
Learning Visual Anticipation: A Top–Down
Approach
Vempati Anurag Sai

Department of Electrical Engineering
Indian Institute of Technology, Kanpur

{vanurag}@iitk.ac.in
Advisor: Dr. Amitabh Mukerjee

Abstract—This work aims at developing an anticipatory gaze
model, in a top-down approach. In the past there have been many
models that can track relevant objects from a video making use of
computer vision. But one crucial difference is that, a human eye
can learn to anticipate the trajectory of an object very quickly in
an unsupervised fashion. A sportsperson knows the importance
of trajectory estimation better than anyone else. For example,
in cricket it is very crucial that the batsman estimates length,
bounce and type (swing, spin etc.) of the delivery in a fraction
of seconds. In a study by Land & McLeod, 2000 three skilled
batsmen facing medium paced deliveries looked at the ball for
the first 100-150ms of flight and then made a rapid glance (or
saccade) at approximately 50-80% of the ball flight duration
to the predicted ball bounce location. This kind of anticipation
comes with prolonged training. We aim to build a computational
model that could imitate the way humans learn to anticipate the
trajectory of fast moving objects.

Index Terms—Anticipatory Gaze; Predictive Vision; Kalman
Filter; Linear Regression.

I. INTRODUCTION

In high–speed ball games such as cricket, tennis etc., it is
highly important that the player gets a prior estimate as to
where the ball is going to land, at what height is he going
to make a contact etc. A little difference in the saccade they
make during the course of delivery is all there is between aan
amateur player and an expert player [1]. This kind of predictive
gaze can help the player to get into a stable posotion and also
fetch him enough time to search his “shots repository” and
come up with the best shot.

Humans track objects of interest around them. While walk-
ing around they anticipate future location of people around
them so that they wouldn’t run into others. Keeping track of
other vehicles on road is particularly crucial. The autonomous
driving vehicle “Stanley” developed by Stanford University
employs a Kalman Filter to keep track of every other vehicle in
it’s viscinity [5]. Peřse et al. have succesfully modelled human
motion using Kalman Filter and collision avoidance algorithm
thus helping them better the performance of human tracker in
highly congested areas. Scuitti et al. found out that human
gaze is tightly connected to the motor resonance system.
While a sequential task is being performed, the observer was
found to anticipate the task’s goal rather than just track the
demonstrator’s motion.

Fig. 1: The coordinate system. [Courtesy:IUSO vision sciences
group]

All this research indicates as to how important it is for
humans to anticipate intention or position of salient objects
in their day–to–day life. In such scenarios, the human gaze
is mostly saccadic, continuously predicting where they have
to look next. This work aims to develop a computational
model that can visually anticipate like humans do. We will
be restricting ourselves to a simplistic scenario of anticipating
a ball’s future location when it’s moving at very high speeds.

II. MODEL DESCRIPTION

Since, the motto is to learn to predict a ball’s trajectory in
unsupervised fashion, we will be first building a dataset for
the training phase.

A. Dataset

Note: We will be assuming a right-handed coordinate sys-
tem where, z–axis points in the viewing direction and x–axis
is parallel to line joining the two eyes as shown in Fig.1

The dataset consists of a ball bouncing off the walls and
floor as viewed from different viewpoints. The ball’s speed
and release direction are randomly chosen with a swing/spin
components incorporated in few of the videos. Each video
contains roughly about 150 frames.

We first model the physical world. Let’s define a ‘state’ as a
tuple consisting of position, velocity and accleleration in three



orthogonal directions.

SG
t =



x(t)
y(t)
z(t)
vx(t)
vy(t)
vz(t)
ax(t)
ay(t)
az(t)


where, [x(t), y(t), z(t)], [vx(t), vy(t), vz(t)], [ax(t), ay(t), az(t)]
are the ball’s posotion, velocity and acceleration respectively
w.r.t ground coordinate system, at time t.

Each state evolves from it’s previous state by applying a
kinematic transformation F as follows.

SG
t+1 = F ∗ SG

t (1)

where,

F =



1 0 0 ∆t 0 0 (∆t)2

2 0 0

0 1 0 0 ∆t 0 0 (∆t)2

2 0

0 0 1 0 0 ∆t 0 0 (∆t)2

2
0 0 0 1 0 0 ∆t 0 0
0 0 0 0 1 0 0 ∆t 0
0 0 0 0 0 1 0 0 ∆t
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


The swing component can be introduced by adding a

velocity component proportional to velocity in it’s orthogonal
direction. For example, making entry at 4th row, 5th column
non–zero, we can add velocity component in x–direction,
proportional to velocity in y–direction. Though this is a crude
way to acheive swing, it will serve our job.

We will have a different Transition matrix Fbounce when the
ball bounces off the floor or wall. For example, if the ball is
bouncing off the floor, the velocity in y–direction is reversed
and then F is applied. So, Fbounce = F ∗ B where, B is an
Identity matrix of size 9×9 with entry at 5th row, 5th column
replaced by −1.

