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Space complexity investigates the power and limitations of a computational model (e.g. a Turing

machine) which has a limited amount of workspace to perform its computation. Particularly inter-

esting is the case when the space is only logarithmic in the input size. Unambiguous computation

is a natural restriction of nondeterministic computation, where there is a unique accepting path

on a ‘Yes’ instance, and no accepting paths on a ‘No’ instance. In this dissertation we study the

power of unambiguous log-space computations (denoted as UL) and whether it is general enough

to contain all of nondeterministic log-space (denoted as NL). This leads us to the study of the graph

reachability problem, which is known to exactly capture the complexity of NL, and thus exhibiting

a UL algorithm for reachability is sufficient to show that NL = UL.

We prove that UL contains certain important restrictions of directed graph reachability. In

particular, we show that reachability in planar graphs and certain non-planar graphs are in UL. We

give a proof that planar reachability is in UL, by using a result from multi-variable calculus, known

as Green’s Theorem. From another viewpoint, we show that deciding reachability in graphs where

the number of paths from the start vertex to any other vertex is bounded by a polynomial, is in

UL (this result shows that the complexity class ReachFewL is in UL). We also study and prove an

upper bound on the UL hierarchy.

The NL versus UL question led us to another important problem in complexity theory - space

complexity of deciding if a graph has a perfect matching. We prove that perfect matching in

bipartite bounded genus graphs is in SPL (a class which is a generalization of UL and not known

to be comparable with NL). We also show that over bipartite planar graphs, the perfect matching

problem is in UL.



Embeddings algorithms for graphs on surfaces is well studied in the context of time complex-

ity. Here we give log-space algorithms that provide us certain useful embeddings of planar and

bounded genus graphs, on a corresponding surface.
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Chapter 1

Introduction

Computational complexity theory is the study of resource bounded computations. What are the

problems that can or cannot be solved by a given model of computation, using limited amount of

resources? Time, space, nondeterminism and randomness are some of the common resources that

we usually consider. Complexity theory has a wide range of applications in computer science and

else where, particularly in cryptography (designing efficient protocols that can withstand adver-

saries), algorithms (designing efficient algorithms), machine learning (studying the hardness of a

learning algorithm), mathematics (factoring integers), physics (quantum computation), economics

(finding Nash equilibria), etc. Despite several decades of research in this area, some of the most

fundamental questions still remain unsolved. In this dissertation, we investigate and make progress

on some questions related to space bounded computations.

Space complexity theory is the study of space bounded models of computations. What is the

power and limitations of a computational model with space as a resource? To formalize the frame-

work of our study, we bound the space of a computational model by a function of the input size.

Thus a function uniquely defines a class of problem that are solvable by a given model of com-

putation. Particularly interesting is the case when we focus on computational problems that are

decidable using only a logarithmic amount of space (or log-space as we shall often call it), in



2

the input size. Various models of computations like deterministic, nondeterministic, etc., can be

looked under the lens of log-space computations. We denote the class of problems decidable by a

deterministic (respectively nondeterministic) log-space bounded machine by L (respectively NL).

Nondeterminism is a generalization of deterministic computations but is nondeterministic compu-

tations any more powerful than deterministic computations, at least in the log-space domain? This

is one of the fundamental questions in space complexity that is unresolved to date. Savitch proved

an important result in this context by showing that nondeterministic log-space is in the determinis-

tic version of “quadratic log-space”, that is, NL ⊆ DSPACE(log2 n) (this result is popularly known

as Savitch’s Theorem) [Sav70].1 Unfortunately there has been no improvement on this problem in

its generality, in the last forty years!

Unlike time bounded computations where a majority of researchers believe that NP 6= P (the

nondeterministic and deterministic versions of polynomial time bounded computations respec-

tively), the case of space bounded is not the same. Savitch’s Theorem and the closure of NL under

complementation [Imm88, Sze88], are some evidence in support of this hypothesis. Also a fun-

damental difference between time and space bounded computations is that, time cannot be reused

whereas space can!

1.1 Can nondeterministic log-space computations be made

unambiguous?

An interesting class of problems that lie in between deterministic and nondeterministic computa-

tions is unambiguous nondeterminism. Intuitively, it is a restriction of nondeterminism where we

only allow exactly one accepting computation on an instance in the language (as opposed to at

least one accepting computation in the case of general nondeterminism), and no accepting paths
1DSPACE(f) is the class of problems decidable by a deterministic Turing machine whose space is bounded by

the function O(f(n)).
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on an instance outside the language. Thus in some sense it is a promise model, where the promise

that all instances must have at most one accepting path, must be fulfilled. We denote the class of

problems decidable by an unambiguous, nondeterministic, log-space bounded machine by UL. The

definition of unambiguous nondeterminism naturally raises the following question - is unambigu-

ous nondeterminism powerful enough to capture whole of general nondeterminism in the log-space

setting?

In the polynomial time setting introduced the class UP [Val76], the unambiguous version of

NP, which proved to be a very useful restriction to study, mainly because of its connection to

certain kind of one-way functions [GS88]. In the log-space setting, the class UL was first defined

and studied by [BJLR91] and [AJ93]. Since then, UL and related low-space unambiguous classes

have been of interest to researchers [BJLR91, AJ93, Lan97, AL98, RA00, ADR05]. This class is

particularly interesting because there is increasing evidence that the whole of nondeterministic log-

space might be contained in UL (this is in contrast with the polynomial-time setting where there

are some evidence that unambiguity is a true restriction to nondeterminism [Rac82, Ko85, GS88]).

Reinhardt and Allender showed that the non-uniform version of UL contains NL, that is NL ⊆

UL/poly [RA00]. Can this collapse be made uniform? That is, is it true that NL = UL?

The problem of deciding reachability in graphs (also known as the st-connectivity problem

where we are trying to decide if t is reachable from s) is fundamental in the study of complexity

theory. They capture the computational power of several complexity classes, in particular space

bounded complexity classes. The general reachability problem for directed graphs is complete

for NL and reachability problem in undirected graphs is complete for L [Ete97, Rei08]. Various

restricted versions of this problem characterize other low-level complexity classes. Reachability in

constant width grid graphs, constant width branching programs characterize the complexity classes

AC0 and NC1 respectively [BLMS98, Bar89]. Therefore reachability and its various restrictions,

become a natural candidate problem in the study of log-space nondeterminism, and exhibiting a UL

algorithm for directed reachability would immediately imply that NL = UL. In this dissertation we



4

make progress towards solving this problem and show that several natural restrictions of directed

reachability (e.g. planar reachability , reachability in graphs with polynomially number of paths,

etc) are in UL. We also show that certain restrictions of reachability are powerful enough to capture

all of NL.

The NL versus UL problem can be reduced to an instance of a more general problem, known

as the isolation problem [MVV87], which deserves attention in its own right. In Section 1.2 we

introduce this problem and its connection to certain complexity theoretic questions.

1.2 Isolation problem

Distinguishing a single solution with a certain property, out of a set of solutions, is a basic al-

gorithmic problem with many applications. Very often a computational problem has a “large”

solution set and “efficiently” extracting a particular solution out of the set can be a challenging

job. More formally, this is known as the isolation problem, and is defined as follows: given a set

U = {1, . . . , n} and a non-empty family of subsets of U , sayF , define an “efficiently” computable

function on U that assigns a polynomially bounded integer value to each element in U , such that

the minimum weight set in F with respect to the weight function, becomes unique. Our notion of

efficient computation would typically be computations that can be done in a logarithmic amount of

workspace in the input size. Such a computational restriction is sufficient because any logarithmic

space computation can only take polynomial amount of time since there are only polynomially

many configurations possible. Such a model is necessary because we are interested in looking at

space bounded computations. Also the question as to how the family of subsetsF is represented, is

very crucial. If F is explicitly given as an input then the problem becomes trivial and not very nat-

ural. Thus what we would assume is that F is provided to us implicitly via a succinct description,

that is polynomially bounded in the size of U .

The isolation problem was first explicitly defined and studied by Mulmuley, Vazirani and Vazi-
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rani [MVV87]. Unfortunately they were unable to provide a deterministic solution to the problem

(which in fact still eludes us) but they did come up with a randomized algorithm to solve the isola-

tion problem. In particular, they showed that if we assign weights to the elements in U from the set

of integers {1, . . . , |U |2}, uniformly at random, then with probability greater than 1 − 1/|U |, the

minimum weight set in F would be unique with respect to the weight function. This is also known

as the isolating lemma (see Chapter 2 for a formal statement of the theorem). Since its discovery,

the isolating lemma has found many applications, mostly in discovering new randomized and non-

uniform upper bounds, via isolating minimum weight solutions [MVV87, GW96, ARZ99, RA00].

Note that the isolating lemma does not use any information about the family F . In other

words, the result would hold irrespective of the choice of F . Unfortunately this is not possible

in the deterministic setting. By a simple counting argument it can be shown that given U , for all

weight functions w : U → nk , for any fixed k, there exists a collection F of subsets of U , having

at least two subsets with the same minimum weight with respect to the weight function w (see

[Agr07] for a proof). Also recently it was shown that if F is given in terms of certain circuits,

then derandomization of the isolating lemma will imply certain circuit lower bounds and hence is

a difficult task [AM08]. However, such negative results do not rule out the possibility of bypassing

a general solution to the isolating lemma altogether and directly prescribing efficient deterministic

weight functions for specific situations so that the minimum weight solution becomes unique.

Showing that NL = UL can be reduced to an instantiation of the isolation problem [RA00].

For a class of directed graphs G, isolating a directed path between every pair of vertices would

imply that reachability in G is in UL. In other words, if for any graph G in G, we can construct an

edge weight function such that the minimum weight path between every pair of vertices is unique

with respect to the weight function, then reachability in the class of graphs G is in UL. Such class

of graphs are also known as min-unique graphs.2 Now if we can show that for a class of graphs
2A class of graphs G is said to be min-unique if for every graph G ∈ G, there exists an edge weight function that is

uniformly computable in log-space, with respect to which between every pair of vertices, if there is a path, then there
is a unique minimum weight path.
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G, such that reachability in G is complete for NL and G is also min-unique with respect to some

efficiently computable weight function, then it would imply that NL = UL.

It is interesting to note that the motivation for Mulmuley, Vazirani and Vazirani in studying

the isolation problem was the problem of perfect matching [MVV87]. They gave an efficient,

randomized, parallel algorithm for constructing a maximum matching (by isolating a minimum

weight perfect matching) in general graphs. This led us to the study of the perfect matching

problem. In Section 1.3 we introduce the perfect matching problem and study it in the context of

space efficient algorithms.

