A Computational Model for Top Down Visual Attention

Abhijit Sharang

Motivation

- Attention involves selectively processing certain aspects of the environment while ignoring others.
- Crucial for real time processing of stimuli
- Two aspects of visual attention
 - Bottom up
 - Top Down
- Top down is more dominant when the attention is goal oriented

The approach

- Sequential nature of task driven attention
- The idea is to exploit this aspect to construct a model which predicts the current state based on the previous state and the features generated in the current state
- Compare this model with other classifierbased models

Experiment

- Obtain data from a dynamic task : video games
 - 3D Driving School(player in motion)
 - Hot Dog Ambush(player static w.r.t environment)
- Identify features relevant to the task
 - GIST
 - Event in the video frame(for 3DDS)
 - Objects in the video frame(for HDB)
- Map features to the eye-gaze data for each frame to learn the mathematical model

Experiment(cont..)

- The models:
 - Mean Eye Position
 - Random Eye Position
 - Regression
 - K Nearest Neighbours
 - Dynamic Bayesian Network

Dynamic Bayesian Network

• *Two slice* Bayesian network

 Adjust m(structure of the DBN) and θ(transition matrix) to maximise P(E|m;θ)

Results(NSS)

• 3DDS

Results(NSS)

• HDB

Results(ROC)

• 3DDS

Results(ROC)

• HDB

Comparison of fixation(3DDS)

Original

Original

MEP

Regression

DBN

MEP

Regression

Rand

Regression

kNN

DBN

Original

Regression

DBN

MEP

......

Rand

Regression

kNN

DBN

Regression

DBN

Original

MEP

Rand

Regression

Further work

- The model right now predicts eye fixation only.
- Can it be extended to saccades as well?
- Are global scene features of any importance in the model?
- Does the addition of bottom-up saliency model make any improvements in the result?

References

- Borji, Ali, Dicky N. Sihite, and Laurent Itti. "An Object-Based Bayesian Framework for Top-Down Visual Attention." Twenty-Sixth AAAI Conference on Artificial Intelligence. 2012.
- Borji, A., Dicky N. Sihite, and L. Itti. "Probabilistic learning of task-specific visual attention." Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012.
- Peters, Robert J., and Laurent Itti. "Beyond bottom-up: Incorporating task-dependent influences into a computational model of spatial attention." Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on. IEEE, 2007.