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Abstract. We show that two complexity classes introduced about two

decades ago are unconditionally equal. ReachUL is the class of problems

decided by nondeterministic log-space machines which on every input

have at most one computation path from the start con�guration to any

other con�guration. ReachFewL, a natural generalization of ReachUL,

is the class of problems decided by nondeterministic log-space machines

which on every input have at most polynomially many computation

paths from the start con�guration to any other con�guration. We show

that ReachFewL = ReachUL.
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1. Introduction

A nondeterministic machine is said to be unambiguous if for every
input there is at most one accepting computation. UL is the class
of problems decided by unambiguous log-space nondeterministic
machines. Is this restricted version of log-space nondeterminism
powerful enough to capture general log-space nondeterminism (the
complexity class NL)? Recent research gives ample evidence to
believe that the conjecture NL = UL is true (Allender et al. (1999);
Bourke et al. (2009); Reinhardt & Allender (2000); Thierauf &
Wagner (2009)). However, researchers have yet to �nd a proof of
this equality.
This paper considers a restricted version of log-space unambiguity
called reach-unambiguity. A nondeterministic machine is reach-
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unambiguous if, for any input and for any con�guration c, there
is at most one path from the start con�guration to c. (The pre�x
`reach' in the term indicates that the property should hold for all
con�gurations reachable from the start con�guration). ReachUL is
the class of languages that are decided by log-space bounded reach-
unambiguous machines, as de�ned by Buntrock et al. (1991).

ReachUL is a natural and interesting subclass of UL. As de�ned,
ReachUL is a `semantic' class. However, unlike most other seman-
tic classes, ReachUL has a complete problem (see Lange (1997)).
In particular, Lange showed that the directed graph reachabil-
ity problem associated with reach-unambiguous computations is
ReachUL-complete. Subsequently Allender & Lange (1998) showed
that this reachability problem can be solved deterministically in
space O(log2 n= log log n) which is asymptotically better than Sav-
itch's O(log2 n) bound for the general reachability problem. Bun-
trock et al. (1991) showed that ReachUL is also known to be closed
under complement.

The notion of fewness is a natural generalization of unambiguity
that is of interest to researchers (see Allender (2006); �Alvarez &
Jenner (1993); Buntrock et al. (1992, 1993, 1991); Pavan et al.

(2010)). Since an unrestricted log-space nondeterministic machine
can have exponential number of accepting computations, few here
means polynomially many. FewL is the class of problems decided by
nondeterministic log-space machines which on any input have at
most a polynomial number of accepting computations. Thus FewL
extends the class UL in a natural way. The analogous extension
of ReachUL is the class ReachFewL { the class of problems decided
by nondeterministic log-space machines which on any input have
at most polynomial number of computation paths from the start
con�guration to any con�guration (not just the accepting con�gu-
ration). Can fewness be simulated by unambiguity? In particular,
is FewL = UL? This is an interesting open question and a solution
is likely to have implications on the NL versus UL question.

In this paper we show that for reach-unambiguity, it is indeed the
case that fewness does not add any power to unambiguity for log-
space computations. That is, we show that ReachFewL= ReachUL.
This theorem improves a recent upper bound that ReachFewL �
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UL \ coUL shown in Pavan et al. (2010).

Theorem 1.1 (Main Theorem). ReachFewL = ReachUL.

Proof Outline. The proof is based on the well known hashing tech-
nique due to Fredman et al. (1984) (see Theorem 2.11). Our goal
is to reduce a ReachFewL computation to a ReachUL computation.
Consider the con�guration graph of a ReachFewL computation and
consider the weighting scheme w where the ith edge of this graph
gets a weight 2i. With respect to w the graph is distance isolated

(two distinct paths have di�erent weights). By de�nition, the con-
�guration graph of a ReachFewL computation has at most polyno-
mially many paths from the start con�guration to any other con�g-
uration. Hence by the FKS-hashing theorem, there is an O(log n)
bit prime number p so that with respect to the weight function
wp the graph is distance isolated, where wp(e) = w(e) (mod p).
Now a standard layering technique will make this new weighted
graph reach-unambiguous. This argument works for primes that
are `good'. For rejecting a bad prime we use the result from Lange
(1997) that checking whether a graph is reach-unambiguous with
respect to a speci�c vertex can be done in ReachUL. Thus we can
cycle through all O(log n) bit numbers one by one, check whether it
is prime, and if yes, check whether it is a good prime. For the �rst
such good prime we are guaranteed that the corresponding layered
graph is reach-unambiguous. All these computations can be per-
formed in log-space and hence we get that ReachFewL log-space
Turing reduces to ReachUL. The theorem follows since ReachUL

is closed under log-space Turing reductions (see Buntrock et al.

