Laplace, etc.
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Benefits of Bayesian Modeling

Our estimate of θ is not a single value (“point”) but a distribution

Can model and quantify the uncertainty (or “variance”) in θ via p(θ|X)

Can use the uncertainty in various tasks such as diagnosis, predictions , e.g.,

Making predictions by averaging over all possibile values of θ

p(y |x ,X ,Y ) = Ep(θ|.)[p(y |x , θ)]

p(y |x ,X ,Y ) =

∫
p(y |x , θ)p(θ|X ,Y )dθ

Allows also quantifying the uncertainty in the predictions
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Other Benefits of Bayesian Modeling

Hierarchical model construction: parameters can depend on hyperparameters

hyperparameters need not be tuned but can be inferred from data

.. by maximizing the marginal likelihood p(X|α)

Provides robustness: E.g., learning the sparsity hyperparameter in sparse
regression, learning kernel hyperparameters in kernel methods
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Other Benefits of Probabilistic/Bayesian Modeling

Can introduce “local parameters” (latent variables) associated with each data
point and infer those as well

Used in many problems: Gaussian mixture model, probabilistic principal
component analysis, factor analysis, topic models
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Other Benefits of Probabilistic/Bayesian Modeling

Enables a modular architecture: Simple models can be neatly combined to
solve more complex problems

Allows jointly learning across multiple data sets (sometimes also known as
multitask learning or transfer learning)
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Other Benefits of Bayesian Modeling

Nonparametric Bayesian modeling: a principled way to learn model size

E.g., how many clusters (Gaussian mixture model or graph clustering), how
many basis vectors (PCA) or dictionary elements (sparse coding or dictionary
learning), how many topics (topic models such as LDA), etc..

NPBayes modeling allows the model size to grow with data
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Other Benefits of Bayesian Modeling

Sequential data acquisition or “active learning”

Can check how confident the learned model is w.r.t. a new data point

p(θ|λ) = Normal(θ|0, λ2) Prior

p(y |x , θ) = Normal(y |θ>x , σ2) Likelihood

p(θ|Y ,X) = Normal(θ|µθ,Σθ) Posterior

p(y0|x0,Y ,X) = Normal(y0|µ0, σ
2
0) Predictive dist.

µ0 = µ>θ x0 Predictive mean

σ2
0 = σ2 + x

>
0 Σθx0 Predictive variance

Gives a strategy to choose data points sequentially for improved learning with
a budget on the amount of data available
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Next Talk

Case study on Bayesian sparse linear regression

Hyperparameter estimation

Introduction to approximate Bayesian inference
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Thanks! Questions?

Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 20


