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Abstract

We consider the problem of estimating set-expression
cardinality in a distributed streamingenvironment
where rapid update streams originating at remote sites
are continually transmitted to a central processing sys-
tem. At the core of our algorithmic solutions for
answering set-expression cardinality queries are two
novel techniques for lowering data communication
costs without sacrificing answer precision. Our first
technique exploits global knowledge of the distribution
of certain frequently occurring stream elements to sig-
nificantly reduce the transmission of element state in-
formation to the central site. Our second technical con-
tribution involves a novel way of capturing the seman-
tics of the input set expression in a boolean logic for-
mula, and using models (of the formula) to determine
whether an element state change at a remote site can
affect the set expression result. Results of our experi-
mental study with real-life as well as synthetic data sets
indicate that our distributed set-expression cardinality
estimation algorithms achieve substantial reductions in
message traffic compared to naive approaches that pro-
vide the same accuracy guarantees.
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An important consideration in the above-mentioned
monitoring applications is the communication overhead
imposed by the distributed query processing architecture o
the underlying network. A naive approach in which every
stream update is shipped to the central site for processing
can lead to inordinate amounts of message traffic, and thus
have a crippling effect on the communication infrastruetur
as well as the central processor. For instance, monitoring
flow level information within AT&T’s IP backbone using
Cisco’s NetFlow tool [1] is known to generate in excess of
500 GBytes of data per day [4]. Clearly, transmitting ev-
ery flow record to the central network operations center of a
large ISP can seriously strain its processing and netwerk re
sources. As another example, consider wireless sensor net-
works (e.g., for environmental monitoring, inventory kac
ing, etc.), where sensors have a very limited battery life,
and radio communication is much more expensive in terms
of power consumption compared to processing. In order
to ensure longer lifetimes for sensor nodes, it is critioal t
reduce the amount of data transmitted, even if that implies
additional processing at the sensor nodes [13, 12, 10].

Fortunately, for many distributed stream-oriented appli-
cations, exact answers are not required and approximations
with guarantees on the amount of error suffice. Thus, it
is possible to trade answer accuracy for reduced data com-
munication costs. For example, consider the problem of de-
tecting distributed denial-of-service (DDoS) attacks hy a
lyzing network flow information collected from an ISP’s

works linking together a broad range of devices has repgrqer routers. In a typical DDoS attack scenario, hun-
sulted in a new class dfistributed data streamingppli-

cations. In these applications, rapid update streams-origiim gestination with large numbers of seemingly legitimate

dreds of compromised “zombie” hosts flood a specific vic-

nating at tens or hundreds of remote sites are continuously cxets. Furthermore, in order to elude source identifica-
transmitted to a central processing system for online QUeNYiion, attackers typically forge, or “spoof”, the IP sourck a

ing and analysis. Examples include monitoring of servicey,ess of each packet they send with a randomly-chosen ad-
provider network traffic statistics, telecommunicatiofi ca 4 esg [11]. Consequently, a possible approach for detgctin
detail records, Web usage logs, financial stock tickers, reppog attacks is to look for sudden spikes in the number of
tail chain transactions, weather data, sensor data, and $gstinct IP source addresses observed in the flows across
on. the ISP’s border routers. Clearly, our DDoS monitoring
application does not require IP source address counts to be
tracked with complete precision. Approximate counts can
be equally effective for the purpose of discerning DDoS ac-
tivity as long as errors are small enough so as to not mask
abrupt changes. Thus, depending on the accuracy require-
ments of the DDoS application, routers only need to trans-
mit a subset of flow records to the central monitoring site.

As another example, consider a Web content delivery
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service such as that provided Bkamai(wwv. akamai . - developing memory-efficient one-pass algorithms for per-
com). In this case, Web sites are replicated at a large numforming a wide range of computations on a single stream;
ber of geographically distributed servers, and users aecesexamples include computing quantiles [9], estimating
ing a Web site are automatically redirected to the geographdistinct values [7, 8], set-expression cardinality [6] and
ically closest server, or the least loaded server. Here, onfgequent stream elements [3]. An exception is [8] where
might often be interested in tracking (approximately) therandomized hash-based sampling algorithms are employed
number of (distinct) users accessing a Web site (across alb estimate the number of distinct values in a sliding
servers), the number of users who visit both a Web 4ite window over distributed streams. However, [8] does
and Web siteB, or the number of users who visit Web site not address the issue of optimizing data-shipping costs
A but notB. These statistics can be useful for determiningwhen guaranteed precision estimates are required to be
the servers at which to replicate Web sites, deciding whictcontinually tracked at the central processing site. Oukwor
advertisements to display at each Web site, and so on.  differs from these existing proposals that are primarily
The problem of counting the number of distinct IP concerned with exploring space-accuracy tradeoffs (iyostl
source addresses or web-site users, as discussed above, f@fesingle streams) rather than communication-accuracy
special cases of the more genesai-expression cardinality tradeoffs in a distributed streams setting.
estimation problem, which we tackle in thl_s paper. I_n thlsour Contributions. In this paper, we focus on the
more general problem, we are interested in estimating the S L .
o . . problem of estimating the cardinality of arbitrary set
number of distinct values in the result of an arbitrary setex ressions over distributed undate streams. Our proposed
expression over distributed data streams. For example pressio . P S prop
. : dlgorithmic solutions are thdirst to provide provable
in the DDoS scenario, we may want to employ the set . .
. o . guarantees on the accuracy of the final set-expression
difference cardinality queryS — T to detect significant cardinality estimate, while keeping data transmissionscos
traffic deviations — here§ is the IP source address set for Y ! ping

- . . : at a minimum. Since set-expression queries subsume
the sliding window spanning the past week (until now) and . S )

- .~ “the important class of distinct-value queries, our work
T'is the set of IP source addresses from the week prior tc:31Iso constitutes the first attempt at providing low-cost
that (e.g., two weeks ago). Similarly, in our Web example,, . ; ; P P g low-

. - . high-quality answers to this latter type of queries in a
If 5 andT are the sets of users who visit Web sitesind distributed setting. More concretely, our contributioas ¢
B, respectively, then the set intersection quéesyn 7| 9- Y

yields the number of users who access both sitesd B. be summarized as follows.

Prior Work. The tradeoff between answer accuracy and® Distributed -~ Framework for  Processing Set-
communication overhead for specific classes of continuou§XPression Cardinality Queries. ~ We develop our
queries over distributed update streams was recently stud©!utions in the context of a general framework for guaran-
ied in [12, 2]. In [12], Olston et al. consider aggregationtee'ng precision constraints for set-expression caritynal

queries that compute sums and averages of dynamicalfy er_ies in a distributed setting. In our framework, each
changing numeric values spread over multiple sources. IfIt€ iS allocated an error budget which governs when the
their approach, each site is assigned an interval of a cefll€ cOmmunicates stream state information to the central
tain width such that the sum of site interval widths is lessProcessing site (for estimating set-expression cardpali

than the application’s total error tolerance. Thus, as mng Basically, each remote site associatemarggwith every
the numeric value at each site stays within the interval foStream element that is inserted or deleted since streaen stat

the site, no messages need to be sent by the sites in ord&fS last transmitted to the central site. Only when the sum

to satisfy the application's accuracy requirements. How-° element charges at a site exceeds the site’s error budget

ever, in case the value at a site drifts outside the sitess-int does it communicate the current stream state information
val, the site is required to transmit the value to the centraf® the central site. Our_framework allows for flexibility in
site and make appropriate adjustments to its interval. Ref10W €lements are assigned charges — methods for com-
erence [2] focuses on the problem of continually trackingPUting charges are only required to satisfy certain basic
the top# values in distributed data streams; the developedOPerties needed for correctness in terms of providing the
techniques ensure the continuing validity of the currept to stipulated error guarantees. Obviously, methods thatrretu

k set (at the central site) by installing arithmetic constimi  Smaller charges for elements are more desirable since they
at each site. result in lower communication overhead.