1.3 Space complexity of perfect matching

The perfect matching problem asks the following question: Does a given undirected graph have a

perfect matching? This question and its variations (eg. constructing a perfect matching, checking

uniqueness of a perfect matching, etc.), are some of the most well-studied problems in theoretical

computer science. Edmonds gave a polynomial time algorithm to compute a matching of maximum

cardinality in a graph [Edm65]. This was known as the blossom algorithm and was one of the first

examples of a non-trivial algorithm, having polynomial runtime. Subsequently, Valiant showed that

counting the number of perfect matchings in a bipartite graph is #P-hard [Val79]. The question

of whether or not the perfect matching problem is efficiently parallelizable has yielded powerful

tools such as the isolating lemma [MVV87] that have found numerous applications elsewhere

in complexity theory and theoretical computer science in general (see [LP86] for an excellent

introduction to matching and related problems).

In the domain of parallel algorithms and space complexity, the complexity of perfect matching

is not very well understood. Whether perfect matching has an efficient parallel algorithm (in other

words, is perfect matching in the class NC) - is an important question in parallel complexity. Even

for the restricted case of planar graphs or bipartite graphs we do not know if this is true. For the
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class of logarithmic genus bipartite graphs though, it was shown that the perfect matching problem

is in NC [MV00]).

An important log-space counting complexity class is SPL, which is the class of problems solv-

able by an NL machine such that the difference in the number accepting and rejecting paths is 1 for

a ‘Yes’ instance and 0 for a ‘No’ instance. Equivalently, it is also the class of problems reducible

to the determinant with the promise that the determinant is either 0 or 1. SPL is a generalization

of log-space unambiguity in some sense. It can easily be shown that UL is contained in SPL (see

Chapter 2 for a proof of this claim).

Perfect matching is contained in the non-uniform version of SPL (that is SPL/poly) [ARZ99].

The position of SPL relative to some of the complexity classes that we have seen so far is as

follows: SPL is contained in NC but no relation is known between NL and SPL.

It was shown that, proving an SPL upper bound on the perfect matching problem, can be cast as

an instance of the isolation problem [ARZ99]. More specifically, for a class of undirected graphs

H, isolating a minimum weight perfect matching would imply that the perfect matching problem

in the class H is in SPL (again by assigning an edge weight function with respect to which the

minimum weight perfect matching is unique). They in fact prove that perfect matching in general

graphs is in SPL/poly by showing that a random weight function performs the required isolation.

Recently, for bipartite planar graphs this non-uniform bound was derandomized, thus proving that

perfect matching in bipartite planar graphs is in SPL [DKR10]. In this dissertation we extend the

SPL bound to bounded genus bipartite graphs.3

As described below, we solve a more general combinatorial problem and show that isolating

directed paths and perfect matchings, follows from solution of the problem. More specifically, we

show that for a class of bipartite directed graphs G, and for any graph G in G, if we can come up
3Note that in both the instances of the isolation problem that we consider (isolating a directed path and isolating a

perfect matching), the input is the graph and the structure that we want to isolate (directed path or perfect matching)
is only implicitly given.
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with a skew-symmetric,4 polynomially bounded weight function w such that for any simple cycle

C inG, w(C) 6= 0 then (i) w also isolates directed paths in G, and (ii) in log-space we can compute

a weight function w′ from w, such that w′ isolates perfect matchings in the class of underlying

undirected graphs of G.

We also exhibit the first nondeterministic log-space upper bound for the perfect matching prob-

lem in bipartite planar graphs. More generally, we show the stronger result that planar, bipartite

perfect matching is in unambiguous log-space.

1.4 Organization of the dissertation

In Chapter 2 we give some basic definitions and terminologies that we use in the rest of the disser-

tation. We also state certain earlier results that we use extensively.

In Chapter 3 we study the isolation problem in planar graphs [TV10]. No better space upper

bound was known for the reachability problem in directed planar graphs, other than NL. We obtain

a new upper bound on planar reachability (denoted as PLANARREACH) as stated below.

Theorem 1.4.1. PLANARREACH ∈ UL ∩ coUL.

Green’s theorem is a well-known result in multi-variable calculus with a wide range of appli-

cations. Here we show that via an application of Green’s theorem, one can settle the question of

isolation in planar graphs. In particular, we give a weight function with respect to which the class

of planar graphs become min-unique. Then, by applying the UL ∩ coUL algorithm for min-unique

graphs [RA00], Theorem 1.4.1 follows. Our isolation result also gave an alternate proof that per-

fect matching in bipartite planar graphs is in SPL (the bound was proven earlier in [DKR10]).

To prove the isolation result in this chapter, we assume that the graph is given as a straight

line embedding. However the proof of the isolation result also works when instead of a straight
4A weight function w is said to be skew-symmetric if for an edge (u, v), w(u, v) = −w(v, u) (if the edge (v, u) is

present).
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line embedding, we are provided with a piecewise straight line embedding (an embedding where

an edge consists of constantly many pieces of straight line segments). We also give a log-space

algorithm that outputs a piecewise straight line embedding of a given planar graph.

We also show an extension of our result to a certain class of non-planar graphs by reducing the

given instance to reachability question in a graph of smaller size and applying Savitch’s theorem

[Sav70].

Corollary 1.4.2. Let G be a class of directed graphs G = (V,E ∪ E ′) such that (V,E) is planar

and |E ′| ≤ O(2
√
logn) where n = |V |. Then st-connectivity for any graph in G can be decided in

UL ∩ coUL.

In Chapter 4, we show that similar isolation results can be shown for graphs on surfaces of

bounded genus [DKTV11]. We combine our techniques from Chapter 3 with concepts from alge-

braic topology to achieve this. We assume that the input graph is given to us as a combinatorial

embedding on a surface of bounded genus. From the combinatorial embedding, we give a log-

space implementation of the surface classification theorem [DH07, Bra21] to get an embedding

of the graph on a fundamental polygonal schema. We then prove an isolation result analogous to

Chapter 3, that gives us a log-space constructible weight function to isolate the minimum weight

perfect matching in bounded genus bipartite graphs and thereby an SPL algorithm for checking if

the graph has a perfect matching by derandomizing the SPL/poly algorithm of [ARZ99]. We state

our results formally in the following theorem.

Theorem 1.4.3. Let G be a bipartite bounded genus graph, given as a combinatorial embedding

on a surface of bounded genus. Then,

- deciding if G has a perfect matching is in SPL,

- constructing a perfect matching in G (if one exists) is in FLSPL (the functional version of

SPL), and
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- deciding if G has a unique perfect matching is in SPL.

From the isolating result that we prove in this chapter, we also obtain a direct proof of the

fact that reachability in bounded genus directed graphs is in UL ∩ coUL. Note that Kynčl and

Vyskočil had earlier shown that bounded genus reachability reduces to planar reachability [KV10].

Combining their result with Theorem 1.4.1 gives us an alternate proof of the same result.

The intuition as to why we are able to extend to bounded genus graphs, is due to the separate

treatment of surface separating and surface non-separating cycles in the graph. A planar graph

only has cycles of the former type but in a higher genus graph, we can have cycles of the latter type

also. We use the power of homology theory to give a combinatorial characterization of the latter

kind of cycles, that aids us in achieving the desired isolation.

In Chapter 5 we prove that certain non-trivial restrictions of directed reachability are hard for

nondeterministic log-space [BTV09, PTV10]. We define three classes of graphs based on certain

geometric properties as follows.

- ThreePage is the class of graphs G that can be embedded on a book with 3 pages such that,

all vertices of G lie along the spine of the book and the edges lie on exactly one of the three

pages without intersection, directed from top to bottom.

- A three-dimensional monotone grid graph is a directed graph whose vertices are [n]× [n]×

[n] with edges connecting a vertex to its immediate neighboring grid point in the positive

x, y or z direction. That is an edge is of the form ((i, j, k), (i + 1, j, k)) (east edge) or

((i, j, k), (i, j + 1, k)) (north edge) or ((i, j, k), (i, j, k + 1)) (inward edge), provided the

respective coordinates exist.

- Another graph theoretic notion that we study is geometric thickness. The geometric thick-

ness of a graph G is defined as the minimal number k such that we can assign planar point
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locations to the vertices of G, represent each edge as a line segment, and assign each edge to

one of the k transparencies so that no two lines cross in any one transparency.

We then prove the following hardness results about NL.

Theorem 1.4.4. Reachability in the following class of directed graphs is complete for NL: (i)

ThreePage, (ii) three-dimensional monotone grid graphs, and (iii) graphs with geometric thickness

2.

In this context it may be worthwhile to note that graphs with page number two, two dimensional

grid graphs and thickness one graphs are all subclasses of planar graphs, and thus reachability in

them are in UL.

In Chapter 6 we study the power and limitations of unambiguous log-space computations with

the bigger goal of showing if such computations capture the whole of NL [PTV10]. We also

study possible approaches to achieve this goal. ReachFewL is a subclass of NL characterized by

the question of reachability in directed graphs where the number of paths from s to any vertex is

bounded by a polynomial. ReachFewL was first defined and studied in [BJLR91]. In the following

theorem we prove that counting the number of paths in such graphs is in the functional version of

UL (that is, FUL).

Theorem 1.4.5. For any polynomial q(n), there is a nondeterministic log-space bounded Turing

machineM so that, for any graphG = (V,E) and two vertices s and t inG, if the number of paths

from s to any vertex is bounded by q(|V |), then M will output the number of paths from s to t on a

unique path in M (all other paths reject).

As an immediate corollary of Theorem 1.4.5 we observe that ReachFewL is in UL. We also

show that the notion of min-uniqueness is not only sufficient but also necessary to show that NL =

UL.
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Theorem 1.4.6. NL = UL if and only if there is a polynomially bounded UL-computable weight

function f so that for any directed acyclic graphs G, the weighted graph f(G) is min-unique with

respect to s.

OptL[log n] is the class of functions whose values are the minimum over all outputs of an

NL-transducer and the size of the outputs are bounded by O(log n). This class was first defined

and studied by Àlvarez and Jenner who showed that OptL[log n] captures the complexity of certain

natural optimization problems [AJ93]. We consider the unambiguous version of OptL[log n], which

we call UOptL[log n] where the minimum value is output along a unique computation path, and

show that NL = UL if and only if OptL[log n] = UOptL[log n]. We show two upper bounds on

UOptL[log n] in reference to the complexity classes SPL and UL.