(1991)).
As a corollary to the main theorem we get a new upper bound
for the reachability problem over certain class of graphs that beats
Savitch's O(log2 n) space bound. Allender & Lange (1998) showed
that the reachability problem over reach-unambiguous graphs can
be solved in DSPACE(log2 n= log log n). Our main theorem implies
the same upper bound for the reachability problem over directed
graphs that are polynomially ambiguous.

Corollary 1.2. The s-t reachability problem over graphs with
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a promise that there are at most polynomially many paths from s to
any other vertex can be solved in deterministic spaceO(log2 n= log log n).

The main theorem and the corollary can be slightly extended to
get a o(log2 n)-space algorithm for the reachability problem over
graphs with at most 2o(logn

p
log logn) paths from the start vertex to

any other vertex.

2. De�nitions and Necessary Results

We only introduce the necessary de�nitions and notation related to
log-space bounded complexity classes. For other standard complexity-
theoretic de�nitions and notation that we use, refer to the text
book by Arora & Barak (2009).
In space complexity investigations it is standard to view the com-
putations as directed graphs on con�gurations. Given a Turing
machine M and an input x, GM;x will denote the con�guration
graph of M on x.
L denotes deterministic log-space and NL denotes non-deterministic
log-space. For a language A, LA denotes the class of languages rec-
ognized by deterministic log-space machines with an oracle access
to A. For a complexity class C, LC denotes the class fLA j A 2 Cg.
We are interested in log-space unambiguous complexity classes.
There are mainly two versions of unambiguity that have been stud-
ied in the literature. The most general version gives rise to the class
UL which is de�ned as follows.

Definition 2.1. A language A is in the class UL if there exists
a non-deterministic log-space machine M accepting A such that,
for every instance x, M has at most one accepting computation on
input x.

The other form of log-space unambiguity that is studied in the
literature is called reach-unambiguity (see Buntrock et al. (1991);
Lange (1997)). This notion gives rise to the class ReachUL. We
de�ne reach-unambiguity as a general graph-theoretic notion.

Definition 2.2. Let G be a graph, s be a vertex in G and k be
an integer. We say that G is k-reach-unambiguous with respect to
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s if for all vertices x 2 V (G), there are at most k paths from s to
x. If k = 1, we say G is reach-unambiguous with respect to s.

2.1. De�nition and Properties of ReachUL. Buntrock et al.

(1991) de�ned ReachUL and showed that this class is closed under
complement and log-space Turing reductions. Later Lange (1997)
showed that ReachUL (de�ned slightly di�erently) has complete
problems. We will need these results to prove our main theorem.

Definition 2.3 (Buntrock et al. 1991). A language L is in ReachUL
if L is accepted by a nondeterministic log-space Turing machine M
such that, on any input x, M(x) has at most one accepting path
and, in addition, GM;x is reach-unambiguous with respect to the
start con�guration.

Thus, ReachUL is a subclass of UL by de�nition. Buntrock et al.
also considered a variation of ReachUL namely the class of lan-
guages that are accepted by reach-unambiguous machines with out
restricting the number of accepting paths. In particular, the reach-
unambiguous machine deciding a language in this class is allowed
to have more than one accepting computation each going to a dif-
ferent accepting con�guration. But they showed that the resulting
complexity class is same as ReachUL.
Lange (1997) considered ReachUL using the notation RUSPACE(log n)
(or RUL) and with a slightly di�erent de�nition. For a Turing ma-
chine M and input x, let sx denote the start con�guration and tx
denote the canonical accepting con�guration (the accepting con�g-
uration where the state is the unique accepting state, all the tape
heads are in the �rst cell of the respective tapes, and all the work
tape contents are blanks).

Definition 2.4 (Lange 1997). A language L is in RUSPACE(log n)
if L is accepted by a nondeterministic log-space Turing machine M
such that, on any input x, GM;x is reach-unambiguous with respect
to the start con�guration and (a) x 2 L) there is a path from sx
to tx (b) x 62 L) there is no path from sx to tx.

