

A Grounded Framework for Gestures and its Applications Debidatta Dwibedi Mentor: Prof. Amitabha Mukerjee

Problem Description

- Implement a framework that is able to associate gestures with language
- Generate gestures helpful in route descriptions and assembly instructions

Keywords: Gesture Recognition, Natural Language Processing, Embodied Cognition, Symbol Grounding, Lifelong Learning

Motivation and Past Work

- Knowledge representation for generating locating gestures in route directions [Striegnitz 2005]
- Integrated model of speech and gesture in robots [Kopp 2008]
- Studied models of utterance, gesture and timing to better facilitate the human-robot interaction [Okuno 2009]
- A joint model of language and perception for grounded attribute learning [Matuszek 2012]

Kopp et al 2008

Towards a Lifelong Gesture Learning System

Framework for Lifelong Learning of Gestures

Recording and Recognizing Gestures

Get coordinates of :

- (LeftHand HipCenter) [x₁,y₁,z₁]
- (RightHand HipCenter) [x₂,y₂,z₂]

http://soulsolutions.com.au

This 6 X N dimensional vector is the representation of the gesture, where N is the no. of frames taken to do the gesture i.e. time

Used Frechet distance between query gesture and gestures in database to find nearest match.

If distance exceeds a threshold, then gesture is assumed to be not present in database.

Associating Words with Gestures

Collected 2 datasets and did frequency analysis:

• Route descriptions in IITK

right, left , turn, straight, hall, road, walk, building ,('take', 'right'), ('take', 'left'), ('go', 'straight'), ('turn', 'left'),('turn', 'right'), ('right', 'turn')

Assembly of a TV stand

 shelf, frame, glass, place, top, bottom, bolts, ('allen', 'wrench'), ('shelf', 'frame'), ('bottom', 'shelf'), ('glass', 'shelf'), ('top', 'shelf')

Gesture for Word	Right	Left	Straight	Building
Right	69000	0.232	0.189	0.045
Left	0.27	61000	0.196	0.0517
Straight	0.458	0.399	35000	0
Building	0.272	0.272	0.166	14000
Turn	1.624	1.333	0.199	0.049
Walk	1.222	0.666	0.249	0.111
Go	0.499	0.333	0.919	0.021

Transferring Gestures and Words to ECA

Nao robot is chosen as ECA(Embodied Cognition Agent)

- Choreographe to simulate on an animated version of Nao.
- Gestures easily transferrable to the actual robot.

Recorded all 20 joints from Kinect

- But joints in Cartesian coordinates and Nao takes angles as input.
- Inverse kinematic problem.

Converted into corresponding joint angles

Can utter instructions from Google Maps or IKEA manuals

In-built text-to-speech engine

Timing and spacing of instructions and gesture performance has a major impact of comprehension of gestures

Conclusions and Future Work

- An important part of the system is the module that parses knowledge from systems like Google Maps to find what are the gestures that can be performed.
- Integrate all the modules into one lifelong gesture learning system.
- Use of gestures in a collaborative setting.
- Use speech input to find association between gestures and words.
- Carry out usability studies
 - Impact of orientation of robot, timing of utterances and gestures etc. on comprehension
 - Provide gestures and descriptions to humans and see effectiveness of such a system

References

[Striegnitz 2005] Knowledge representation for generating locating gestures in route directions [Kopp 2008] Multimodal communication from multimodal thinking—towards an integrated model of speech and gesture production.

[Okuno 2009] Providing route directions: design of robot's utterance, gesture, and timing. [Matuszek 2012] A Joint Model of Language and Perception for Grounded Attribute Learning.

Acknowledgements

I would like to thank **Nehchal Jindal** and **Shashank Sonkar** for their valuable inputs in this project. I would also like to acknowledge **Prof. Mukerjee** for all the guidance and support he has provided throughout this semester.