Our work is most similar to the above two research ef-¢ Techniques that Incorporate Global Knowledge to
forts, but considerset-expression cardinality queri@s  Reduce Communication. In many distributed stream-
opposed to the aggregation and togrueries handled in  ing environments, the frequency distribution of stream
[12, 2]. As we will see later in the paper, processing setelements will be skewed with certain elements occurring
expression cardinality queries requires substantially ne more frequently than others. For example, in the flows
algorithms to be developed for effectively trading off an- collected from an ISP’s border routers, IP addresses
swer accuracy and communication costs in a distributedeorresponding to popular Web sites like Yahoo, Google,
streams setting. Amazon, etc. will be contained in a disproportionately

Much of the recent work on data streams has focused olarge number of flows. Now, if such a frequently occurring



element is inserted into a stream at a site (where it does

not appear previously), then we do not need to charge for

it since the element must already be present at the central

site, and thus the insert has no effect on the set-expression Coordinator
cardinality at the central site. Similarly, the charge toe t (Site 0)
deletion of a frequent element can be distributed across
all the sites where the element occurs since the element
would need to be deleted at all these sites to truly go away.
Thus, global knowledge of frequent stream elements can
lead to lower overall communication costs due to reduced
element charges at each site. We propose protocols for
disseminating this global information to the various sites
while incurring minimal message overhead.

to Reduce Communication. We develop schemes that
exploit the semantics of set expressions to obtain furthe

reductions in element charges. For example, in thes'te that is responsible for generating answers to user (set

expressionS U T, if an elemente is already present tec;q[)Zreiszl]o\r/]vﬁg;g”t]r?(Ialg)ig%%lgiégyi:n(i?npsrﬁci?cllr?;mgﬂel
in streamS, then inserts and deletes effrom 7' have ' 9

no effect on the set-expression result, and thus we giemote sites ; instead, as illustrated in Figure 1, each re-
not need to charge for them. We prop,ose a Iogic-baseH]Ote site exchanges messages only with the coordinator,

approach where we capture the conditions for a chang root\gdtlr?agt I':h\?gtzi:ttﬁéigggor:?r?]trlr?ﬂnfs: ;ﬁgﬁar?; dg][ ;[Qeresnree'-
in the set-expression result in a boolean formula. Model X

for the boolean formula then represent scenarios for resufichtative of a large class of real-life applications intigd

changes and are used to compute element charges. Final etmg{k(,\r,ngg;tglfe% V\é)hnesrizls fg(ramrr(?cl:e'\éi?rllvornketc\)/v%?lritrl;frf]ii
in order to address the (provably required) exponentia P P 9

time complexity of model enumeration, we develop anstatlsncs collected at the switches and routers diskibut

g .2 . across the network.
efficient heuristic for computing element charges whose o
puting 9 At each remote sitg, the n update streams render

running time is polynomial in the number of streams. Lo .
9 poly distinct multi-setsSg ;, ..., S,—1,; of elements from the

e Experimental Results Validating our Approach.. We  integer domairjM] = {0,..., M — 1}. Each stream up-
present the results of an experimental study (with a realdate at remote sitg is a triple of the form< i, e, +v >,

life TCP traffic data set and multiple synthetic data sets)yhere; identifies the multi-se$; ; being updated; € [M]

that demonstrate the effectiveness of our distributed-algdis the specific data element whose frequency changes, and
rithms for estimating set-expression cardinality. Ouulss 1y is the net change in the frequencydh S; ;, i.e., “+v”
indicate that, compared to obvious approaches, our estimg« —,") denotesv insertions (resp., deletions) ef We as-

tion algorithms can lead to reductions in communicationsume that all deletions in our update streams are legal; that
costs ranging from a factor of 2 (for the real-life data set)is, an update< i,e,—v > can only be issued if the net

to more than 6 (for synthetic data sets) while guaranteeingrequency ofe in S, ; is at least. Note that delete opera-
high precision for the returned estimates. tions help to substantially enrich our streaming model; for

Note that while our primary focus in this paper is on esti-example, with deletions, we can easily handle sliding win-
mating set-expressiarardinality, our techniques are quite dow queries by simply issuing a delete operation for each
powerful, and can also be used to approximate set expre§xpired stream update that is no longer in the window of
sionresults(i.e., sets of data elements) at the central siteinterest. For each=0,...,n — 1, letS; = U;5; ;. Thus,
This can be used by the coordinator to run other potentiallys; reflects the global state of th& update stream, while
complex queries on top of it, which could be more usefuleach multi-setS; ; captures the local state of streanat
than just cardinality queries. For example, in the DDoSsitej. In the remainder of the paper, we will loosely refer
scenario, the results could be filtered to identify malisiou to S; andsS; ; as streams even though the intended meaning
hosts or in the Akamaiexample, to identifyuserscorre-  is the current states of the underlying streams.

Estimate | E

Update State
Messages

?t remotesitesl, . .., m, and site 0 is a speciabordinator

sponding to certain traffic patterns. Our focus is on the problem of answering set-expression
cardinality queries over the underlying collection of dis-
tributed update streams. Specifically, given a set expres-
2 SystemM odel sion E over streamsSy, ..., .S,_1 (with the standard set

In this section, we describe our distributed update-operators), N, and— as connectives), we seek to estimate
stream processing architecture and formally define the set£/|, the number of distinct elements . For example,
expression cardinality estimation problem addressedsn th | Sy N S;| is the number of distinct elements in the inter-
paper. Consider a distributed environment with- 1 sites  section of streams, and.S;. If for m = 2 remote sites,
andn update streams. Stream updates arrive continuousl§y 1 = {a}, So 2 = {a,b}, S11 = {b} andS; 5 = {c}, then



So = {a,b} andS; = {b,c}. Thus,E = Sy N S; = {b}  we describe details of our sketch-based distributed algo-

and|E| = 1. rithm in [5], and assume that each remote site keeps track
The problem of estimatinid| at the coordinatoris com- of substream states in our current presentation.
plicated in our setting because the substreds that In order to guarantee that the estimfig is correct, we

comprise each distributed strespare distributed across need to ensure thakl| — e < |E| < |E| + . A simple

the remote sites. Accurately trackip| by having remote  approach (based on adapting the scheme of [12]) for ensur-
sites continuously ship every stream update to the coording this for E = S, is as follows. At each remote site if
nator is clearly impractical for high data rate streams. 'Coneither of|S; g | or |S- - S; ;| exceeds;, then site
H H 3 ] 3 ] J
vt e o e aepramat ]S he mos ettt 1 the comdinaor. One
' : > approx » Z¥ _can easily show that this simple scheme guarantees that at
enforce a bound on the error in the final estimate. Specifi-

b all times,|E — E| < eand|E — E| < ¢, and is thus cor-
cally, for a prespecified error tolerangewe seek to com-

pute an estimaté for X — |E| (at the coordinator) such rect. For instance, consider an elemenm £ — £. The