Theorem 1.4.7. 1. UOptL[log n] ⊆ FLSPL[log n].

2. UOptL[log n] ⊆ FLpromiseUL.

Unlike NL, UL is not closed under complementation and therefore it makes sense to study

the UL hierarchy. The UL hierarchy is defined as follows: ULH1 = UL, ULHi+1 = ULULHi and

ULH =
⋃
i ULHi. We show that the UL hierarchy is contained in LpromiseUL. We also study the

UOptL[log n] hierarchy and show that it collapses to UOptL[log n]. We formally state the results in

the following theorem.

Theorem 1.4.8. 1. ULH ⊆ LpromiseUL.

2. UOptL[log n]UOptL[log n] ≤ UOptL[log n] under metric reductions.

In Chapter 7 we revisit the problem of perfect matching in bipartite, planar graphs. Looking at

the problem from a different point of view, we give a UL upper bound on the problem [DKT10].

This is a significant improvement over the known bound of SPL. It is interesting to note here that

NL and SPL are incomparable classes and it was not even known whether planar bipartite perfect
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matching is in NL. Our result settles this question positively. Our result is based on two existing

techniques - (i) building upon the algorithm of Miller and Naor [MN89] and proving certain new

upper bounds on its space complexity, and (ii) suitably modifying the UL algorithm of Reinhardt

and Allender [RA00] to suit our needs. We give the following space bound on perfect matchings

in planar bipartite graphs.

Theorem 1.4.9. Let G be a planar bipartite graph. Deciding if G has a perfect matching and

constructing one if it exists, is in UL.

We also look at another important problem in this chapter - the even path problem.5 For general

graphs this problem is NP-complete [LP83], for planar graph the problem is in P [Ned99] and in

acyclic graphs the problem is NL-complete. Moreover, a generalization of this problem, known as

the red-blue path problem,6 is NL-hard in planar directed acyclic graphs (we write them as DAG

in short) [Kul09]. We show the following result.

Theorem 1.4.10. The even path problem for planar DAGs is in UL.

To prove Theorem 1.4.10 we use a combination of the two known isolating techniques due to

[BTV09] and [Hoa10], in a non-trivial manner. This is the first time the two known deterministic

isolation techniques have been combined to obtain a new upper bound. We feel that this approach

is very promising and might help in extending our isolation results to more general cases.

Finally in Chapter 8 we give an overview of the progress that we have made so far and what

questions still remain unsolved. We also suggest possible techniques and approaches to tackle the

open questions.

The results that we show in this dissertation have been published or are in the process of being

published in various conferences and journals. They are proven together with Chris Bourke, Samir
5Given a directed graph G and two vertices s and t in G, does G have a simple even length path from s to t.
6Given a directed graph G whose edges are colored either red or blue, and two vertices s and t in G, does G have

a simple path from s to t that alternates between red and blue edges.
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Datta, Raghav Kulkarni, Aduri Pavan and N. V. Vinodchandran. In particular, our results in Chapter

3 are from [BTV09, TV10], in Chapter 4 are from [DKTV11], in Chapter 5 are from [PTV10,

BTV09], in Chapter 6 are from [PTV10], and in Chapter 7 are from [DKT10].



15

Chapter 2

Preliminaries

In this chapter we mention the basic definitions and earlier results that we use in this dissertation.

In Section 2.1 we define certain graph-theoretic notions and problems. In Section 2.2 we define

complexity theory classes and conventions that are used in the rest of the chapters. In Section 2.3

we state certain earlier results that we use later.

2.1 Graph theory

Definition 2.1.1. (Planar graphs)

- A graph G is said to be planar if G can be drawn on the plane such that no two of its edges

intersect at an intermediate point. Such a drawing is also known as a planar embedding.

- A plane graph is a planar graph G, together with an embedding of G on the plane.

- A combinatorial embedding φ is a cyclic ordering of the edges around each vertex. More

formally, for a directed graph G,1 and an edge (u, v), φ(u, v) = (u,w) where (u,w) is the

next outgoing edge from u in a cyclic ordering (say anti-clockwise) of the edges around u.

1For an undirected graph, we can replace every edge {u, v} with the directed edges (u, v) and (v, u).
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Definition 2.1.2. (Dual Graphs) Let G = (V,E) be a directed plane graph and let F be the set of

faces of G. Then the dual of G is the graph G∗ = (F,E∗), where for every edge e = (u, v) ∈ E

the corresponding dual edge e∗ = (u∗, v∗) ∈ E∗ where u∗ and v∗ are the faces of G to the east and

west of the edge (u, v), if we assume (u, v) to be directed from south to north.2

Note that the dual graph can have self-loops and multiple edges.

Definition 2.1.3. (Grid Graphs) A graph G = (V,E) is said to be a grid graph if V = [n] × [n]

and E ⊆ {((i1, j1), (i2, j2)) | (i1, j1), (i2, j2) ∈ V and |i1 − i2|+ |j1 − j2| = 1}.

Definition 2.1.4. (Matching) Given an undirected graph G = (V,E), a matching M is a subset of

E such that no two edges in M have a vertex in common. A maximum matching is a matching of

maximum cardinality. M is said to be a perfect matching if every vertex is an endpoint of some

edge in M .

Definition 2.1.5. (Graph Reachability) Graph Reachability is a language consisting of the in-

stances (G, s, t), such that G is a directed graph having two vertices s and t, and there exists a

path from s to t in G. Restriction of graph reachability to cases where we study a smaller class of

graphs are also well studied. Some of the important restrictions are planarity, bounded genus, etc.

For other general definitions on graph theory, please refer to a standard graph theory text (say

[Die10]).

2.2 Complexity theory

Let [n] denote the set {1, 2 . . . , n}. A language L is a subset of {0, 1}∗. For a Turing machine M

and a string x, we denote the computation of M on x as M(x). A Turing machine M is said to

decide a language L, if for every x ∈ {0, 1}∗, M(x) accepts if x is in L and M(x) rejects if x is
2The dual of an undirected graph is defined similarly such that the dual edge is also undirected.



17

not in L. In this dissertation we shall assume that the Turing machines we consider, do not repeat

any configuration. In other words, the configuration graph of a machine on an input, is acyclic.

Definition 2.2.1. (Oracle machines and classes)

- Let A ⊆ {0, 1}∗. Then an oracle Turing machine M is a Turing machine with a query

tape and special states q?, qY and qN , such that M runs as a usual Turing machine with an

oracle access to A. That is when M enters state q?, it determines whether the string on the

query tape, y is contained in A or not, and based on the answer it moves to state qY or qN

respectively.

- Let C be a complexity class decided by a Turing machine M and let A be a language. Then

CA is the class of solvable by an oracle Turing machine M ′ which is similar to M but with

an oracle access to A.

- Let C and D be two complexity classes. Then CD =
⋃
A∈D CA.

Definition 2.2.2. (Space Complexity Classes) Let L be a language.

- L is said to be in DSPACE(f), if there is a deterministic Turing machine M deciding L and

on every input x ∈ {0, 1}∗, M(x) uses at most O(f(|x|)) amount of workspace.

- L is said to be in NSPACE(f), if there is a nondeterministic Turing machine M deciding L

and on every input x ∈ {0, 1}∗, M(x) uses at most O(f(|x|)) amount of workspace.

Definition 2.2.3. (Log-space Complexity Classes) Let L be a language.

- L is said to be in deterministic log-space (L) if there is a deterministic log-space bounded

Turing machine deciding L. Alternatively, L = DSPACE(log n).

- L is said to be in nondeterministic log-space (NL) if there is a non-deterministic log-space

bounded Turing machine deciding L. Alternatively, NL = NSPACE(log n).
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- L is said to be in unambiguous nondeterministic log-space (UL) if there is a nondetermin-

istic log-space bounded Turing machine M , such that for every x in L, M(x) has a unique

accepting path, and for every x not in L, M(x) has no accepting path.

We also study certain languages based on the number of accepting and rejecting paths of a NL

machine. For a nondeterministic Turing machine M , let accM(x) and rejM(x) denote the number

of accepting computations and the number of rejecting computations respectively on an input x.

Denote gapM(x) = accM(x)− rejM(x).

Definition 2.2.4. (The class SPL)

- A language L is in SPL if there exists a log-space bounded nondeterministic machine M so

that for all inputs x, gapM(x) ∈ {0, 1} and x ∈ L if and only if gapM(x) = 1.

- FLSPL is the class of functions computed by a log-space machine with an SPL oracle.

Alternatively, we can define SPL as the class of problems log-space reducible to the problem

of checking whether the determinant of a matrix is 0 or not under the promise that the determinant

is either 0 or 1. In Proposition 2.2.1 we show that UL is contained in SPL.

Proposition 2.2.1. UL ⊆ SPL.

Proof. Let L be a language decided by a UL machine M . We construct a nondeterministic log-

space machine N based on M as follows: whenever M rejects, N non-deterministically either

accepts or rejects. Note that for each rejecting path of M , N has exactly one accepting and one

rejecting path.

For an instance x ∈ L, M(x) has exactly one accepting path and the rest of the paths re-

ject. Therefore gapN(x) = 1. Similarly for x /∈ L, M(x) has no accepting path and therefore

gapN(x) = 0. Thus N is an SPL machine and L ∈ SPL as required.
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We next define complexity classes defined in terms of circuit families instead of Turing ma-

chines. Note that unlike a Turing machine, a circuit can only take as input, a string of a fixed

length. Therefore we consider a family of circuits (that is a collection of circuits such that there

is exactly one circuit for each natural number) to define a language. A circuit family {Cn}n∈N

is said to be uniform, if there is a log-space machine, which when provided the input 1n, outputs

Cn. Otherwise the family of circuits is said to be non-uniform. The fan-in of a gate in a circuit is

defined as the number of inputs to that gate. The fan-in of a circuit is the maximum fan-in of the

circuit, taken over all gates.

Next we define the complexity class NC, which is the class of problems that have efficient

parallel algorithms.3

Definition 2.2.5. (The complexity class NC)

- NCi is the class of decision problems solvable by a uniform family of Boolean circuits,

having polynomial size, depth O(logi(n)), and fan-in 2.

- NC =
⋃
i NC

i.