Basically, we can boil down any physical phenomenon in a
crude way, to a variation in the transition matrix F . This rough
approximation is acceptable since, Kalman Filter takes care of
such issues by introducing process noise into it’s design which
we will talk in detail later.

On top of the physics model, “viewpoint transformation” is
applied. This can be acheived as follows:

Snew
t = Rnew

G ∗ SG
t (2)

where, Rnew
G is the rotationmatrix from ground reference

frame to the new reference frame. We don’t consider the trans-
lation vector from ground to new reference frame because, in
our kinematics equation, the states and Transition matrix F
remain invariant to translation. Only the x,y and z in state are

shifter by some constants. Since, we don’t explicitly use state
entries anywhere in our algorithm and F remains unchanged,
we need not use translation vector.

We will be applying one last transformation based on the
geometry of Optics. i.e., “farther objects are smaller”. This
can be acheived as follows:

xvisual(t) = f ∗ xnew(t)/znew(t) (3)
yvisual(t) = f ∗ ynew(t)/znew(t) (4)

rvisual(t) = f ∗R/znew(t) (5)

where, xvisual(t), yvisual(t) and rvisual(t) are the position and
size of the ball (of physical radius R) as seen from the new
viewpoint with an eye/camera of focal length f .

B. Parameter Extraction

For each video in the dataset, the ball’s position and size
has to be recovered in every single frame. The data thus
extracted will be used for training the model. Though there
are several methods based on segmentation and optical flow
that can acheive this, since we are specifically looking for a
ball, Hough Transform will perform extremely well.

A Canny Edge detector is ran to extract out all the edges.
This gives us rough outline of every object. A Hough transform
first creates a 3–D matrix of size (num rows, num cols,
max radius) where, ‘num rows’, ‘num cols’ are number of
rows and columns in each frame. ‘max radius’ is the maxi-
mum size of the ball that Hough Transform can detect.

Now, for each point detected by the Canny edge detector,
all possible circles that can pass through that point are up–
voted. Say, if a circle of radius 5 with center at (210, 154)
can pass through an edge point, the entry in the 3–D matrix
corresponding to these values is raised by one. As it can be
seen, once this process is finished, the entry that corresponds to
the ball’s position and radius gets maximum number of votes.
Thus, we extract the necessary parameters. The position of the
ball and it’s size in each frame is entered (as a triplet) into a
file for further use.

C. Learning the Transition Matrix

For the system to be able to predict the future states, it
should come up with a good estimate of the Transition matrix
F . We will be using the data collected from the training videos.

Since there are “viewpoint transformation” and “Optical
transformation” on top of the “kinematic transformation”, we
need to revert both of them. The set of transformations on
each triplet (x, y, r) looks as follows:

znew(t) = f ∗R/r

xnew(t) = x ∗ znew(t)/f

ynew(t) = y ∗ znew(t)/f

At this point we just have position vector. But we need
velocity and acceleration to form the state vetor. So velocity
is estimated as v = ∆x/∆t and acceleration by a = ∆v/∆t
where, ∆t is the duration of each frame in the video. This kind



of approximate estimates will only be used during the learning
phase since, the regression problem takes care of the errors. We
won’t be using such estimates while predicting future position
of the ball since that might result in cascading effect due to
error propogation from one state to the next. More on this
later.

This will be followed by inverting the viewpoint transforma-
tion by multiplying by (Rnew

G )−1 which is same as (Rnew
G )T

(Transpose of the Rotation Matrix).

SG
t = (Rnew

G )T ∗ Snew
t

Here, Rnew
G is found by evaluating the transformation that

can transform the floor in visual domain to a plane horizontal
to x–z plane in Ground reference frame. Research indicates
that humans on the other hand don’t rely on visual inputs
alone to determine their head orientation (which decides the
viewpoint). Healthy individuals were found to be able to
position themselves parallel to gravity within 0.50 even in the
dark [6].

From here on, learning the state transition matrix can be
boiled down to a set of simple linear regression problems.
Each learns a row of the matrix. The ith problem looks as
follows:

SG
next(i) = SG

current ∗ (Fi)
T (6)

where, SG
next(i) is the vector of size N − 1 defined as,

[SG
2 (i), SG

3 (i), ..., SG
N (i)] and SG

current is a matrix of size
(N − 1)× 9 defined as,

SG
current =


————- (SG

1 )T ————-
————- (SG

2 )T ————-
...

———— (SG
N−1)T ————


N is the number of training examples in the dataset and SG

t (i)
is the ith element of the vector SG

t . Fi is the ith row of the
Transition matrix F .

This regression problem has a Least-Squares estimate given
by:

(Fi)
T =

((
SG
current

)T
SG
current

)−1 (
SG
current

)T
SG
next(i)

(7)
Similarly, the rest of the rows of the Transition matrix F

are estimated.

D. Kalman Filter

Now that we have the Transition Matrix F , we could
have estimated the future position of the ball by repeatedly
multiplying the present state with F . But, there are several
problems with this approach:

• Since there are errors associated with the ball’s parameter
detection (position and size), these get transferred to the
velocity and acceleration estimates we might use to build
the state. And, when we multiply the state several times
by the Transition matrix F , the error gets compounded
and results in a bad prediction.