A : element must belong t8; ; — 5; ; at some sitg, and since
thatX — e < X < X + e. Thee error parameter provides G < e it tb ted inst th bud-
system designers with a useful knob that enables them tBSW ”.' = ¢j, It mustbe counted against the error bu
trade accuracy for efficiency. Essentially, the larger the e 9St€i at Sit€j. As a result, sincg; ¢; = ¢, we get that
ror tolerance of an application, the smaller the communicatll — E| < e. Further, sincdE| — |E| < |E — E|, we
tion overhead required to ensure that the estimataeets ~ obtain thai | — |E| < e. Similarly, it is possible to show

thee accuracy guarantee. that |E| — |E| < ¢, and thus the estimatd| is within e
error of |E)|.
3 Estimating Single Stream Cardinality Intuitively, the simple scheme described above asso-

ciates a charge;(e) with each element at every remote

We begin by describing our distributed algorithm for the site j, and if the total of these charges exceegthen the
remote site communicates state information to the coordi-

case when the expressidhwhose cardinality we wish to
estimate is a single streaff) (which is the union of sub- Flo) — 1i 4
streamsS; ; at remote sites). Thus, we are basically jook-" 0" More formally, leg; (¢) = L1 ie (Sis _ Si)
ing to estimate the number of distinct elements in streanf; (¢) = 11f ¢ € (Si; — 5i;), andgj(e) = ¢ (e) =
S;. Our scheme for the distinct elements estimation prob0, otherwise. As a resulty", ¢ (e) = [Si; — Si
lem illustrates the key concepts underlying our approach agnd S, 07 (e) = gm. — Sij|. Thus, there is a mes-
well as the overall structure of our distributed solutiolms. sage exc[%ange between gtand the coordinator if either
the next section, we will generalize our solution for a singl S, ¢,j+(e) > e 0ry, 67 () > €.
stream to handle arbitrary set expressions. Inthe simple scheme, element charges are computed
3.1 Overview based entirely on the local state information available at
each site. We next show that by exploiting global knowl-
edge about elementwe can reduce the charge(e) for e,
. ; and as a consequence, the overall message traffic between
tribute the error tolerance efamong them remote sites.  remote sites and the coordinator. The key observation we
We denote the error budget allocated to gitey ¢;; thus,  pake is that in many stream-oriented domains, there will
2, € = ¢ While there are multiple ways to allocate error pe 5 certain subset of globally “popular” elements. For in-
budgets to sites [12], a simple approachiis to allocate thesgance in an IP network monitoring scenario, destination
proportional to the stream up_date rates at the sites. The efp 5qdresses corresponding to popular Web sites like Ya-
ror parametet; essentially dlctatgs yvhen sﬁ@ends the hoo, Amazon, Google etc. will frequently appear in the
current states of substreassis; at site; to the coordinator. o,y records collected from network routers. An important
We denote bys; ; the most recent state of substredly  characteristic of each such globally popular element is tha
communicated (by sitg) to the coordinator. In additionto at any given point in time, it will appear in substreams at
Si.j» Site j also stores in its local memory, the transmitted multiple sites although the exact sites that contain the ele
statesS; ; for substreams at the site. For each stréam  ment may vary over time.
the coordinator constructs the global stéfey taking the ~ Now suppose that for a popular elemeneach remote
union of all the local substream statéis; received from  Site (approximately) knows the number of substream states
the remote sites. Thus;, — UJ-S’Z-,J-. Now let £ be the i, thatcontaire. Specifically, forstrgarﬂi, Ieteli(e) >1
. . A be alower bound on the number of sites for whicppears

result of evaluating expressidnon the states); instead of . N : .
S;. The coordinator estimates the cardinality of set expres'—n the.SivJ' states .communl|cated to the coordllnat’or. Then,
sionE as|E|. gven if elementeA is newly inserted intc; ; at sne_; (Fhat

We would like to emphasize here that if remote sites'S ¢ © (Si,; — Si7)), we should not charge for it sinee
have limited memory, then our scheme can be modified tds already inS; and, thus, cannot possibly be #y — ;.
store acompact sketch synop$ts each substream (instead Similarly, if e is deleted froms; ; at site;j (that is,e
of the complete substream state). Due to space constraintsy; ; — S; ;)), then in order foe to be deleted fron$; and

Our objective is to be able to continuously estimdi¢ at
the coordinator withe accuracy. To achieve this, we dis-



thus be inS; — S;, e must be deleted frorfi; ; atleasv;(e)
sites. Thus, it suffices to charge (e) = 1/0;(e) (instead
of 1) for the local delete of at each sitgj. This way, if
local deletions at the> 6;(e) sites cause to be globally
deleted (that is¢ € (S‘i —5;)), then the cumulative charge
>_; ¢; (e) for e across the sites is at least 1. As a result
since)_ ¢, (e) < ¢; at each sitej, this total charge of
1 is counted against the varioass, and correctness is not
compromised.

3.2 Digtributed Algorithm

We are now ready to describe the details of our distribute
scheme for producing a correct cardinality estirﬂﬂeat
the coordinator. For each element S;, the coordinator
maintains a count;(e) of the number of remote sites
whose state§‘l-,j contain the element. Elements whose
countsC;(e) exceed a threshold are considered to be
frequent and added to a frequent element Befor stream
S;. The coordinator also uses the counte) for each
elemente € F; to compute a lower bound threshold
0;(e) such that the invarian®;(e) > 6;(e) always holds.

It continuously communicates changes in the frequen

element set#; and the threshold valués(e) to the remote

sites so that these can be used to compute element charges
¢;(e) at the sites (as described in the previous subsectionp4.
Thus, in order to keep the message overhead under contras.

the coordinator does not send exact element codf(is)

2.

%

Procedure COORDINATOR(i, A, A7)
Input: Newly inserted {\;") and deleted4 ;) elements for some
substreant; ;.

1. foreach elemente € A; do{

Ci(e) := Ci(e) — 1;

if (Ci(e) = 0) then S; := S, — {e};
if (e € Fyand Ci(e) < 7){

3.
4.

5. F, =F;, — {6};

6. Send “make infrequent” control msgs foto all remote sites;
7.}

8. dseif (e € F;and Ci(e) < 0:(e)){

. 0i(e) = 0;(e)/2;

. Send “adjust threshold” control msgs with new threshold
11. 0;(e) for e to all remote sites;
12. }
13.}

14.foreach elemente € A} do {

15. Ci(e) :==Ci(e) + 1;

16. if (Ci(e) = 1) then S; := S; U {e};

17. if(e¢ F,and Ci(e) > 27) {

18. F; = F; U {6};

19. 0i(e) :=T;

EO. Send “make frequent” control msgs foto all remote sites;
1.

}
eseif (e € F; and Cj(e) > 40;(e)){
0i(e) := 26;(e);
Send “adjust threshold” control msgs with new threshold
0;(e) for e to all remote sites;

22

26. }

to remote sites, but rather disseminates the thresholdg7-}

as described in the paragraph below. Each remotejsite
keeps track of the sum of local element charyese; (e)
in variable®;. Further, whenb; becomes greater than,
it sends the deltad = S; ; — S;; andA; = S, ; — S;;
that capture the local state changes for substigansince

end

Figure 2:Coordinator Actions for Processing Remote Deltas.

the invariantC;(e) > 6;(e) while controlling the num-

site j last transmitted state information to the coordinator.ber of messages between the coordinator and remote sites.

(Note that the deltas asetsand not multi-sets).