Definition 2.2.6. (Non-uniform Classes) Let C be a complexity class. Then a language A is said

to be in C/poly (the non-uniform version of C), if there is a function f : N → N (such that

f(n) is bounded by a polynomial in n) and a language B ∈ C, such that x ∈ A if and only if

(x, f(|x|)) ∈ B.

Definition 2.2.7. (Transducer)

- A Turing machine M is said to be a log-space transducer (or an L-transducer) if M is a

log-space bounded, deterministic machine, with a write-only, one-way output tape and M

outputs a string when it reaches an accept state.
3NC stands for Nick’s class, named in honor of Nick Pippenger.
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- A Turing machine M is said to be an NL-transducer if M is a log-space bounded, nonde-

terministic machine, with a write-only, one-way output tape and M outputs a string when

it reaches an accept state. Note that along different computation paths, M might output a

different string.

Definition 2.2.8. (Log-space Functional Classes) Let f : {0, 1}∗ −→ {0, 1}∗ be a function. Then,

- f is said to be in FL if there exists an L-transducer M , such that for any x ∈ {0, 1}∗, M(x)

outputs f(x).

- FNL is the class of functions computed by an FL transducer with an oracle access to NL.

Definition 2.2.9. (Log-space reduction) A language A is said to be log-space reducible to another

language B if there is a log-space bounded transducer L such that for string x ∈ {0, 1}∗, x is in A

if and only if the output of L(x) is in B.

In this dissertation all reductions considered are log-space reductions, unless otherwise speci-

fied.

Definition 2.2.10. (Complete problem) A language L is said to be hard for a complexity class C

(denoted as C-hard), if for every language A ∈ C, A reduces to L. A language L is said to be

complete for a complexity class C (denoted as C-complete), if L is C-hard and L ∈ C.

For definitions of other complexity classes refer to any standard textbooks such as [AB09,

Vol99].

Definition 2.2.11. (Matching Problems) We define the following computational problems related

to matching:

- PM-DECISION: Given a graph G, checking if G has a perfect matching.

- PM-CONSTRUCT: Given a graph G, constructing a perfect matching, if one exists.
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- PM-UNIQUE: Given a graph G, checking if G has a unique perfect matching.

- MIN-WT-PM: Given a graph G together with edge-weights w : E(G) → Z such that

|w(e)| ≤ nO(1), and an integer k, decide if G contains a perfect matching of weight at most

k.

- MAX-MATCH: Given a graph G and an integer k, decide if G has a matching of cardinality

at least k.

Definition 2.2.12. A min-unique graph is a directed graph with positive weights associated with

each edge where for every pair of vertices u, v, if there is a path from u to v, then there is a unique

minimum weight path from u to v. Here, the weight of a path is the sum of the weights on its

edges.

Reinhardt and Allender actually define min-uniqueness for unweighted graphs [RA00], but

these two definitions are essentially same in our context as one can replace an edge e with positive

integer weight w(e), with a path of length w(e). For completeness, we present a somewhat shorter

version of the proof of [RA00] in Section 2.3.1. This proof uses a clever extension of the inductive

counting techniques of [Imm88] and [Sze88].

2.3 Earlier results

In this section, we state some earlier results that we use and often refer to in this dissertation.

Theorem 2.3.1 ([Rei08]). Undirected graph reachability is in L.

Theorem 2.3.2 ([AM04]). Given a graph G (say as an adjacency matrix), checking if G is a

planar graph and if it is, giving a planar combinatorial embedding of G, reduces to the problem

of deciding reachability in undirected graphs.
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Now, combining Theorem 2.3.1 and Theorem 2.3.2 we get that, deciding if a graph is planar

and giving a combinatorial embedding of a planar graph is in L.

Theorem 2.3.3 ([MVV87]). Let U = {x1, . . . , xn} be a set and let F be a non-empty family of

subsets of U . Let w : U −→ [n2] be a weight function on S. Then,

Pr
w

[there exists a unique minimum weight set in F ] ≥ 1

n
.

Theorem 2.3.3 is also popularly known as the isolating lemma.

Theorem 2.3.4 ([FKS84]). For every constant c there is a constant c′ such that for every set S of

n-bit integers with |S| ≤ nc the following holds: There is a c′ log n-bit prime number p so that for

any x 6= y ∈ S we have x 6≡ y (mod p).

2.3.1 Reachability in min-unique graphs is in unambiguous log-space

In this section we give a slight variant of the proof of the UL membership algorithm for min-unique

graphs, shown by Reinhardt and Allender [RA00]. We shall make use of this technique to show

that various restrictions of graph reachability are in UL ∩ coUL.

Theorem 2.3.5 ([RA00]). Let G be a class of graphs and let G = (V,E) ∈ G. If there is a

polynomially-bounded log-space computable function f that on input G outputs a weighted graph

f(G) so that

1. f(G) is min-unique and

2. G has an st-path if and only if f(G) has an st-path.

then the st-connectivity problem for G is in UL ∩ coUL.

Proof. LetG be a directed graph with a min-unique weight function w on edges. We first construct

an unweighted graph G′ from G by replacing every edge e in G with a path of length w(e). It is
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easy to see that st-connectivity is preserved. That is, there is an st-path in G if and only if there is

one in G′. Since G is min-unique, it is straightforward to argue that the shortest path between any

two vertices in G′ is unique.

Let ck and Σk denote the number of vertices which are at a distance at most k from s and the

sum of the lengths of the shortest path to each of them, respectively. Let d(v) denote the length of

the shortest path from s to v. If no such path exists, then let d(v) = |V |+ 1. We have,

Σk =
∑
v∈V
d(v)≤k

d(v) .

We first give an unambiguous routine (Algorithm 1) to evaluate the predicate “d(v) ≤ k” when

given the values of ck and Σk. The algorithm will output the correct value of the predicate

(true/false) on a unique path and outputs ? on rest of the paths.

We argue that Algorithm 1 is unambiguous.

1. If Algorithm 1 incorrectly guesses that d(x) > k for some vertex x then count < ck and

so it returns ? in line 18. Thus consider the computation paths that correctly guess the set

{x | d(x) ≤ k}.

2. If at any point the algorithm incorrectly guesses the length l of the shortest path to x, then

one of the following two cases occur.

a) If d(x) > l then no path s to x would be found and the algorithm returns ? in line 11.

b) If d(x) < l then the variable sum would be incremented by a value greater than d(x)

and thus sum would be greater than Σk causing the algorithm to return ? in line 18.

Thus there will remain only one computations path where all the guesses are correct and the

algorithm will output the correct value of the predicate on this unique path. Finally, we note that

Algorithm 1 is easily seen to be log-space computable.
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Input: (G, v, k, ck,Σk)

Output: true if d(v) ≤ k else false
1 Initialize count← 0; sum← 0; path.to.v ← false ;
2 foreach x ∈ V do
3 Nondeterministically guess if d(x) ≤ k ;
4 if guess is Yes then
5 Guess a path of length l ≤ k from s to x ;
6 if guess is correct then
7 Set count← count+ 1 ;
8 Set sum← sum+ l ;
9 if x = v then set path.to.v ← true ;

10 else
11 return ?

12 end
13 end
14 end
15 if count = ck and sum = Σk then
16 return path.to.v ;
17 else
18 return ?;
19 end

Algorithm 1: Determining whether d(v) ≤ k or not.

Next we describe an unambiguous procedure (Algorithm 2) that computes ck and Σk given

ck−1 and Σk−1. Algorithm 2 uses Algorithm 1 as subroutine. Other than calls to Algorithm 1, this

routine is deterministic, and so it follows that Algorithm 2 is also unambiguous.

We will argue that Algorithm 2 computes ck and Σk. The subgraph consisting only of s (d(x) ≤

0) is trivially min-unique and c0 = 1 and Σ0 = 0. Inductively, it is easy to see that

ck = ck−1 +
∣∣{v | d(v) = k}

∣∣
Σk = Σk−1 + k

∣∣{v | d(v) = k}
∣∣

In addition, d(v) = k if and only if there exists (x, v) ∈ E such that d(x) ≤ k − 1 and
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¬(d(v) ≤ k − 1). Both of these predicates can be computed using Algorithm 1. Combining these

facts we see that Algorithm 2 computes ck and Σk given ck−1 and Σk−1.

Input: (G, k, ck−1,Σk−1)

Output: ck,Σk

1 Initialize ck ← ck−1 and Σk ← Σk−1 ;
2 foreach v ∈ V do
3 if ¬(d(v) ≤ k − 1) then
4 foreach x such that (x, v) ∈ E do
5 if d(x) ≤ k − 1 then
6 Set ck ← ck + 1;
7 Set Σk ← Σk + k ;

8 end
9 end

10 end
11 end
12 return ck and Σk;

Algorithm 2: Computing ck and Σk.

As a final step, we give the main routine that invokes Algorithm 2 to check for st connectivity

in a min-unique graph. Since there is an st-path if and only if d(t) ≤ n, it suffices to compute

cn and Σn and invoke Algorithm 1 on (G, t, n, cn,Σn). This procedure is presented as Algorithm

3. To ensure that the algorithm runs in log-space, we do not store all intermediate values for ck,

Σk. Instead, only keep the most recently computed values and reuse space. As with Algorithm

2, this procedure is deterministic and so the entire routine is unambiguous. Thus, reachability in

min-unique graphs can be decided in UL ∩ coUL.
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Input: A directed graph G.
Output: true if there is a path from s to t, false otherwise.

1 Initialize c0 ← 1,Σ0 ← 0, k ← 0;
2 for k = 1, . . . , n do
3 Compute ck and Σk by invoking Algorithm 2 on (G, k, ck−1,Σk−1);
4 end
5 Invoke Algorithm 1 on (G, t, n, cn,Σn) and return its value ;

Algorithm 3: Determining if there exists a path from s to t in G.
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Chapter 3

Green’s Theorem and Isolation in Planar

Graphs

In this chapter we study the problem of isolating directed paths and perfect matchings in planar

graphs. We give an introduction to the problem of isolation and its applications in Section 3.1.

In the same section we also introduce Green’s Theorem, which is an important theorem in multi-

variable calculus. In Section 3.2 we define and discuss the log-space computable weight function

that achieves the desired isolation. In Section 3.3 we give a reduction from isolating a path to

isolating a perfect matching. In Section 3.4 we give a piecewise straight line embedding of a planar

graph. In Section 3.5 we show that our result implies certain upper bounds on graph reachability

over planar and non-planar graphs.