In Lange's de�nition, a string is accepted if there is a computation
path from the start con�guration to a �xed accepting con�gura-
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tion while according to the de�nition of Buntrock et al, a string
is accepted if there is a path from the start con�guration to some

accepting con�guration. It is easy to see that these two classes are
same.

Proposition 2.5. ReachUL = RUSPACE(log n).

Proof. It is clear that RUSPACE(log n) � ReachUL. To see
the other containtment, let L be a language in ReachUL witnessed
by a reach-unambiguous machine M . Consider the machine M 0

which on input x, simulates M on x. If M reaches an accepting
con�guration, M 0 moves to the canonical accepting con�guration.
ClearlyM 0 accepts x if and only ifM accepts x, and asM is reach-
unambiguous, M 0 is also reach-unambiguous. Moreover, since M
has exactly one accepting computation path on positive instances,
M 0 will also have exactly one path that leads to the canonical
accepting con�guration on such instances. �

We will use the name ReachUL to state results involving RUSPACE(log n)
from the literature. Lange (1997) proved that the graph reachabil-
ity problem Lru de�ned below is log-space many-one complete for
ReachUL.

Lru = fhG; s; ti j G is a directed graph, there is a path from

s to t, and G is reach-unambiguous with respect to sg:

Theorem 2.6 (Lange 1997). Lru is complete for ReachUL under
log-space many-one reductions.

The di�cult part in the completeness proof is to show that Lru

is in ReachUL. Lange designed a clever ReachUL algorithm that
checks whether a graph is reach-unambiguous with respect to the
start vertex. We will use this algorithm in the proof of our main
theorem.

2.2. Closure Properties of ReachUL. We will use the fact that
a log-space algorithm that queries a ReachUL language can be sim-
ulated in ReachUL. This is stated in Buntrock et al. (1991) without
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a proof. Given the fact that ReachUL is closed under complement,
this is easy to prove. For the sake of completeness, we give a proof
here.

Lemma 2.7 (Buntrock et al. 1991). LReachUL = ReachUL.

We will use the fact that ReachUL is closed under complement.

Proposition 2.8 (Buntrock et al. 1991). ReachUL is closed un-
der complement.

Proof. (of Lemma 2.7). The containment ReachUL � LReachUL

is immediate. Let L be a language in LReachUL decided by a log-
space oracle Turing machine M with access to a ReachUL oracle O.
Since ReachUL is closed under complement, we can assume with-
out loss of generality that O is accepted by a reach-unambiguous
Turing machine N (a Turing machine whose con�guration graph
on any input is reach-unambiguous) with three types of halting
con�gurations: `accept', `reject', and `?' so that for any input y
(1) if y 2 O then there is a unique computation path that leads to
an `accept' con�guration and all other computation paths lead to
a `?' con�guration and (2) if y 62 O then there is a unique com-
putation path that leads to a `reject' con�guration and all other
computation paths lead to a `?' con�guration. Moreover, since
O 2 ReachUL, on any input, there is at most one path from the
start con�guration to any other con�guration of N .
Consider the nondeterministic machine M 0 which on an input x,
simulatesM(x) until a query con�guration is reached with a query,
say y. At this pointM 0 will save the current con�guration ofM and
simulate N(y) until it halts. If N(y) accepts y, then M 0 continues
with the simulation of M with YES as the answer to the query y;
if N(y) rejects y, then M 0 continues with the simulation of M with
NO as the answer the query y; and if N(y) reaches a `?' halting
con�guration then, M 0 rejects the computation and halts. Finally
M 0 accepts x if and only if M accepts x.
It is straightforward to verify that M 0(x) accepts if and only if
M(x) accepts and GM 0;x is reach-unambiguous with respect to the
start con�guration. �
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Definition 2.9. A language L is in ReachFewL if L is accepted by
a nondeterministic log-space Turing machineM such that, for some
polynomial q and for any input x, GM;x is q(jxj)-reach-unambiguous
with respect to the start con�guration.

2.3. Converting Graphs with a Few Paths to Distance Iso-

lated Graphs.

Definition 2.10. Let G be a weighted graph on n vertices and
let s be a vertex of G. We say that G is distance isolated with
respect to s, if for every vertex v 2 V (G) and weight d there is at
most one path of weight d from s to v, where weight of a path is
the sum of the weights on its edges.