Coodinator Actions. Figure 2 depicts the actions per-
formed by the coordinator when it receives the del\g's
andA; for substreamS; ; from site j. The coordinator

employs the received deltas to first update element coun

C;(e) and the stream staf¢ stored at the coordinator. (Re-

Clearly, to maintain the invariant, the coordinator needs t
send messages to all sites every time the c6lift) drops
below the current threshol} (¢) for an element € F;.
Consequently, in order to prevent minor fluctuations in the
\éalue of C;(e) from generating excessive amounts of con-
rol message traffic, our strategy is to try and keep a suffi-

cient gap betweeny;(e) andd;(e). Thus, for instance, if

call that the sets; are used to generate the final estimatec; () becomes less thafy (), then we simply halve the

|E|.) It then uses the new count (e) to adjust the fre-
quent element sef;, and the threshold valuek(e) for

value of6;(e). Similarly, we double the value & (e) only
whenC;(e) exceedstd;(e), and (conservatively) consider

frequent elements. It also informs all the remote sites ofn element to be frequent onlydf, (e) exceedLr.

changes t@¥; andé;(e) by sending them “make frequent”

An additional mechanism that we found to be effective

and “adjust threshold” control messages, which trigger thgor keeping the volume of control messages low (in our
remote sites to apply the same changes to their local copi@sperimental study reported in Section 5) is to double
of F; andd;(e). The control messages thus ensure that the), (¢) only after the count’;(e) is somewhat stable (that

values ofF; andf;(e) are synchronized between the coor-
dinator and remote sites.

is, has stayed abow¥;(e) for a certain time period after
crossing46;(e)). Using this strategy, we found that the

The correctness of our distributed scheme hinges on theumber of control messages is relatively insensitive to the

fact that for each elemente F;, the threshold valug; (e)
is always a lower bound on the number of sifder whom
e is in the local states; ; sent to the coordinator. Thus,
our scheme for modifyind; andé;(e) needs to preserve

value of the threshold parameter Finally, observe that
while increasingd;(e) is not required for preserving the
invariantC;(e) > 6;(e), larger6;(e) values are key to
reducing the charges; (e) that sites incur for elements.



Procedure REMOTE(%, e, j)
Input: Update streans;, element and sitej.
begin
1. old" :=¢7 (e)
old™ :=¢; (e);
[¢] (e), ¢, ()] := COMPUTECHARGE(e, j, E);
B =37 + (67 () old");
_<I>j’ :i o+ (¢;Ee)— old™);
If(‘I)j >€j\/‘I)j >€j){

for l:=1tondo{

A? = 5:17]' — Sl,j;

9. Af = Sl,j — Sl,j;
10. S'lyj = Slyj;
11. }
12.  Send “update state” message with triptes A7, A7 >
13. for all substreams; ; to the coordinator;
14. foreach elemente, ¢ (e) := ¢; (e) := 0;
15. @j =07 :=0;
16.}
end

1

NGO, WN

Procedure COMPUTECHARGE(e, j, E = S;)
Input: Elemente for whom to compute charge at site

expressiont.
Output: Chargesp () and¢; (e).
begin
1. ¢ =9 :=0;
2. if(eg Fy) {
3. if(ee (Si; — Siy))then ¢t :=1;
4.  dseif (e € (S, — Si;)) then ¢~ := 1;
5.
6. ilse *eec Fy*
7. if(e € (Siy — Siy)) then ¢~ = 1/6;(e);
8. return [p1, 07 ];
end

Figure 3:Remote Site Actions for Computing Charges.

nutshell, ®MPUTECHARGE associates a charge of 1
for non-frequent elements that are newly inserted into or
deleted froms; ; since the last message to the coordinator.
For frequent elements € F;, chargegbj(e) =0if eis
newly inserted, and charge (e) = 1/0;(e) if e is locally
deleted.

Correctness Argument. For ease of exposition, in the
arguments pertaining to the correctness of our distributed
scheme, we assume that all message transmissions and the
actions they trigger are performed instantaneously. While
this is clearly not a realistic assumption, our scheme can be
extended to simulate such an instantaneous execution (at
a logical level) by having sites send special acknowledge-
ments for messages once all the actions triggered by the
messages have completed. Details can be found in [5].

The charges¢j(e) and ¢; (e) computed by ©mM-
PUTECHARGE can be shown to satisfy the following two
invariants:

Foreache € E—E, 3, ¢f(e)>1 1)
Foreache € E—E, 3,647 (e)>1 2)

Y

Thus, our distributed scheme is correct because it
can be shown (see [5]) that Equation (1) implies that
|E| — e < |E| and Equation (2) implies thaE| < |E| + .

Using Sketch Synopses to Reduce Space/Communi-
cation. The space usage of our distributed algorithm can
be reduced by storing a compact sketch synopsis for each
substrean®; ; instead of the entire substream state. Our
scheme would then provide probabilistic as opposed to de-
terministic error guarantees. For instance, we can maintai
a (delete-resistant) distinct sample [7] for each substrea
and use the substream samples in place of the substream
states in our distributed scheme. Due to lack of space, we
defer the details of our distinct sample-based estimation a
gorithms and hash-based techniques for obtaining delete-
resistant distinct stream samples to the full paper [5].

Remote Site Actions. Figure 3 depicts the actions taken by 4 Estimating Cardinality of Arbitrary Set
remote sitej when an element is inserted into or deleted Expressions

from S; ; (due to a stream update), or the frequent/Set

or threshold valué; (e) gets modified (due to a “make fre- In this section, we generalize our single stream solution

quent” or “adjust threshold” control message tofrom  (described in the previous section) to tackle the problem

the coordinator). Essentially, remote sjteomputes new of estimating (to withine absolute error) the cardinality

chargesbj(e) and¢; (e) for e, and appropriately adjusts of an arbitrary set expressiafi involving the distributed

the total site chargeB! and®_ . Further, if either of these update streamsSy, ..., S,—1. Our distributed scheme

charges exceeds, the deltas for all substreants ; are fc_)r general set expressions is identic_al to the scheme for

sent to the coordinator; thus; ; = S, ;, and consequently, Single streams except for the charging proceduac

all chargesp,(e) are reset to 0. (Note that sending the PUTECHARGE. Thus, as before, for each streaip the

deltas for ali ‘other’ substreams to the coordinator is notce0rdinator maintains the staté§, the frequent sets,

required when the expressidn= S; since there is only ~ and the threshold value(e) for the number of siteg

substream at each site, but is needed for the more genetéhose shipped stats; ; contains elemer¢. The cardi-

set expressions considered in the next section.) nality estimate at the coordinator [|&|, whereE is the
Procedure ©MPUTECHARGE in Figure 3 is tailored result of evaluating expressidfi using S; instead ofS;.

for the single stream case (that iB, = S;). Later in  The coordinator processes the deltas from a remote site for

the paper, we will present alternate charge computatiomn arbitrary strean$; as described in procedured©RDI-

procedures that apply to general set expressions. In BATOR (see Figure 2). Similarly, sitexecutes the actions



described in procedureEMOTE (see Figure 3) every time 4.1.1 Constructing Boolean Formula ¥
there is a change in the substream sfitg, the frequent For each strear§;, letp;, andp, be boolean variables with

setF;, or the local threshold valug (e). . A .
In the charging procedure for the single stream casesem"’mtICSig € §; ande € 5;, respectively. We construct

+ - i _

we charged 1 for inserts and deletes of elemenis F;, two E)oolea_n_ formulfellj arld v gver the varlf’:\ble%
and ife € F;, inserts were free and deletes were charge(?ndpi- Intuitively, \IJjA and¥ ;" specify the cond|t|9ns that
1/6;(e). However, whenE contains multiple streams, stream states; and.S; must satisfy for € (E — E) and
computing the charge; (e) for an element is more in- ¢ ¢ (E — E), respectively. The formulae also capture con-
volved sincee may be concurrently inserted/deleted from gtrqints onS; and S; due to local knowledge at sitg of
more than one substrea ; a_t site. A str_aightforward the substream statés ;, S; ;, and threshold valugk. For
approach that overcomes this complication is to set th%xample ife € S . tﬁen I,i must be the case thatc S,

+ . —_ . B ’ 1,71 2
chargesp; (c) = ¢; (e) = 1 if for any of the substreams (gjhceq; — U5, ), and thus, variable; must be true.