3.1 Introduction

Green’s Theorem is a fundamental result in multi-variable calculus due to 19th century British

mathematician George Green. Here we give an application of Green’s Theorem to a combinatorial

problem, namely the isolation problems in planar graphs. As a consequence we get improved space
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upper bounds on planar restrictions of reachability and perfect matching problems. We also show

an extension of our results to a class of non-planar graphs.

Green’s theorem, stated below, relates a certain line integral over a closed curve on the plane

to a related double integral over the region enclosed by this curve.

Theorem 3.1.1 (Green’s Theorem). Let C be a closed, piecewise smooth, simple curve on the

plane which is oriented counterclockwise. Let RC be the region bounded by C. Let P and Q be

functions of (x, y) defined on a region containing RC and having continuous partial derivatives in

the region. Then ∮
C

(P dx+Qdy) =

∫∫
RC

(
∂Q

∂x
− ∂P

∂y

)
dA.

This fundamental theorem and its generalizations (such as Stokes’ Theorem) have deeply influ-

enced the development of several areas of physics and mathematics. Strikingly, Green’s Theorem

also has a very immediate and elegant practical application in calculating the area of an arbitrary

two-dimensional shape. The device known as planimeter, used to calculate the area of an arbitrary

shape (such as a region in a map), is based on the following instantiation of Green’s Theorem,

which we also use in this chapter. If we substitute Q(x, y) = x and P (x, y) = 0 in Green’s

Theorem we get the following theorem.

Theorem 3.1.2 (Area by line integrals). Let C be a closed, piecewise smooth, simple curve on the

plane which is oriented counterclockwise. Let RC be the region bounded by C. Then,

Area(RC) =

∮
C

x dy

Refer to any standard text books on calculus (such as [Ste09]) to know more about Green’s and

other related theorems.

Recall the isolating lemma from Chapter 2. Recently simple log-space computable weight

functions were prescribed that isolated directed paths and perfect matchings over grid graphs to
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yield new deterministic upper bounds [BTV09, DKR10]. Note that grid graphs are a restricted

class of planar graphs where the graph completely lies on the two dimensional grid. It was not

clear how to extend these weight functions to planar graphs. Here we settle this question.

Our results

Given a directed graph G with a planar embedding, we prescribe a skew-symmetric, log-space

computable, polynomially bounded weight function w with the property that, with respect to w,

the weight of any simple cycle in G is non-zero. We then use arguments identical to that in

[BTV09] to show that such weight functions isolate directed paths - that is, with respect to such

weight functions, between any pair of nodes if there is a path, then there is a unique minimum

weight path. We also give an efficient construction of a weight function for the class of undirected

bipartite planar graphs (based on the earlier weight function), which isolates a perfect matching in

such graphs. Our weight function is based on the line integral on the right hand side of Theorem

3.1.2.

The weighting scheme that we prescribe works for any “nice” embedding of the graph on the

plane. Straight line embedding is such an embedding for planar graphs.

Definition 3.1.1. (Straight line embedding) A straight line embedding of a planar graph G is an

embedding where each vertex v in G, is given as a point, (xv, yv) on the coordinate axes, and an

edge (u, v) is a line between points (xu, yu) and (xv, yv) so that no two lines intersect other except

at the endpoints. Moreover, we will assume that the coordinates are integer points with values

bounded by some polynomial in n.

Existence of such embeddings were known earlier [Fár48, dFPP90, Sch90]. For ease of pre-

sentation we will assume that the graph is presented as a straight line embedding.

Typically for algorithmic purposes planar graphs are presented in terms of a combinatorial

embedding. Time efficient algorithms are known that can compute a straight line embedding of a
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planar graph [dFPP90, Sch90] from a combinatorial embedding. Unfortunately, these algorithms

require linear space and at present we do not know how to get a space efficient implementation of

them. In Section 3.4 we give a log-space algorithm that gives a piecewise straight line embedding

of the given planar graph from a combinatorial embedding. This is the first log-space construction

known to us, of a piecewise straight line embedding of a given planar graph and might be of

independent interest. It will be very clear how the weight function for a straight line embedding

can be extended to a piecewise straight line embedding also.

We then show that as a consequence of our isolation result, it follows that (i) deciding reacha-

bility in directed planar graphs is in unambiguous log-space [BTV09], and (ii) deciding whether a

bipartite planar graph has a perfect matching can be decided in SPL [DKR10]. It is known that the

problem of reachability and bipartite matching over planar graphs reduce to their counter parts in

grid graphs [ABC+09, DKR10] and hence the weight functions known for grid graphs suffice to

derive upper bounds for planar versions of these problems. However, we feel that the application

of Green’s Theorem to the isolation problem gives it a new dimension and might yield potential

strategies to solve the more general cases.

3.2 The weight function

Let G = (V,E) be a graph with a straight line embedding. Let e = (u, v) be a directed edge

directed from u to v where u is identified with the point (xu, yu) and v is identified with (xv, yv).

For such a directed edge, define a weight function w as follows (if e is piecewise straight, we

calculate the integral over each piece and sum them up):

w(e) = 2×
∮
e

x dy = (yv − yu)(xv + xu)

In order to calculate the second equality, we can use the parametric equation of the line segment

which is given by x(t) = (xv−xu)t+xu and y(t) = (yv−yu)t+yu where t ∈ [0, 1]. Notice that if
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the coordinates of the vertices are polynomially bounded, this weight function is also polynomially

bounded. For any cycle C in G, weight of C, w(C) is defined as the sum of the weights of the

edges in C.

An important property of this weight function is that it is skew-symmetric, that is, w(u, v) =

−w(v, u). We use this skew-symmetry property in our proofs. We will first show the following

lemma which is crucial in proving that this weight function has the required isolation property.

Lemma 3.2.1. Let G be a directed planar graph, given as a straight line embedding on the plane

and let C be any directed simple cycle in G. Let RC be the region enclosed by C. Then in log-

space we can construct a polynomially bounded, skew-symmetric weight function w such that,

|w(C)| = 2× Area(Rc). In particular, w(C) is non-zero.

Proof. Let w be the weight function defined above. Note that by definition, w is skew symmetric

and polynomially bounded. Let C = (e1, e2, . . . , el) be a directed cycle oriented counterclockwise.

Then we have

w(C) =
∑
i

w(ei)

= 2×
∑
i

∮
ei

x dy

= 2×
∮
C

x dy

= 2× Area(RC)

The last equality follows from Theorem 3.1.2. If C is oriented clockwise, we get that w(C) =

−2× Area(RC). Hence the lemma.
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3.3 Isolating paths and matchings in planar graphs

In this section we show how to isolate a directed path in a planar graph and a perfect matching in

a bipartite planar graph, as a consequence of Lemma 3.2.1.

Theorem 3.3.1. Let G be a planar directed graph with a straight line embedding. Then in log-

space we can construct a weight function w, such that, for every pair of nodes u and v, if there is

a directed path from u to v, then there is a unique path from u to v of minimum weight.

Proof. Let w be the weight function from Lemma 3.2.1. Suppose there are u, v so that there are

two u to v paths P1 and P2 of minimum weight. We will assume that the paths do not intersect on

vertices other than the end points (otherwise we can find two vertices u′ and v′ along these paths

that satisfies this property using a standard cut-and-paste argument and use these vertices instead).

We have w(P1) = w(P2). Now consider the graph G′ which is same as G except that the path P2

is reversed so that the set of edges (P1, P
r
2 ) becomes a simple cycle in G′ (P r

2 denotes the reversed

path). Let C denote this cycle. Then w(C) = w(P1) +w(P r
2 ) = w(P1)−w(P2) = 0. The second

equality holds because of the skew-symmetry of the weight function. This contradicts the fact that

weight of a simple cycle is not equal to zero by Lemma 3.2.1.

Now we will consider isolation of perfect matchings in bipartite planar graphs.

Theorem 3.3.2. LetG be a planar undirected bipartite graph. There exists a log-space computable

weight function w′, such that, if there is a perfect matching in G, then the minimum weight perfect

matching in G is unique.

Proof. First we define the log-space computable weight function w′. Since for matching we have

undirected graphs, we need to give directions to the edges in order to assign weights. First we

compute a bipartition ofG. This can be achieved in log-space by Reingold’s reachability algorithm

(say using a universal exploration sequence) for undirected graphs [Rei08]. Thus given a vertex u,
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we can decide in log-space whether u ∈ L or u ∈ R, where (L,R) is a bipartition of G. For any

undirected edge {u, v} so that u ∈ L and v ∈ R, we first assign direction from u to v. Thus in

the corresponding directed graph, denoted by ~G, all the edges go from L to R. Then weight of an

undirected edge e is w′(e) = (yv − yu)(xv + xu) with respect to the above-mentioned direction.

Let w′ be the weight function defined above. Suppose the theorem is not true and let M1 and

M2 be two matchings so that w′(M1) = w′(M2). Consider M1 ⊕M2, the symmetric difference

of M1 and M1. This is nonempty and is a collection of simple alternating (between M1 and M2)

cycles. Let C be one of the cycles. Let C1 = C ∩M1 and C2 = C ∩M2. Then we claim that

w′(C1) = w′(C2). Suppose w′(C1) < w′(C2) then (M2 \ C2) ∪ C1 will be a matching of weight

smaller than that of M2. Let ~C1 and ~C2 be the corresponding set of directed edges. Now consider

a directed planar graph ~G′ which is same as ~G except that the directions of all the edges in C2 is

reversed. Thus edges of ~C1, ~C2

r
form a directed cycle ~C in ~G′. But w(~C) = w( ~C1) + w( ~C2

r
) =

w( ~C1)−w( ~C2) = 0. This contradicts the fact that weight of a simple cycle is not equal to zero by

Lemma 3.2.1.

3.3.1 A sufficient condition for isolating bipartite matching

Note that the above isolation theorems follow, using simple arguments, from a weight function w

for directed graphs with the property that weight of any directed cycle is non-zero with respect

to w. We state a general result that captures the essentials of the above argument for bipartite

matching. A similar theorem holds for isolating directed paths also.

Definition 3.3.1. Given an undirected graph G, let
←→
G be the directed graph formed by replacing

every undirected edge {u, v} in G, with the directed edges (u, v) and (v, u). For a class of undi-

rected graphs G, let
←→
G be the class of directed graphs

←→
G , such that the undirected graph G is in

G.
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Theorem 3.3.3. Let G be a class of undirected bipartite graphs and let w be a polynomially

bounded skew-symmetric, edge weight function defined for every graph
←→
G ∈

←→
G such that for

any cycle C in
←→
G , w(C) 6= 0. Then given a graph G ∈ G, we can construct a weight function w′

in log-space, such that the minimum weight perfect matching in G is unique with respect to w′.