We use the well known hashing result due to Fredman, Koml�os and
Szemer�edi to convert a graph with polynomially many paths to a
distance isolated graph.

Theorem 2.11 (Fredman et al. 1984). For every constant c there
is a constant c0 so that for every set S of n-bit integers with jSj � nc

there is a c0 log n-bit prime number p so that for any x 6= y 2 S
x 6� y (mod p).

Lemma 2.12. Let G be a graph on n vertices and let s be a vertex
of G. Let E(G) = fe1; e2; : : : ; e`g be the set of edges of G. Let
q be a polynomial. If G is q(n)-reach-unambiguous with respect
to s, then there is a prime p � nk, for some constant k, such
that the weight function wp : E(G)! f1; : : : ; pg given by wp(ei) =
2i (mod p) de�nes a weighted graph Gwp

which is distance isolated
with respect to s.

Proof. Let q(n) � c1n
k1 for all n � 1. Also let w be the

edge weight function that assigns the weight 2i to the edge ei, for
i 2 [`]. Let Sv be the set of weights of all paths from s to v,
and S = [v2V (G)Sv. Then jSj � c1n

k1+1. By Theorem 2.11 there
is a c0 log n-bit prime p, for some constant c0, such that for any
x 6= y 2 S x 6� y (mod p). Then with respect to the prime p we
get the weight function wp, which de�nes the weighted graph Gwp

,
that is distance isolated with respect to s. �
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The graph Gwp
in Lemma 2.12 can be converted to an unweighted,

distance isolated graph by replacing an edge having weight ` by a
path of length `.

2.4. Converting Distance Isolated Graphs to Unambigu-

ous Graphs. Given a distance isolated graph, we can form a
reach-unambiguous graph by applying a standard layering trans-
formation.

Definition 2.13. Let G be a directed graph on n vertices. The
layered graph lay(G) induced by G is the graph on vertices V (G)�
f0; 1; : : : ; ng and for all edges (x; y) of G and i 2 f0; 1; : : : ; n� 1g,
the edge (x; i)! (y; i+ 1) is in lay(G).

Lemma 2.14. If G is an acyclic and distance isolated graph with
respect to a vertex s, then lay(G) is reach-unambiguous with re-
spect to (s; 0), and there is a path of length d from s to v in G if
and only if there is a path from (s; 0) to (v; d) in lay(G).

Proof. Since all edges in lay(G) pass between consecutive lay-
ers, paths of length d from s to v in G are in bijective correspon-
dence with paths from (s; 0) to (v; d) in lay(G). Since there exists
at most one path of each length from s to any vertex v in G, there
exists at most one path from (u; 0) to any other vertex (v; d) in
lay(G). �

3. ReachFewL = ReachUL

We have su�cient tools to prove Theorem 1.1.

Theorem 3.1. ReachFewL � ReachUL.

Proof. Let L be a language in ReachFewL. Then there is a
constant c and a nondeterministic log-space machine M deciding
L, so that for any input x, GM;x has at most jxjc paths from the
start con�guration to any other con�guration. Note that, without
loss of generality, we can assume that there is a single accepting
con�guration for a ReachFewL computation. Thus in GM;x, let s
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be the vertex corresponding to the start con�guration and t be the
vertex corresponding to the accepting con�guration. For determin-
ing membership of x in L, we need to decide whether there is a
path from s to t in GM;x.

Input: (G; s; t) such that G has at most nc paths from s to
any other vertex.

Output: If there is a path from s to t in G output True,
else output False.

foreach p 2 f1; : : : ; nc
0

g such that p is a prime do

De�ne wp(ei) = 2i (mod p);

Construct Gwp
;

Construct lay(Gwp
);

foreach d 2 f1; : : : ; jV (Gwp
)jg do

if hlay(Gwp
); (s; 0); (t; d)i 2 Lru then return True;

end

return False;

end

return False;

Algorithm 1: ReachFewSearch(G; s; t)

Consider the algorithm ReachFewSearch(G; s; t) given in Algorithm
1. This is a log-space algorithm that queries the ReachUL complete
language Lru de�ned in Section 2. We will argue that there is a
path from s to t in GM;x if and only if ReachFewSearch(GM;x; s; t)
returns True. This will imply that ReachFewL � LReachUL. Since
LReachUL equals ReachUL by Lemma 2.7, the theorem will follow.
For the rest of the discussion by G we mean GM;x. For constant c,
let c0 be the constant given by Theorem 2.11.
We say that a prime p is good if Gwp

is distance isolated. By
Lemma 2.12, there exists a good prime p 2 f1; : : : ; nc