Sij. eithere € (5;; — S;j)0re € (Si,j —Si;). However,  The formulael' and ¥ are built using the following
while this straightforward scheme is obviously correct, itthree formulae: (1) aBxpressiorformulaFy; representing
is too conservative, and may end up overcharging in manye logic of expressiot, (2) Stateformulaeéj, G, that

situations. This, in turn, could lead to frequent statedran ,qdel the local knowledge that sitehas about stream
mission messages from remote sites to the coordinator. statesS; and $;, and (3) aThresholdformula H that

) o captures the constraints due to the threshéld®r each
Example4.1 Consider distributed streant, S» andSS3,  streams;. We describe each of them below.
and let expressiolt = S; N (S2 — S3). For element

at sitej, lete € Ss; ande € Ss ;. Clearly,e € S3 and structed recursively as follows.

e € 53 and thuse ¢ E'ande ¢ E. As aresult, even o ayery streans; in E, we replace its occurrence
if e € (Slyj — Sl_’j) Ol’e_ G'(SQJ — SQ_’J'), we sh_ould nqt by the boolean variablg;.
charge for eAIemeAni at sitej sincee cannot possibly bfe N 5 The expressiof; U E; is translated ag, V F,.
either E — E or E — F; thus, based on the semantics of _ )
expressiore, setting the charge;s;r(e) = 67 () = 0 will 3. The expressiof; N Es is translated a$z, A Eg,.
still ensure correctness. ' I 4. The expressioR’; — Es is translated a8, A(—Fg, ).
For example, the set expressidh= S; N (S2 — S3) is
In the following subsections, for an arbitrary set expres-translated into the boolean formuta = p1 A (p2 A —ps).
sion E, we focus on the problem of computing the mini- It is easy to see that elemente E iff Fg is true for the
mum possible charges' (e) ande; (e) for afixedelement ~ Stream states);. For instancee € 51 N (52 — S3) iff
e at sitej by leveraging the semantics of expressibn e € S; A (e € So Ae & S;). FormulaFy is constructed
Our proposed charging schemes ensure that cha)gg(e;s) similarly, except that variablas are replaced by;.

andg; (e) satisfy Equations (1) and (2) (from Section 3.2), State Formula.  The state formulags; and G; are
and thus provide an accuracy guarantee &dr the final  conjunctions of a subset of the boolean variaiesind
estimate{E|. Our first charging method, presented in Sec-p;, respectively. Essentially, f € S; ;, then variabley; is
tion 4.1, is based on enumerating models for a boolean foradded taG;. Thus,G; captures the constraints on streams
mula corresponding to expressi@h and thus has an ex- S; for whom we can infer that € S; based on local
ponential time complexity. In Section 4.2, we develop ainformation thate € S; ; at sitej. Similarly, we construct

heuristic that at the expense of overcharging in some situag; by adding variablg; to it if e € S; ;. Note thatG; and
tions (described Iater): is able to ellmlnate model_enumera@_ may be different for the various remote sites depending
tion altogether, and bring down the time complexity so thatorjl the substream states at each site.
it is polynomial in the number of streams.

In the remainder of this section, we will say thatastreamTlhreﬁthogd lTormuIa: lIIhAe tgres_hollld f(f)rmullra’{f onlty ap-
Sihas a local state change at iféeitherc < (Si;—Sis) G we addvariable o . Thus,IT captures e con-
ore € (Si; — Si;). Similarly, we will say that a stream ;i o stream statés for whom we can deduce that

Si has a global state change if eitherc (S; — 5i) or . ¢ & from the frequent element sets. Note that formula

Expression Formula. The expression formul&g is con-

€c (Si - Si). H is identical at all sites sincE; is the same at all sites.
We now construct the formuIaE;r andV; at sitej as
4.1 A Mode-Based Charging Scheme follows.
+ — ; ey .
Our charging procedure first constructs a boolean formula \Ijj_ - (TFE N Fg) A @J NGj A H)
U, that captures the semantics of expressiband local v, = (FgA-Fg)A(G;ANG;NH)

stream constraints at each sjtelt then defines the charge N B ) _ )
¢;(e) at sitej in terms of the charges for modeld that ~ The formulagl® and¥;” comprise two parts; the first part,

satisfy ;. involving Fiz and Fiz, captures the conditions for one of



e e (E—E)ore e (E— E) to hold. The second part is the set of streams that experience a global state change
(G; AG; N H) specifies the constraints on stream staétes in model M. In our model-based scheme, sjtselects a
ands; due to local knowledge at siteof substream states single “culprit” streams; from P using a selection mecha-

and frequent element sets. Thus, for the boolean formul@ism that satisfies the following property.
\I}+ it follows thate € (E — E) iff \I}Jr is true for stream UNIFORM CULPRIT SELECTION PROPERTYGiven a

statesSz, S;. Consequently, ﬁ/j is unsatlsﬁable, thenitis
impossible that € (E — E), and so we can séﬁ(e) =0.
Similarly, if ¥ is unsatisfiable, then charge (e) = 0.
Revisiting Example 4.1 wherE = S; N (S2 — S3), and

element € S5 ; ande € 53 ;, we get that

T = (=p1 V P2 V P3) A (p1 A pa A=p3) A (p3 A ps)
Obviously,\IJJr is unsatisfiable (due teps A p3), and thus,
charge¢+( ) = 0. In the following subsection, we show

how models for¥; can be used to compute the charges

¢j(e) when¥; is satlsflable

4.1.2 Computing Chargesusing Formula ¥ ;

Overview. Let us consider the problem of computing the

chargeﬁj(e). For an arbitrary boolean formula ovgt, p;,
we define anodelto be an arbitrary subset of;{p;, p; }.
Each modelM basically assignguth values to variables
pi, P;i With variablep; (p;) being assignettueiff p, € M
(resp.,p; € M); otherwisep; (resp.,p;) is assignedalse
We say that model/ satisfies a boolean formula if the for-
mula evaluates tdrue for the truth assignment specified
by M. For example, modelp;, p»} satisfies the formula
p1 A p2, but the modelp, } does not. Now, each moda!
represents a specific scenario for staflgsS;. Essentially,

e e S;(eel,)iff p, € M (resp.,p; € M). Clearly, if

e € (E — E) for stream states;, S;, then the model cor-
responding to these states must satmﬁ/. Further, every

modelM that satisfieslfj represents (from the local view-
point of sitej) a possible scenario for statés, S; that is
consistent with local substream states atsignd in which
e (E-E).
Our model-based approach assigns a chargé/) to
each modelM that satisfiesl/;r at sitej. Furthermore,

since as far as sitgis concerned, any of these models canS; € P based on charge, index pais ¢(S

potentially occur and causee (E — E), we set charge
¢ (e) as follows.

¢; () ®3)

Recall that for correctness, we require that i (E — E),
then}_, gb;'(e) > 1. Thus, by choosing the charge(M)
for each modelV such thad _; ¢; (M) > 1if M were to
occur, we can ensure that qb*( )>1ifee (E—-E)
due to some model! that satlsflessll+

Now let us see how to compute the chaggeéM ) for a

modelM that satlsfles;IJ+ Let P be the set of streants;
such that exactly one qu or p; belongs toM, i.e., either

{pi,pi} N M = {p:;} or {pi,pi} N M = {p;}. Thus, P

= max{¢;(M) : Model M satisfiest}

model M and a sefP of streams with global state changes
in M, every site selects the same culprit stregine P for

M. |
Later in this subsection, we will provide one specific cul-
prit selection scheme satisfying the above property that at
tempts to minimize the magnitude of the cha@*‘e(e ) at
site j. For the selected culprit streaff, let chargep(S;)

be defined as follows.