Proof. Given G, use Reingold’s undirected reachability algorithm [Rei08], to construct a biparti-

tion of G, say L and R. Now orient the edges of G as follows to get the graph G′: for every edge

e = {u, v} in G, where u ∈ L and v ∈ R, replace e with the directed edge e′ = (u, v) and the

edge e′′ = (v, u). By definition G′ ∈ G and thus w(G′) is well defined. We now use w to define a

weight on G. For every edge e ∈ G, let w′(e) = w(e′).

Now suppose G has two distinct minimum weight perfect matchings, M1 and M2, with respect

to w′. Then the symmetric difference of M1 and M2 is a collection of disjoint, even length, simple

cycles, where the edges of the cycle alternate between the matchings M1 and M2. Since M1 and

M2 are distinct, there is at least one cycle. Let C = (v1, v2, . . . v2k, v1) be one such cycle. Let

ei = (vi, v(i+1) mod k) for i ∈ [k]. Without loss of generality assume, v1 ∈ L and the edge e1 is

in M1. Therefore if i is odd (resp. even), then ei ∈ M1 (resp ei ∈ M2) and e′i is directed from L

to R (resp from R to L). Thus w′(e2i−1) = w(e′2i−1) and w′(e2i) = −w(e′2i) for i ∈ [k], due to

skew-symmetry of w.

The weight of the restriction of M1 to C, w′(M1 ∩ C) =
∑k

i=1w
′(e2i−1). Similarly w′(M2 ∩

C) =
∑k

i=1w
′(e2i). Now,

w′(M1 ∩ C)− w′(M2 ∩ C) =
k∑
i=1

w′(e2i−1)−
k∑
i=1

w′(e2i)

=
k∑
i=1

w(e′2i−1) +
k∑
i=1

w(e′2i) =
2k∑
i=1

w(e′i)

6= 0.
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Therefore eitherM1∩C orM2∩C has higher weight with respect to w′. Without loss of generality

assume its M2. Thus we get a perfect matching M ′ = M2 \ (M2 ∩ C) ∪ (M1 ∩ C) in G of lesser

weight, which is a contradiction.

3.3.2 Remarks about the weight function

It is clear that there are many other weight functions that will work. In fact any “nice” solution

to the differential equation
(
∂Q
∂x
− ∂P

∂y

)
= 1 will yield isolating weight functions. In particular,

setting P (x, y) = −y
2

and Q(x, y) = x
2

to the left hand side of Green’s theorem yields the weight

function w(e) = (xuyv − xvyu) which is isolating.

One can easily verify that the weight function we give here is a true extension of the follow-

ing weight function prescribed in [BTV09] for isolating paths in grid graphs: east and west edges

are given 0 weight, a north edge at ((i, j), (i, j + 1)) is given a weight i, and a south edge at

((i, j), (i, j − 1)) is given a weight −i. However, if we apply our theorem for the case of iso-

lating matching in grid graphs, we get a different (slightly simpler) weight function than the one

prescribed in [DKR10]. We believe that this chapter better explains the reason behind why these

weight functions work.

3.4 Piecewise straight line embedding of a planar graph

In this section we give a log-space algorithm to compute a piecewise straight line embedding of a

planar graph. All graphs considered in this section are undirected, unless otherwise specified.

Definition 3.4.1. For pi ∈ R2, (p1, . . . , pk+1) is said to be a piecewise straight line segment, if

there is a straight line segment connecting pi with pi+1 for every i ∈ [k].

Definition 3.4.2. For k ≥ 1, a k-piecewise straight line embedding of a graph G = (V,E) is a

function f : V → R2 and a collection of (k − 1) functions gi : E → R2 for i ∈ [k − 1], such that
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every edge e = (u, v) ∈ E is a piecewise straight line segment, (f(u), g1(e), . . . , gle−1(e),

f(v)) for some le ≤ k and no two embedded edges intersect except possibly at the end points.

Theorem 3.4.1. Given a combinatorial embedding of a planar graph G, there is a log-space

algorithm that computes a 4-piecewise straight line embedding of G.

We will give an embedding of G in the first quadrant of the coordinate plane. We first use

Reingold’s undirected reachability algorithm [Rei08] to compute a spanning tree T of G rooted at

r. Now from G we create a new graph GT by “cutting” every non-tree edge into two edges. Thus

G′ would be a tree. We then give a straight line embedding of G′ in the first quadrant of the two

dimensional Cartesian coordinate system (we shall just refer to it as the coordinate system from

now on), such that the leaf end of every “split edge” lies on a circle centered at the origin and

containing G′. Next we reconnect the split edges appropriately to avoid intersections. Below we

give a more formal description of the algorithm.

We create GT = (VT , ET ) from G as follows. For each edge e = (u, v) in E \ T , we introduce

two new vertices wue and wve . Now replace e with the edges (u,wue ) and (v, wve). Denote the newly

introduced set of vertices and edges as V ′T and E ′T . Thus VT = V ∪ V ′T and ET = T ∪ E ′T . Note

that GT is a tree and every vertex in V ′T is a leaf. We shall think of GT as a tree rooted at r as well.

Next we define the height function, h for every vertex in GT . For the root node h(r) = 0. For

every vertex v 6= r in V , h(v) = h(p) + 1, where p is the parent node of v in GT and for every

vertex v in V ′T , h(v) = max{h(v) : v ∈ V }. Define h(GT ) = max{h(v) : v ∈ VT}. For a vertex

v, let A(v) be the set of leaves u in GT , such that u is not present in the subtree rooted at v and

the path from u to r lies to the left of the path from v to r. Let L be the set of leaves in GT . Then

θ(v) = |A(v)|
|L|

π
2
.

The coordinates of a vertex v, in our embedding would be

F (v) = (h(v) cos (θ(v)) , h(v) sin (θ(v))).
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For every edge e = (u, v) ∈ ET draw a straight line segment between F (u) and F (v) to represent

the edge. We shall denote the embedding of this edge (line segment) by F (e). Note that, since

the function h is defined to be equal to the maximum over all values of h, for vertices in the set

V ′T , therefore the vertices in V ′T lie on the concentric circle of radius h(GT ), which(the circle) by

definition contains the entire embedded graph GT .

Next we compare the sets A(u) and A(v) for two vertices u and v.

Lemma 3.4.2. Let u and v be two distinct vertices in G. (a) If u is an ancestor of v then A(u) ⊆

A(v). (b) If u lies to the left of v, then A(u) ( A(v). (c) For any descendent w of u, A(w) ( A(v).

Proof. (a) follows from the observation that any vertex to the left of a node also lies to the left of

any of its descendent. Similarly, if u lies to the left of v, then any node to the left of u also lies to

the left of v. This proves (b). (c) follows since any descendent of u lies to the left of v.

In Lemma 3.4.3 we show that distinct vertices get mapped to distinct coordinates by F . In

Lemma 3.4.4 we prove that no two edges of GT intersect at an intermediate point.

Lemma 3.4.3. Let u, v be two vertices in GT . Then u = v if and only if F (u) = F (v).

Proof. Let u and v be two distinct vertices. If h(u) 6= h(v) then F (u) 6= F (v) since they lie in

different concentric cycles around the origin by definition of F . If h(u) = h(v), then it follows

from Lemma 3.4.2.

Lemma 3.4.4. Let e1 and e2 be two edges in GT . Then F (e1) and F (e2) do not intersect except

possibly at end points.

Proof. Let e1 = (u1, v1) and e2 = (u2, v2) such that ui is the parent of vi. If u1 = u2 then since

v1 6= v2, e1 and e2 do not intersect non-trivially. Also if v1 is an ancestor of u2 then v1 is an

ancestor of v2 as well and therefore they cannot intersect since they lie in concentric circles of

different length around the origin.
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We now consider the case when u1 is not an ancestor or descendent of u2. Without loss of gen-

erality assume u1 is to the left of u2, which implies thatA(u1) ( A(u2). From Lemma 3.4.2 we get

θ(u1) ≤ θ(v1) < θ(u2) ≤ θ(v2). Therefore the line segments (F (u1), F (v1)) and (F (u2), F (v2))

do not intersect.

Next we rejoin the split edges to get back the original graph. After joining, a split edge would

be embedded as a piecewise straight line as we describe below. Recall that precisely the non-tree

edges in G are the edges that were split.

Suppose e = (u, v) was a non-tree edge in G. Then e was replaced by the edges (u,wue ) and

(v, wve) by the introduction of two new vertices wue and wve . We remove the vertices wue and wve and

the edges (u,wue ) and (v, wve) and draw the piecewise straight line segment:

(F (u), F (wue ),max{F (wue ), F (wve)}, F (wve), F (v)) to represent edge e. (where the max function

is defined as max{(a1, b1), (a2, b2)} , (max{a1, a2},max{b1, b2})) We shall denote the embed-

ding of this edge (piecewise line segment) by F (e). In Lemma 3.4.5 we show that non-tree edges

do not intersect non-trivially, to complete the proof of Theorem 3.4.1.

Lemma 3.4.5. Let e1 = (u1, v1) and e2 = (u2, v2) be two non-tree edges in G. Then the edges

F (e1) and F (e2) do not intersect non-trivially.

Proof. We only need to show that the piecewise line segments (F (wu1e1 ),max{F (wu1e1 ), F (wv1e1 )}, F (wv1e1 ))

and (F (wu2e2 ),max{F (wu2e2 ), F (wv2e2 )}, F (wv2e2 )) do not intersect.

Case 1 (One end point of e1 and e2 is common): Without loss of generality assume u1 = u2 =

u(say) and θ(v1) ≤ θ(v2). Thus in GT , wue2 lies to the left of wue1 which implies θ(wue2) < θ(wue1)

by Lemma 3.4.2. Also θ(wv1e1 ) < θ(wv2e2 ) since wv1e1 and wv2e2 are children of v1 and v2 respectively.

This shows the Lemma for Case 1.