0

g. For this
good prime, lay(Gwp

) is reach-unambiguous with respect to (s; 0)
by Lemma 2.14. Moreover, there is a path from s to t in G, if and
only if there is a d such that there is a path from (s; 0) to (t; d)
in this layered graph. So if there is a path from s to t in G, for
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this good prime hlay(Gwp
); (s; 0); (t; d)i 2 Lru and the algorithm

returns True. Note that for a prime p that is not good, lay(Gwp
)

will not be reach-unambiguous and hlay(Gwp
); (s; 0); (t; d)i 62 Lru

for any d.
�

Allender & Lange (1998) showed that ReachUL � DSPACE(log2 n= log log n)
by showing Lru 2 DSPACE(log2 n= log log n). It is not clear how to
directly extend their techniques to ReachFewL. However our main
result implies the same upper bound for the reachability problem
associated with ReachFewL computations.

Corollary 3.2. The s-t reachability problem over graphs with
a promise that there are at most polynomially many paths from s to
any other vertex can be solved in deterministic spaceO(log2 n= log log n).

3.1. Extension. Buntrock et al. (1993) investigated the class
ReachFewL using the notation NspaceAmbiguity(log n; nO(1)) which
is de�ned below.

Definition 3.3. For a space bound s and unambiguity parameter
a, a language L is said to be in the class NspaceAmbiguity(s(n); a(n))
if L is accepted by an s(n) space bounded nondeterministic Tur-
ing machine M , such that on any input x, GM;x is a(jxj)-reach-
unambiguous with respect to the start con�guration.

Buntrock et al. (1993) showed that NspaceAmbiguity(s(n); a(n)) �
USPACE(s(n) log a(n)) (hence NspaceAmbiguity(log n;O(1)) � UL).
This result was recently improved by Pavan et al. (2010) who
showed that NspaceAmbiguity(s(n); a(n)) � USPACE(s(n)+log a(n)).
Here we further improve this upper bound.

Definition 3.4. For a space bound s, a language L is said to
be in the class ReachUSPACE(s(n)) if L is accepted by an s(n)
space bounded nondeterministic Turing machine M , such that on
any input x, GM;x is reach-unambiguous with respect to the start
con�guration.

The proof of the following theorem is identical to the proof of
Theorem 3.1 except for the parameters.
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Theorem 3.5. NspaceAmbiguity(s(n); a(n)) � ReachUSPACE(s(n)+
log a(n)).

Proof. First using FKS-hashing with O(log a(n)) bit primes,
we can show that NspaceAmbiguity(s(n); a(n)) can be simulated in
DSPACE(s(n)+log a(n)) using Lru as an oracle (using Algorithm 1
on the con�guration graph of NspaceAmbiguity(s(n); a(n)) compu-
tation). Then, using identical arguments as in Lemma 2.7 (except
for the parameters), it follows that DSPACE(s(n)+log a(n))ReachUL �
ReachUSPACE(s(n) + log a(n)). �

Allender & Lange (1998) showed that ReachUSPACE(s(n)) �
DSPACE(log2 s(n)= log log s(n)). Combining this result with the
above upper bound, we get a class of graphs for which the reach-
ability problem can be solved in deterministic space bound which
is asymptotically better than Savitch's O(log2 n) bound.

Corollary 3.6. The s-t reachability problem in graphs where
the number of paths from the start vertex to any other vertex is
2o(logn

p
log logn), can be decided in DSPACE(o(log2 n)).

4. Discussion

Can we show that FewL = UL? Reinhardt & Allender (2000)
showed that the reachability problem for graphs where there is
a unique minimum length path from the source to any other vertex
can be solved in UL. Given the con�guration graph G of a FewL

computation, the hashing lemma implies that there exists a small
prime p so that in Gwp

all the paths from the start con�guration to
the accepting con�guration will be of distinct weights. This implies
that Gwp

have a unique minimum length path between this pair
of con�gurations. However, the UL algorithm mentioned above re-
quires that the input graph has a unique minimum length path
from the start vertex to any other vertex; not just the terminat-
ing vertex. Managing this gap appears to be a serious technical
di�culty for showing FewL=UL.
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