N ) 1/0i(e) ifecF;
(8:) = { 1 otherwise “)
Intuitively, the reciprocal of this charde ¢(.S; ) is the min-

imum number of sites where streaffj must have local
state changes for it to have a global state change. For in-
stance, ife € F;, then fore to be in(S‘i — S;), e must be

in (S;; — S;;) for at leastl /¢(S;) = 6;(e) sites. We de-
fine the charge; (M) for model in terms of the charge

¢(S;) for the culprit streans);.
. | #(S;) if S; has alocal state change at sjte
¢ (M) = { 0 otherwise
(5)
Thus, we are able to ensure that if modélindeed does
occur, then since the culprit streaff) has a global state

change inM, at least thel /¢(S;) sites;j at whichS; has

local state changes, choose(M) = ¢(S;) and thus,
225 65 (M) = (1/6(S:))o(S:i) > 1.
Correctness Argument. The correctness of our charging

scheme follows from the lemma below.

Lemma4.2 Let chargeg! (e) be computed as described
in Equations (3), (4) and](5) and the culprit streanfor
each model\f be selected using a scheme that satisfies the
uniform culprit selection property. ¥ € (E — E), then

> (b}'(e) > 1. (An analogous lemma holds fof (e)) U

Culprit Selection. For a modelM/, a possible culprit selec-
tion scheme is as follows: lexicographically order streams
i),1 >, and
choose the smallest stream in the lexicographic ordering as
the culprit. In other words, the culprit stream is the stream
with the minimum charge(S;), with ties being broken in
favor of the stream with the smallest index. Clearly, since
the charges(S;) for streamsS; is the same across all the
sites, our simple culprit selection scheme satisfies the uni
form culprit selection property. Thus, due to Lemma 4.2,
our charging procedure is correct. Also, observe that since
our charging procedure selects the stream with the smallest
charge as the culprit for modal, it minimizes the maxi-
mum charge incurred fal/ across the sites.

Example 4.3 Consider distributed streants, S» and.Ss,
and let expressioll = S; N (Sy — S3). At some sitej, let
the substream states be as shown in the table below.



i=1]i1=2]1=3 computes identical charge values as the model-based
S e e approach as long as every stream appears at most once in
Sij e e the expressiotty. However, our heuristic may overcharge

. for elemente in certain cases when there are duplicate
Thus, element is in all substream states except f6r;  occurrences of streams in expression

andSs ;. Also, lete € F3, e ¢ Fi, e ¢ F> andfs(e) = 4; . .
the meaning here is thatis contained in at least sub- Overview. Our model-based charging procedure essen-

X ¥ ;
stream states fa$s transmitted to the coordinator. It fol- tially computeSqu (e) as the maximum stream charge

— — — S;) such that (1)5; has a local state change at sit@and
lows that$(S1) = ¢(S2) = 1 and¢(S3) = 1/4. Also, the ¢(Si) < ; i

PR 2) S; is the culprit stream for some mod#f that satisfies
formula\IJ;r for E at sitej is (2) P

\I/j (Recall that the culprit streai$i; for model M is the
stream with the smallest charge, index pairg(S;),7 >
from among streams with a global state change\in)
Thus, for any model/ that satisfiest !, it must be the  Thus, for a streans;;, if we can develop a test for quickly
case thaps, -ps} C M. As aresultS; € P and since determining ifS; is the culprit stream for some model that
the charge)(Ss) for S is the smallest, it is chosen as the Satisfies¥ ", then we can speed up the computation of
culprit for all models. Consequently, sinég has a local Charge@ﬁ(e). This is the key idea underlying our heuristic.
state change at sitg ¢, (M) = ¢(S3) = 1/4 for all mod- Let T denote the expression tree f@ with leaves
els M that satisfy‘llj, and thus, the charg@j(e) =1/4. and internal nodes corresponding to streams and set
Furthermore, sinc&; is unsatisfiable, chargg; (e) = 0. operators ink, respectively. For each node of T', let
Now suppose that streafiy does not have a local state E(V) be the subexpression for the subtree rooted at node
change at sitg, that is, e is neither inSs ; norin Ss ;. V» and Fgv) and Fi(yy be the formulae for(V) as
Then, since € Fs, U will remain the same as before, and defined in Section 4.1.1. For example, in the expression
Ss will still be chosen as the culprit stream for all models €€ for £ = 51 N (S2 — S5), the subexpression for
M that satisfyl 7. However, since; does not have a local the subtree rooted at ="—"is E(V) = S, — 53, and

state change at siig ¢; (M) will be 0 for the models, and gE('V)th: p2/\|ﬁl_?t3' It\low, mforderto qwclz:yltesttﬁ ?y§tr$am
) — ; is the culprit stream for some model satisfyigg,
thus charge (e) = 0. | b ﬂg

our heuristic keeps track of culprit streams (for models) at

Computational Complexity. In order to determine the ©&ch node of the expression tree using the notiarhafge
complexity our model-based approach, we consider th&riples. Formally, suppose:[hdw is a model that satisfies
following decision problem fo¢;r (e). the local Constraintst NG A H) at sitej. At nodeV

' in T, we define the charge triple for mod#&f, denoted
PROBLEM (MAXIMUM CHARGE MODEL): Given expres- bYt(M, V), asthe triplga, b, z) with the following values:
sionE, sitej, element, and constant, does there exista 4 |f ps satisfiesFE(V), then bita = 1: otherwise,a = 0.
model M that satisfiest | and for whiche; (M) > k? B Similarly, if M satisfiesFg(y), then bitb = 1; otherwise

The following theorem can be proved using a reductiony, — (.

from 3-SAT.

(=p1 V =p2 V P3) A (p1 Ap2 A=p3) A (p1 A P2 Ap2 A Ps)

¢ If none of the streams iir’s subtree have a global state
Theorem 4.4 TheMAXIMUM CHARGE MODEL problem  change in modelM, thenz = oo. (The charge, index
is NP-complete. I par < ¢(Sx),0 > is considered to be greater than
) . ) < ¢(S;),i > for all streamsS;.) Otherwise is the index
From the above theorem, it follows that singg(e) is  of the culprit stream foi/ in V’s subtree; that isy = i,
the maximum charge for modeld that satisfy\I!j, com-  whereS; is the stream with the smallest charge, index pair

puting¢ ! (e) is intractable. < &(S;),i > from among streams (il’’s subtree) with a
! global state change /.
4.2 Heuristic for Charge Computation For example, consider a model/ that satisfies