Case 2 (All end points of e1 and e2 are distinct): Without loss of generality assume θ(u1) ≤ θ(u2)

and θ(ui) ≤ θ(vi) for i ∈ {1, 2}. Since e1 and e2 cannot intersect, therefore if θ(v1) ≥ θ(u2), then

θ(u1) ≤ θ(v2) ≤ θ(v1), and if θ(v1) < θ(u2), then either θ(v2) ≥ θ(v1). This implies that either
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θ(wu1e1 ) < θ(wu2e2 ) < θ(wv2e2 ) < θ(wv1e1 ) or θ(wu1e1 ) < θ(wv1e1 ) < θ(wu2e2 ) < θ(wv2e2 ). Hence the Lemma

holds for this case too.

Note that the coordinates that we assign are real numbers and need not be computable in log-

space. To take of this problem we can “inflate” the entire mapping by multiplying each coordinate

with a suitable large number (say |V |5) and then taking the floor of each point to get an integral

embedding.

a b

c d e f g

h i

r

Figure 3.1: Example of a graph G containing a spanning tree T rooted at r (the tree and non-tree
are represented by solid and dashed edges respectively).

3.5 Certain upper bounds on graph reachability

In this section we prove an improved upper bound on the complexity of planar reachability and

reachability in a certain class of non-planar graphs.

3.5.1 Planar reachability

A natural and important restriction of the reachability problem is when the graphs involved are

planar, which we denote by PLANARREACH. The complexity of this problem is not yet settled

satisfactorily. The best known upper bound in terms of space complexity is NL. Though it is hard
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Figure 3.2: Piecewise straight line embedding of G.

for L [Ete97], it is not known whether it is complete for NL. Recently there has been progress in

understanding the complexity of PLANARREACH. [ADR05] showed that PLANARREACH reduces

to the reachability problem for grid graphs. In the same paper, they also gave a log-space reduction

from PLANARREACH to its complement.

In this chapter we make further progress in understanding the space complexity of PLANARREACH.

From our planar isolation result, it follows that PLANARREACH can be decided in unambiguous

log-space.

Theorem 3.5.1. PLANARREACH ∈ UL ∩ coUL.

Proof. Follows from Theorem 3.3.1 and Theorem 2.3.5 (a proof is given in Chapter 2).

3.5.2 Extension to a class of non-planar graphs

In this section we present an extension of our main result to a certain class of non-planar graphs.
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Let G be a class of graphs in which reachability can be decided in complexity class C. Let

G = (V,E) ∈ G. Let G′ = (V,E ∪ E ′) be the graph G with an additional set of edges, E ′, added

to it. We refer to G as the main graph and G′ the augmented graph. We will show that if |E ′| is not

too large, then reachability for the augmented graph can be decided in LC .

Theorem 3.5.2. Let G′ = (V,E ∪ E ′) be a graph such that reachability in G = (V,E) can be

decided in C. Then if |E ′| = O(2
√
logn) then reachability in G′ can be decided in LC .

Proof. The idea is to reduce reachability in G′ to reachability in a smaller graph using a UL∩coUL

oracle. Construct a graph whose vertices are labeled by edges in E ′ and there is directed edge from

the vertex (u1, u2) to (v1, v2) in this graph if there is a path in G from u2 to v1. Now since this

new graph is only of size O(2
√
logn) we can solve reachability in this graph deterministically in

log-space using Savitch’s theorem.

Formally, let isPath(x, y) be a boolean predicate that is true if there is a directed path p : x y

in the main graph G = (V,E) (that is, there is a path x  y that does not use auxiliary edges).

isPath(x, y) is computable in C. Also, let a1 = (u1, v1), a2 = (u2, v2), . . . am = (um, vm) be the

auxiliary edges (thus, |E ′| = m).

We construct a new graph G̃ = (Ṽ , Ẽ) as follows. Let

Ṽ = {vei |ei ∈ E ′} ∪ {s̃, t̃}

Ẽ = E1 ∪ E2 ∪ E3

where

E1 = {(s̃, y) | y = (uj, vj) ∈ E ′ and isPath(s, uj) is true},

E2 = {(x, y) | x = (ui, vi), y = (uj, vj) ∈ E ′ and isPath(vi, uj) is true},

E3 =
{

(x, t̃) | x = (ui, vi) ∈ E ′ and isPath(uj, t) is true}

Connectivity from s̃ to t̃ in G̃ can now be accomplished via application of Savitch’s Theorem,
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which requires O(log2m) space (recall that the size of G̃ is m + 2). For m ≤ O(2
√
logn) this

simulation runs in space O(log n).

Now it follows from the definition of G̃ that there is a path from s to t in G′ if and only if there

is a path from s̃ to t̃ in G̃.

The statement of Theorem 3.5.2 is intentionally general. It is motivated by the possibility of

extending our reachability result to non-planar graphs which may have one or more crossing edges.

In particular, if we are given an embedding of a graphs partitioned into a main graph that is planar

and an auxiliary set of crossing edges, as long as there are not many crossing edges, then we can

solve st-connectivity in this non-planar graph in UL ∩ coUL.

Corollary 3.5.3. Let G be a class of directed graphs G = (V,E ∪ E ′) such that (V,E) is planar

and |E ′| ≤ O(2
√
logn) where n = |V |. Then st-connectivity for any graph in G can be decided in

UL ∩ coUL.

Proof. Let G be a planar graph with auxiliary edge set being the crossing edges. We will make

reachability queries to the main, planar graph, which can be done in UL∩ coUL by Theorem 3.5.1.

However, since LUL∩coUL = UL ∩ coUL, the corollary follows.

Note that if we were able to extend this result to graphs with nε auxiliary crossing edges for

any ε > 0, then it would show that NL = UL.

3.6 Conclusion

In this chapter we established an new upper bound on the planar reachability problem. The question

is can we extend our results to reachability in general graphs, using the tool of multi-variable

calculus. We believe that this approach has a lot of promise in yielding positive results in future.
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Chapter 4

Isolation in Bounded Genus Graphs

In this chapter we extend our isolation results from Chapter 3, to graphs over bounded genus

surfaces. In Section 4.1 we give an introduction of the problem. In Section 4.2 we give the

necessary definitions and state results from earlier work, that we use in this chapter. In Section 4.3

we give matching preserving, log-space reductions from a combinatorial embedding of the graph

on a surface of genus g, to an embedding on the polygonal schema of the surface. In Section 4.4

we state and prove our main result on isolation in bounded genus graphs, assuming an embedding

on the polygonal schema. In Section 4.5 we reduce the non-orientable case to the orientable one.

In Section 4.6 we state new complexity theoretic upper bounds that we obtain.

4.1 Introduction

Genus of a surface is a natural topological generalization of planarity. Intuitively a surface is said

to have genus g if it has g ‘holes’ and locally at any point the surface is similar to a planar surface.

Therefore a planar surface is one, that has genus zero. A graph is said to have genus g if the

minimum genus surface on which the graph can be embedded without crossing edges, has genus g.

We formalize these definitions in Section 4.2. In this chapter we extend the deterministic isolation
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technique of Chapter 3 to isolate a minimum weight perfect matching in bipartite graphs embedded

on bounded genus surfaces. This is more interesting in light of the fact that even the existence

of a polynomially bounded weight function for bounded genus graphs, that isolates a minimum

weight perfect matching, was not known earlier. As a future direction it would be interesting

to consider the general bipartite graph Kn,n, and prove the existence of a polynomially bounded

weight function that isolates a minimum weight perfect matching in this case.

4.1.1 Our contribution

Let G be a bipartite graph and let
←→
G be the directed graph obtained by replacing every undirected

edge {u, v} of G with the directed edges (u, v) and (v, u). The main technical contribution of this

chapter can then be stated (semi-formally) as follows.

Main Technical Result

Given an embedding of a undirected bipartite bounded genus graph G, there is a log-space match-

ing preserving reduction f , and a log-space computable, polynomially bounded, skew-symmetric

weight function w for the class of directed graphs, so that the weight of any simple cycle in
←−→
f(G)

with respect to w is non-zero.

We use this result to establish (using known techniques) the following new upper bounds. Refer

to Chapter 2 for definitions.

New Upper Bounds

For bipartite graphs, combinatorially embedded on surfaces of bounded genus the problems PM-DECISION

and PM-UNIQUE are in SPL, and the problem PM-CONSTRUCT is in FLSPL.

The techniques that we use in this chapter can also be used to isolate directed paths in graphs

on bounded genus surfaces. This shows that the reachability problem for this class of graphs can
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be decided in the unambiguous class UL, extending the results of [BTV09]. But this upper bound is

already known since recently Kynčl and Vyskočil show that reachability for bounded genus graphs

log-space reduces to reachability in planar graphs [KV10].

Matching problems over graphs of low genus have been of interest to researchers, mainly from

a parallel complexity viewpoint. The matching problems that we consider in this chapter are known

to be in NC. In particular in [MV00], the authors present an NC2 algorithm for computing a perfect

matching for bipartite graphs on surfaces of O(log n) genus (readers can also find an account of

known parallel complexity upper bounds for matching problems over various classes of graphs in

their paper). However, the space complexity of matching problems for graphs of low genus has not

been investigated before. In this chapter we take a step in this direction.

Proof Outline

We assume that the graph G is presented as a combinatorial embedding on a surface (orientable

or non-orientable) of genus g, where g is a constant. This is a standard assumption when dealing

with graphs on surfaces, since it is NP-complete to check whether a graph has genus at most g

[Tho89]. We first give a sequence of two reductions to get, from G, a graph G′ with an embedding

on a genus g ‘polygonal schema in normal form’. These two reductions work for both orientable

and non-orientable cases. At this point we take care of the non-orientable case by reducing it

to the orientable case. These reductions are matching preserving, bipartiteness preserving and

computable in log-space. Finally, for
←→
G′ (the directed version of G′), we prescribe a set of 4g + 1

weight functions, W = {wi}1≤i≤4g+1, so that for any cycle C in
←→
G′ , there is a weight function

wi ∈ W with respect to which the weight of C is non-zero. Since g is constant, we can take a

linear combination of the elements inW , for example
∑

wi∈W wi × (nc)i (where n is the number

of vertices) for some fixed constant c (say c = 4), to get a single weight function with respect

which the weight of any cycle is non-zero.