• As the Hough Transform searches the parameter space
in discrete steps, this results in a slight error in position
and size of the ball. This is not a big problem in the case
of position but a slight change in size results in a lot of
difference in the z–estimate. So, the estimates of velocity
and acceleration in z–direction are even worse.

On the other hand, there are several benefits in using a
Kalman Filter, such as:

• Only the position estimates are taken as the input. The
velocity and acceleration are taken care of.

• It considers measurement noise. So slight errors in posi-
tion estimates are easily removed.

• We need not have an accurate Transition Matrix because
it takes process noise into consideration.

• Several cycles of prediction can be run before next
measurement update.

• The design is robust and accurate.
Kalman Filter basically takes noisy measurements and

comes up with statistically optimal estimate as to what the
actual state might be. With every new measurement the pre-
diction gets better. More formally, Wikipaedia defines Kalman
filter as follows: The true state at time t is evolved from the
state at (t− 1) according to

St = FtSt−1 + Btut + wt (8)

where, Ft is the state transition model which is applied to the
previous state St−1, Bt is the control-input model which is
applied to the control vector ut and wt is the process noise
which is assumed to be drawn from a zero mean multivariate
normal distribution with covariance Qt.

At time t an observation (or measurement) zt of the true
state St is made according to

zt = HtSt + vt (9)

where, Ht is the observation model which maps the true
state space into the observed space and vt is the observation
noise which is assumed to be zero mean Gaussian noise with
covariance Rt.

In our model, Ft is the state transition matrix F , Bt = 0
and the rest are chosen as follows:

H =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


Rt = 0.5× I3×3 and process noise Qt is initialized as 0.05×
I9×9 where, I is an Identity Matrix. P is the state covariance
matrix initialized as 1000× I9×9.

The algorithm [4] is a recursive estimator. Each iteration
has a measurement update routine and prediction routine.



Fig. 2: Sample frames from two different training videos

Measurement Update Routine:

Yt = zt −Ht ∗ St (10)
Tt = HtP (Ht)

T + Rt (11)
Kt = Pt(Ht)

TT−1
t (12)

St = St + KtYt (13)
P = (I9×9 −KtHt)P (14)

Prediction Routine:

St+1 = FtSt + Btut + wt (15)
P = FtPFT

t (16)

where, St+1 is the predicted state at time t+1. The prediction
routine can be run several times in each iteration to predict
further.

III. RESULTS

A. Dataset

Fig.2 shows two sample frames from different training
videos with randomly set viewpoints, velocities and spin/swing
components. In total, 4 videos each consisting roughly around
150 frames are used in training phase and one video for test
phase. The videos are of resolution 860× 360.

B. Parameter extraction

Fig.3 shows the output of Canny edge detector on a single
frame. Fig.4 shows the ball detected by the Hough Transform
(circled) in two different frames. It performs quite good but
there can be slight errors as in Fig.4(b).

C. Learnt Transition Matrix

The learnt Trasition Matrix F is close to the ideal transition
matrix with an rms error of 0.0094.

Fig. 3: Canny Edge detector output

Fig. 4: Ball detected by the Hough Transform (a)successful
and (b)errroneous

D. Prediction

The prediction worked pretty good with an rms error of
12.36 pixels in position. Fig.5 shows the predicted trajectory
at one particular instant of the test video.
video link: http://www.youtube.com/watch?v=psldAbFzlHk

REFERENCES

[1] Land, Michael F., and Peter McLeod. “From eye movements to actions:
how batsmen hit the ball.” Nature neuroscience 3.12 (2000): 1340-
1345.

[2] Sciutti, Alessandra, et al. ”Anticipatory gaze in human-robot interac-
tions.“Gaze in HRI from modeling to communication” workshop at the
7th ACM/IEEE international conference on human-robot interaction,
Boston, Massachusetts, USA. 2012.

[3] Perse, Matej, et al. “Physics-based modelling of human motion using
kalman filter and collision avoidance algorithm.” International Sympo-
sium on Image and Signal Processing and Analysis, ISPA05, Zagreb,
Croatia. 2005.

[4] http : //en.wikipedia.org/wiki/Kalman filter
[5] Thrun, Sebastian, et al. ”Stanley: The robot that won the DARPA Grand

Challenge.” Journal of field Robotics 23.9 (2006): 661-692.

http://www.youtube.com/watch?v=psldAbFzlHk


Fig. 5: Ball’s estimated trajectory (10 cycles of prediction in
‘blue’) and size (in ‘red’ circle)

[6] Horak, Fay B. “Postural orientation and equilibrium: what do we need
to know about neural control of balance to prevent falls?.” Age and
ageing 35.suppl 2 (2006): ii7-ii11.


	Introduction
	Model Description
	Dataset
	Parameter Extraction
	Learning the Transition Matrix
	Kalman Filter

	Results
	Dataset
	Parameter extraction
	Learnt Transition Matrix
	Prediction

	References