Our model-based charging procedure enumerates atfz(v) A Frv) (in addition to local constraints). Then,
modelsM in the worst case, and thus, has a worst-casdf the culprit streamS; for M in V's subtree is defined, the
time complexity ofO(22"). While this may be reasonable charge triplet(M, V') for M at nodeV is (0, 1,4); other-
for small values ofn (e.g., 3 or 4 streams), the model wise,t(M,V) = (0,1,00). Our charging heuristic com-
enumeration-based approach will clearly not scale whemutes, in a bottom-up fashion, a €gtof charge triples for
set expressions involve a moderately large number ogach nodd” of T'. Furthermore, it ensures that for every
streams, a scenario likely in practice. (e.g. in &l@mai  modelM that satisfie$G,; A G; A H), the computed set'
case). In this section, we present a heuristic solution fofor nodeV contains the triplé(M, V). Here, it is impor-
computing the chargasj(e) andg; (e) for an element  tantto note that the size 6f (in the worst case) is linear in
at sitej. Our heuristic procedure has a time complexitythe number of streams— this is because there are at most
that is polynomial in the number of streams and O(n) distinct charge triples(), V') (one for each combi-



nation ofa, b andzx). compute the chargeﬁj(e) andg; (e). SinceC contains
Now, consider the charge triple sét for the rootV the triple(0, 1, 3) andS; has a local state change at site
of T. Clearly, sinceE(V) = E, if a modelM satisfies  chargey, (¢) = ¢(Ss) = 1/4. Further, since' does not
Vi = (~Fg \Fg)A(G;AG; A H) and has culpritstream  contain a triple of the fornfl, 0, ), ¢ () = 0. |
S;, then triplet(M, V) = (0,1,4) must be inC. Thus, we
can quickly determine if a streass is the culprit stream Correctness Argument. The following lemma establishes
for some model satisfyinglj by checking ifC contains the correctness of our charging heuristic.
the triple(0, 1,¢). Hence, by selectingj*(e) to be the max-
imum stream charge(S;) such that (1)5; has a local state
change at sitg, and (2) triple(0, 1,4) € C, we can ensure
thate; () > max{¢;(M) : Model M satisfies?; } and
thus, due to Lemma 4.2, our charging heuristic is correct.
Due to lack of space, we defer the details of our bottom-computational Complexity. The maximum size of a
up charge triple computation algorithm to [5] butillus&at charge triple set for a node@(n), and thus, the worst-case
its execution in the following example. time complexity of our charging heuristic can be shown to
beO(n?s), wheres is the size of set expressidn[5].
The following lemma implies that whef contains no
duplicate streams, our heuristic returns the same charge
values as the model based approach.

Lemma 4.6 Consider a model! that satisfies local con-
straints (G; A G; A H) at sitej. Then, for an arbitrary
nodeV in T, charge triplet(M, V) is in the set of charge
triples for V' computed by our heuristic. |

Example 4.5 Consider the distributed scenario described
in Example 4.3 involving stream$;, S» and.Ss, and ex-
pressionE = S; N (S2 — S3). Suppose that elemeats

in all substream states except f6r ; and Ss ;, and also

e € F3 andfs(e) = 4. Thus,¢(S1) = ¢(S2) = 1 and  Lemma4.7 Let E be a set expression in which each
#(S3) = 1/4. The following figure illustrates the charge stream appears at most once. For an arbitrary nddén
triple sets computed for the nodes of the expression tree far, charge triplet is in the set of charge triples fdr com-

E by our charging heuristic. puted by our heuristief and only if t = ¢(M, V') for some

model)M satisfying(G; A G; A H) at sitej. |

5 Experimental Study

In this section, we present the results of an empirical study
of our distributed set-expression cardinality estimatbn

gorithms with real-life as well as synthetic data sets. The
main objective of this study is to gauge the effectiveness of
our approximation techniques in cutting down the volume
The charge triple set for each le§f is first initialized ~ Of message traffic. Our results indicate that compared to

to containt(M, S;) for modelsM that satisfy local con- naive approaches, our estimation algorithms can lead to re-
straints. For example, sinesis in S;_; but not inS‘Lj, it  ductions in communication costs ranging from a factor of 2

follows thatp; € G and thus for modeld/ that satisfy (for real-life data sets) to more than 6 (for synthetic data)

(G; NGy NH), p1 € M butp, may or may not be in/;

S0 7the c%arge triple set fof; contains the triple$l, 1, o) 5.1 Testbed and Methodology

(for models that contaip,) and (0,1, 1) (for models that ~ Algorithms for Query Answering. We implemented our

do not contairp, ). distributed algorithm from Section 3.2 where the coordina-
Next, the charge triplés, b, ) for each internal nod&  tor executes the actions in procedure@RDINATOR (see

is computed by combining pairs of triplés;, b1, 21) and  Figure 2) to process substream deltas, and each remote site

(ag, be, z2) from V's two children. Suppose thap is the  performs the actions in procedur&ROTE (see Figure 3)

boolean operation corresponding to the set operatioWifor to detect error violations. In procedur@BGRDINATOR, we

the boolean operations far, N and— arev, A andA—, re-  choose the threshold parameter for considering elements to

spectively. Theru = ay op as, b = by op b, andx is set  be frequent as- = 4. In our experiments, we observed

to one ofz; or x5, whichever has the smaller charge, indexthat the conservative policy (described in Section 3.2) of

pair < ¢(S.,),x; >. For example, the charge triples for “doubling é;(e) only after the coun;(e) has stabilized”

node “—" of T are generated by combining triples for nodesincreases the robustness of our algorithm by making the

So andSs. Triples(1,1,00) and(1, 1, 00) when combined number of control messages virtually independent of the

result in the triple(0,0,00) (sincel A =1 = 0). Simi-  choice ofr. Further, we employ our expression tree-based

larly, combining tripleg1, 1, c0) and(1, 0, 3) results in the  charging heuristic procedure to compute element charges

triple (0, 1, 3) (sincel A =0 = 1, and< ¢(S3),3 > isless ateach remote site. We will refer to this implementation of

than < ¢(S),00 >). Finally, the sets foiS; and “—” our distributed scheme dsee-based algorithm

are combined to obtain the charge triple &etor the root To test the efficacy of our tree-based algorithm, we com-

node ‘N”, which is then used by our charging heuristic to pare it to a naive algorithm in which the coordinator does
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not send any control messages to remote sites. Insteafield. Even though the trace was collected at a single
each remote sitg simply keeps track of the number of site, we treat it as if it were collected in a distributed
elements that have been inserted or deleted from any dashion at 16 sites. Thus, each record corresponds to an
the substreams; ; since stream state information was lastinsert operation for a single distributed stream at one of
communicated to the coordinator. If this element count exthe 16 sites and whose arrival time is given by the record
ceeds the error budgetfor the site, then it transmits all the timestamp. Further, we delete each record using a sliding
substream deltas to the coordinator. Essentially, theenaivwindow of 2 seconds; that is, we issue a delete for each
algorithm adapts the scheme of [12] to our set-expressiorecord exactly 2 seconds after its insertion into the stteam
setting; it considers the charg&;é(e) ande; (e) to be 1 if

. ; . Performance Metrics. Similar to [2], we use the num-
elemente is newly inserted/deleted from any substream a

o o . “ber of messages exchanged between the coordinator and
site j completely oblivious Qf global element frequencies the remote sites as a measure of the communication costs
and set-expression seman_ncs. . incurred by the tree-based and naive algorithms. The ratio-
In the above two algorithms, we d|str|bu_ted.the €ITOr hale for this is that in our study, we found message sizes to
tolerance budget uniformly across them sites; thus, po generally small{ 200 bytes); as a result, the number

eache; = . Recall thate represents thabsolute ermor o messages is an appropriate metric to compare the perfor-
and not the relative error tolerance. For both real-life asyance of the two algorithms.

well as synthetic data sets, we found the performance of

this uniform distribution policy to be comparable to more 5.2 Experimental Results

sophisticated schemes that allocate error budgets to te2.1 Synthetic Data Sets

various sites proportional to stream update rates. In our experiments, we compare the message overhead

Data Sets. We experimented with multiple synthetic data 0{ the t{ee-gatsed ?nd n?j'vt?] approa;:hles as the S!“%N
sets where we varied the frequency distribution for strea ement update rates and the error loleranaee varied.
elements and one real-life data set. n the following, we first consider a single stream scenario

eSynthetic data setsOur synthetic data stream genera- mhaersemmljé ?j(i)sazlrill:?uttoe gssttlrrzgﬁ tqigugzgrgsogﬁﬂgﬁt \gllgvevs
tor sequentially outputs 1 million stream updates for the 9 ' . y &t
s to isolate the performance improvements realized

n streams at 16 remote sites. For each update, it random ; .

