IMPACT OF EYE FIXATED REGIONS IN VISUAL ACTION RECOGNITION

SE367: Introduction to Cognitive Science

By: Deepak Pathak deepakp@iitk.ac.in Guide: Dr. Amitabha Mukerjee <u>amit@iitk.ac.in</u>

Introduction

Why useful :

- Content Based Browsing
- Annotating the videos
- Video Surveillance
- Patient Monitoring etc..

Issues

- Diversity in actions like sitting, running, jogging, walking etc.
- Occlusions
- Reflection
- Shadow , Background Clutter

Motivation

"Computer vision techniques still lag significantly behind human performance on similar tasks"

- bridging the gap..!!

50,000 uploads every day !

[UCF Sports Action Dataset]

Objective of the project ..

Study human gaze patterns in videos and utilize them

- In activity recognition task.
- Human visual saliency prediction (Next Phase !!)

Targeted question ..

How **useful / interesting** are the eye-fixated points in a visual sequence in determining the action present in it ?

[Live Snapshot – earthcam.com]

Overview of Project

Expected Result ..

The points $\{(x,y,t) - coordinates\}$ where humans fixate their eyes should **not** be so useful (when taken as interest points) in the task of action recognition in natural scenes. Why ?

Datasets ..

[Mathe 2012]

- Provided large human eye tracking dataset recorded in context of dynamic visual action recognition tasks.
- 16 Subjects : Free viewing 4 subjects ; Action Recognition – 12 subjects
- 92 subject-video hours, 500Hz sample rate.

Hollywood-2 Dataset [Laptev]

- Realistic human actions in unconstrained video clips from Hollywood movies.
- Naturalistic Action Dataset
- 12 Action Classes, 1707 video clips

[Hollywood-2 Dataset]

Our Approach

- Firstly, we perform following three steps -

We implemented two different Visual Action Recognition Pipelines

PIPELINE [A] "Bag Of Words"

- Represent each video as feature histogram over bag of visual words
- 2. Normalise Histogram

3. Action Recognition

Histogram of Visual words

PIPELINE [B] "Array Of Words" (NOVEL APPROACH)

- 1. Represent each video as a sequence of visual words
 - Maintains overall sequentiality (WHY?)
 - Local temporality is already captured in HoG3D

2. Sequence for each video has **different length**

Array of indices of Visual words

3. Use "HMM with Univariate Gaussians" as classifier for such sequences of videos (Escaped Multivariate Gaussians!! (HOW?))

Implementation Details

- Interest points Eye gaze ('F'-fixation) coordinates of one subject with 12 frame overlap. (computational reasons)
- K-means clustering :
 - mapping of **6 lac descriptors to 4000 word** vocabulary (dimension=300)
 - each video :
 - > normalized histogram of 4000 bins (pipeline 1)
 - > array of indices of visual words (pipeline 2)
- Learn Classifiers over 823 training videos feature histogram. Test over 884 test videos. (Tool used - Weka)

Hurdles **!**!

- Coding from Scratch [Implementation Source was not available]
- Computational Limitations –
- K-means clustering on such a large dataset was taking too much.

So we used **un-converged** clusters finally.

Frame showing Hog

descriptors around Interest point (From Eye Gaze data)

HoG3D Descriptor :

This involves Gradient computation and Orientation binning. Gradient computation requires filtering the image with the kernels [-1,0,1] and [-1,0,1]'

Results

Action – FightPerson

Results

Results - PIPELINE [A] "Bag Of Words"

Dataset	Hollywood-2
Correct	384
Incorrect	1323
Accuracy	22.5 %
Harris Corners	49 % [Mathe]

Confusion Matrix

Actions in order : [Kiss, SitDown, HandShake, Eat, Run, SitUp, FightPerson, HugPerson, StandUp, DriveCar, GetOutCar, AnswerPhone]

Basic HMM 6 states each, 10 fold Cross Validation Results ->

50

150

100

200

Array of Visual Words (Temporal Gaze Points)

250

300

Dataset	Hollywood-2
Correct	316
Incorrect	1391
Accuracy	18.5 %

350

400

450

Confusion Matrix

500

0

Actions in order : [Kiss, SitDown, HandShake, Eat, Run, SitUp, FightPerson, HugPerson, StandUp, DriveCar, GetOutCar, AnswerPhone]

		2		4		6		8		10		12
12	1	14	4	9	0	0	1	3	10	3	1	10-
		7	0	2	0	0	0	0	2	0	0	43
10	1	16	3	3	0	0	2	1	5	2	0	15
	0	9	3	10	0	0	0	1	9	3	0	214
8	0	3	2	2			2	5	0	0	0	14
	0	1		2	0	0	2	0	1	0	0	119
6	0	6		2	0		2	2	2	4	0	56
	1	13	1	0	0	0	2	1		0	0	84
4	0	1	0		0	0	0	0	3	0	0	11
	0	2	0	2	0	0	0	1	0	0	0	66
2	0	6	0	2	0	0	0	1	3	1	0	1974
	1	9	1	5	0	0	0	2	1	2	1	108

One-all SVM 10 fold Cross Validation Results ->

Conclusion

- Low accuracy in action recognition task.
- All the eye fixated regions in videos are not so much relevant for action recognition.
- Unlike **Yarbus' experiment**, action recognition is high level task which is largely intuitive and just does not rely on fixated visual input for common actions.
- **"Covert attention"** and immense **parallelism** in human brain.

Achievements

We proposed novel "Array of Words" approach with following advantages -

- 1. Capture **high-level temporality** in a given video sequence
- 2. Reduce usage of multivariate HMM to univariate basic HMM.
- It reduces the continuous real domain of observations to discrete value from 1to #(Words)

Further Work	REFERENCES
Can we extend this approach to design Human Visual Saliency Predictor ?	 Mathe, Stefan, and Cristian Sminchisescu. "Dynamic eye movement datasets and learnt saliency models for visual action recognition." Computer Vision-ECCV 2012. Springer Berlin Heidelberg, 2012. 842-856.
 Yes ! By training binary classifier over feature descriptor. Input: HoG3D feature detector 	• Mathe, Stefan, and Cristian Sminchisescu. Actions in the eye: dynamic gaze datasets and learnt saliency models for visual recognition. Technical report, Institute of Mathematics of the Romanian Academy and University of Bonn (February 2012), 2012.
around each pixel of the video data. Output: Yes or No (being salient)	• Klaser, Alexander, and Marcin Marszalek. "A spatio-temporal descriptor based on 3D-gradients." (2008).
 Problem – Might be computationally intensive. 	 Laptev, Ivan. "On space-time interest points." International Journal of Computer Vision 64.2 (2005): 107-123. – Hollywood-2 Dataset