selects the substreaffy ; to be updated at one of the 16 re- y our tree-based aIgorlth_m as a_result of propagating

mote sites. The eleméélfor the update is chosen from the global_ frequency threshold mformaﬂon. We then turn our
attention to general set expressions to further explore the

domain[1000] = {0,...,999} following a Zipfian distri- . . " X .
bution. Essentially, the zipf parameteprovides a knob to gains obtained due to exploiting set-expression semantics

control the skew in the frequency with which elements inSingle Stream Cardinality Estimation. In Figure 4, we
[1000] are updated. If the selected elemer not present  plot the communication costs for the tree-based and naive
in substreans; ;, then the update is treated as an insert op-algorithms as the error toleraneas varied. In Figure 4,
eration. Otherwise, the update is either an insert or a@leletwe consider three values fer(0.75, 1 and 1.25), but only
with a slight bias towards deletes to ensure that elementglot a single curve for the naive scheme since the message
are continuously inserted and deleted from substreams. traffic does not change much as the element update skew is
eReal-life data set. We used the LBL-TCP-3 data $et altered. As expected, in the graph of Figure 4, the messag-
which is a packet trace containing two hour’s worth of ing overhead for both algorithms decreases as the accuracy
all wide-area TCP traffic between the Lawrence Berkeleyrequirements are relaxed. Furthermore, for all the errdr an
Laboratory and the rest of the world. We consideredskew values shown in Figure 4, our tree-based algorithm
500,000 records from the data set, where each recordutperforms the naive scheme by a factor of at least 5. The
includes a timestamp, source host and destination hoggasonis thatas elements are randomly inserted and deleted
from the various substreams, a significant fraction of them
1Available from http://ita.ee.lbl.gov/html/contrib/LBICP-3.html. occur at more tham = 4 sites, and are thus considered to




be frequent. Now, for such frequently occurring elementssages transmitted is actually quite low and ranges between

e, our tree-based algorithm propagates the threshold valués and 20% of the total message traffic.

0;(e) which ensure that inserts efire ‘free’ and deletes are .

charged. /6;(e). In contrast, the naive algorithm charges 1 6 Concluding Remarks

for both inserts and deletes, and thus, sends many mon@ this paper, we considered the problem of approxi-

“update state” messages to the coordinator. mately answering set-expression cardinality queries over
Note that there is a cost associated with disseminatingistributed streams originating at tens or hundreds of re-

the 0; values to remote sites in our tree-based algorithmmote sites. We proposed novel algorithms for estimating

—on an average, we counted the number of such “adjusfet-expression cardinality with guaranteed accuracy at a

threshold” control messages sent by the coordinator tgentral processing site, while keeping data communication

be approximately 18 thousand for the 1 million streamcosts between the remote sites and the central processor at

updates. Clearly, this is negligible compared to the sainga minimum. Our solutions exploit global knowledge of the

in state transmission messages obtained due to the smallgistribution of frequent elements as well as the semantics o

charge values at sites. In general, control messages (Whoset expressions to reduce data transmission overhead while

counts have been included in all graphs shown) constitutegreserving user-specified error guarantees. We developed

between 20% and 50% of the total message traffic for ouprotocols for efficiently propagating global frequency in-

tree-based algorithm. formation across sites, and devised a logic-based formula-

Set-Expression Cardinality Etimation. Figure 5 depicts tipn for identifying the element state changes (at a remote
the number of messages sent by the tree-based and nai9ke) that can affect the set expression result (at the alentr
algorithms for two set expressions as the error tolerance Sit€)- Through experiments with a real-life TCP traffic data
is varied between 15 and 60, and skevs fixed at 1. The  S€t and multiple synthetic data sets, we demonstrated the
expressions we consider are over 3 stredmss; andSs, effectiveness _of our technlques_m reducing the volume c_>f
with the first being(Sp — S1) U S2, and(Sp U S1) N Sa, message traffic compared to naive approaches that provide
the second. In the graph, we only plot one curve for thdh€ same error guarantees.

naive scheme since the communication cost was the sa

for the two set expressions. This is not surprising sinc eferences

; ] “NetFlow Services and Applications”. Cisco Systems Y&hi
the naive scheme does not really care about the structure &k Paper kit t p: / / ¢l sco. com ), 1999.

fseft expressions, and simply charges 1 for each element th@ﬁ B. Babcock and C. Olston. “Distributed Top-K Monitorihg
is inserted/deleted from any of the streams. On the other ™ |n SIGMOD 2003.

hand, our tree-based algorithm, by exploiting the semanf3] M. Charikar, K. Chen, and M. Farach-Colton. “Finding Fre
tics of set expressions (in addition to element frequency _ quentltems in Data Streams”. IGALP, 2002.

; : ; ; ; . 4] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
t_hreshold information), IS gble to deliver impressive redu . “Gigascope: A Stream Database for Network Applications”.
tions in the data transmission overhead. For the expression |n SIGMOD, 2003.

(So — S1) U Sz, our tree-based algorithm results in factors[5] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. “Ap-
ranging from 16 (foe = 60) to 20 (fore = 15) lower com- proximating Set-Expression Cardinality over Distributdyh

c . date Streams”. Bell Labs Tech. Memorandum, 2003.
munication compared to the naive scheme. For the expre?é] S. Ganguly, M. Garofalakis, and R. Rastogi. “Processieg

sion(Sp U 51) N S, the performance improvement factors ™ gy gressions over Continuous Update StreamsSIBMOD,
are halved (since the set-difference operator providegmor  2003.
opportunities to suppress communication as compared t] P. B. Gibbons. “Distinct Sampling for Highly-AccuratenA

the set-intersection operator), but still lie between 7 and ~ SWers to Distinct Values Queries and Event Reports™. In
10 VLDB, 2001.

[8] P.B. Gibbons and S. Tirthapura. “Distributed StreamgaAl

) rithms for Sliding Windows”. INSPAA 2002.

5.2.2 Real-life Data Set [9] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J.
o Strauss. “How to Summarize the Universe: Dynamic Main-

We compare the communication costs of the tree-based tenance of Quantiles”. IWLDB, 2002.

and naive algorithms for the following query over the dis- [10] S. Madden, M. J. Franklin, J. H. Hellerstein, and W. Hong

; . ot inati “The Design of an Acquisitional Query Processor for Sensor
tributed TCP trace dgta. How many distinct des.tln.at|0n Networks"(‘.] InSIGMO% 2003, Query
hosts are contained in the TCP trace records within the;1] b Moore, G. M. Voelker, and S. Savage. “Inferring Inter
most recent 2 second sliding window? As shown in Fig-" "net Denial-of-Service Activity”. IFJSENIX Security Sympo-
ure 6, our tree-based algorithm incurs between 35% (for sium 2001. . . o
e = 30) and 50% (fore = 60) less communication over- [12] C. Qlston, J. Jiang, and J. Widom. “Adaptive Filters for

head compared to the naive scheme. The reason for the F\:A(())nl:t;nggggQuenes over Distributed Data Streams'SI@-

comparatively modest improvement over the naive schem@ 3] G. Pottie and W. Kaiser. “Wireless Integrated Netwosn$
in this case is the lesser stability in element counts riegult sors”. Communications of the ACM3(5), 2000.

in lower thresholds valid for short durations of time. Also

note that our techniques which exploit set-expression se-

mantics did not come into play. It is interesting to note that

for our tree-based algorithm, the number of control mes-