The intuition behind these weight functions is as follows (for some of the definitions, refer to
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(Main Theorem)
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Theorem 4.5.1
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Orientable case

Non-orientable case

Figure 4.1: Outline of the steps. Note that all reductions are matching preserving and log-space
computable.

later sections). The setW is a disjoint unionW1 ∪W2 ∪ {w} of the sets of weight functionsW1,

W2, and {w}. Consider a graph G embedded on a fundamental polygon with 2g sides. There are

two types of cycles in G: surface separating and surface non-separating. A basic theorem from

algebraic topology implies that a surface non-separating cycle will intersect at least one of the sides

of the polygon an odd number of times. This leads to 2g weight functions in W1 to take care of

all the surface non-separating cycles. There are two types of surface separating cycles: (a) ones

which completely lie inside the polygon and (b) the ones which cross some boundary. Cycles of

type (a) behave exactly like cycles in the plane so the weight function w designed for planar graphs

works (from [DKR10, TV10]). For dealing with cycles of type (b), we first prove that if such a

cycle intersects a boundary, it should alternate between ‘coming in’ and ‘going out’. This leads to

2g weight functions inW2 which handle all type (b) cycles.

Figure 4.1.1 gives a pictorial view of the components involved in the proof of our main technical

result.
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4.2 Preliminaries

In this section we introduce the necessary terminology from algebraic topology that we use in the

rest of this chapter. For a more comprehensive understanding of this topic, refer to any standard

algebraic topology book such as [Mas91].

4.2.1 Topological graph theory

A 2-manifold is a topological space such that every point has an open neighborhood homeomorphic

to R2 and two distinct points have disjoint neighborhoods. A 2-manifold is often called a surface.

The genus of a surface Γ is the maximum number g, if there are g cycles C1, C2, . . . , Cg on Γ,

such that Ci ∩ Cj = ∅ for all i, j and Γ \ (C1 ∪ C2 ∪ . . . ∪ Cg) is connected. A surface is called

orientable if it has two distinct sides, else it is called non-orientable. A cycle C in Γ is said to be

non-separating if there exists a path between any two points in Γ \ C, else it is called separating.

A polygonal schema of a surface Γ, is a polygon with 2g′ directed sides, such that the sides

of the polygon are partitioned into g′ classes, each class containing exactly two sides and glueing

the two sides of each equivalence class gives the surface Γ (upto homeomorphism). A side in the

ith equivalence class is labelled σi or σ̄i depending on whether it is directed clockwise or anti-

clockwise respectively. The partner of a side σ is the other side in its equivalence class. By an

abuse of notation, we shall sometimes refer to the symbol of a side’s partner, as the partner of the

symbol. Frequently we will denote a polygonal schema as a linear ordering of its sides moving in

a clockwise direction, denoted by X . For a polygonal schema X , we shall refer to any polygonal

schema which is a cyclic permutation, or a reversal of the symbols, or a complementation (σ

mapped to σ̄ and vice versa) of the symbols, as being the same as X . A polygonal schema is called

orientable (resp. non-orientable) if the corresponding surface is orientable (resp. non-orientable).

Definition 4.2.1. An orientable polygonal schema is said to be in normal form if it is in one of the
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following forms:

σ1τ1σ̄1τ̄1σ2τ2σ̄2τ̄2 . . . σmτmσ̄mτ̄m (4.2.1)

σσ̄ (4.2.2)

A non-orientable polygonal schema is said to be in normal form if it is of one of the following

forms:

σσX (4.2.3)

στσ̄τX (4.2.4)

where, X is a string representing an orientable schema in normal form (i.e. like Form 4.2.1 or

4.2.2 above) or possibly an empty string.

We denote the polygonal schema in the normal form of a surface Γ as Λ(Γ). We will refer

to two orientable symbols σ, τ which form the following contiguous substring: στσ̄τ̄ as being

clustered together while a non-orientable symbol σ which occurs like σσ as a contiguous subtring

is said to form a pair. Thus, in the first and third normal forms above all symbols are clustered.

The first normal form represents a connected sum of torii and the third of a projective plane and

torii. In the fourth normal form all but one of the orientable symbols are clustered while the only

non-orientable symbol is sort of clustered with the other orientable symbol. This form represents

a connected sum of a Klein Bottle and torii. The second normal form represents a sphere.

We next introduce the concept of Z2-homology. Given a 2-manifold Γ, a 1-cycle is a closed

curve in Γ. The set of 1-cycles forms an Abelian group, denoted as C1(Γ), under the symmetric

difference operation, ∆. Two 1-cycles C1, C2 are said to be homologically equivalent if C1∆C2

forms the boundary of some region in Γ. Observe that this is an equivalence relation. Then the

first homology group of Γ, H1(Γ), is the set of equivalence classes of 1-cycles. In other words,

if B1(Γ) is defined to be the subset of C1(Γ) that are homologically equivalent to the empty set,
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then H1(Γ) = C1(Γ)/B1(Γ). If Γ is a genus g surface then H1(Γ) is generated by a system of

2g 1-cycles, having only one point in common, and whose complement is homeomorphic to a

topological disk. Such a disk is also referred to as the fundamental polygon of Γ.

An undirected graph G is said to be embedded on a surface Γ if it can be drawn on Γ so that no

two edges cross. We assume that the graph is given with a combinatorial embedding on a surface

of bounded genus. Refer to the book by Mohar and Thomassen [MT01] for details. The genus

of a graph G is the minimum number g such that G has an embedding on a surface of genus g

(an embedding where every face of G is homeomorphic to a disc). Such an embedding is also

called a 2-cell embedding. A genus g graph is said to be orientable (non-orientable) if the surface

is orientable (non-orientable).

Definition 4.2.2. The polygonal schema of a graph G is a combinatorial embedding given on the

polygonal schema of some surface Γ together with the ordered set of vertices on each side of the

polygon. Formally it is a tuple (φ,S), where φ is a cyclic ordering of the edges around a vertex

(also known as the rotation system of G) and S = (S1, S2, . . . , S2g) is the cyclic ordering of the

directed sides of the polygon. Each Si is an ordered sequence of the vertices, from the tail to the

head of the side Si. Moreover every Si is paired with some other side, say S ′i in S, such that the

jth vertex of Si (say from the tail of Si) is the same as the jth vertex of S ′i (from the tail of S ′i).

In the following definition we formalize the class of such graphs.

Definition 4.2.3. We define BDDGENBIP to be the class of bounded genus, orientable, bipartite

graphs given together with an embedding given on the polygonal schema in normal form of the

surface in which the graph has an embedding. Moreover, for every graph in this class, no edge has

both its end points on the boundary of the polygon.

We also define the directed version of the above class of graphs as follows:
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Definition 4.2.4. Given G, define
←→
G to be the directed graph formed by replacing every edge

{u, v} in G with the directed edges (u, v) and (v, u). Let DIRBDDGENBIP be the class of directed

graphs
←→
G , such that G is in BDDGENBIP.

4.2.2 Necessary prior results

Lemma 4.2.1 is an adaptation of Theorem 3.3.2 from Chapter 3 for the case of bounded genus

bipartite graphs.

Lemma 4.2.1. Let w be a logarithmic space bounded, skew-symmetric edge weight function de-

fined for the class of graphs DIRBDDGENBIP, such that for any graph G ∈ DIRBDDGENBIP and

any cycle C ∈ G, w(C) 6= 0. Then in log-space we can construct an edge weight function w′ for

the class of graphs BDDGENBIP, such that for any graph H ∈ BDDGENBIP the minimum weight

perfect matching in H is unique with respect to w′.

Proof. Let H be a graph in BDDGENBIP. By definition, the graph
←→
H is in DIRBDDGENBIP and

hence there exists a log-space computable weight function w with respect to which every cycle in
←→
H has non-zero weight. Using Reingold’s reachability algorithm [Rei08], construct a bipartition

(L,R) of H . Now for an edge e = {u, v} in H such that u ∈ L and v ∈ R, set w′(e) = w(−→e )

where −→e is the directed edge (u, v) in
←→
H .

Now suppose H has two distinct minimum weight perfect matchings, M1 and M2, with respect

to w′. Then the symmetric difference of M1 and M2 is a collection of disjoint, even length, simple

cycles, where the edges of the cycle alternate between the matchings M1 and M2. Since M1 and

M2 are distinct, there is at least one such cycle. Let C = (v1, v2, . . . v2k, v1) be such a cycle. Let

ei = (vi, v(i+1) mod k) for i ∈ [k]. Without loss of generality assume, v1 ∈ L and the edge e1 is in

M1. Therefore if i is odd (resp. even), then ei ∈ M1 (resp ei ∈ M2) and −→ei is directed from L to

R (resp from R to L). Thus w′(e2i−1) = w(−−→e2i−1) and w′(e2i) = −w(−→e2i) for i ∈ [k], due to skew

symmetry of w.
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The weight of the restriction of M1 to C, w′(M1 ∩ C) =
∑k

i=1w
′(e2i−1). Similarly w′(M2 ∩

C) =
∑k

i=1w
′(e2i). Now,

w′(M1 ∩ C)− w′(M2 ∩ C) =
k∑
i=1

w′(e2i−1)−
k∑
i=1

w′(e2i)

=
k∑
i=1

w(−−→e2i−1) +
k∑
i=1

w(−→e2i) =
2k∑
i=1

w(−→ei )

6= 0.

Therefore eitherM1∩C orM2∩C has higher weight with respect to w′. Without loss of generality

assume its M2. Thus we get a perfect matching M ′ = M2 \ (M2 ∩ C) ∪ (M1 ∩ C) in H of lesser

weight, which is a contradiction.

Lemma 4.2.2 ([ARZ99]). For any weighted graph G assume that the minimum weight perfect

matching in G is unique and also for any subset of edges E ′ ⊆ E, the minimum weight perfect

matching in G \E ′ is also unique. Then deciding if G has a perfect matching is in SPL. Moreover,

computing the perfect matching (in case it exists) is in FLSPL.

Sketch of proof. Let wmax and wmin be the maximum and minimum possible weights respectively,

that an edge in G can get. Then any perfect matching in G will have a weight from the set W =

{k : k ∈ Z, n·wmin ≤ k ≤ n·wmax}. Similar to [ARZ99], there exists a GapL function f , such that

for some value of k ∈ W , |f(G, k)| = 1 if G has a perfect matching of weight k, else f(G, k) = 0

for all values of k. Note that in [ARZ99] the authors actually give a GapL/poly function since the

weight function for the graphs (which are unweighted to begin with) are required as an advice in

their GapL machine. Here we consider weighted graphs, thus eliminating the need for any advice.

Now consider the function

g(G) = 1−
∏
k

(
1− (f(G, k))2

)
.
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By definition, g(G) = 1 if G has a perfect matching, else it is 0.

To compute a perfect matching in G, we will construct a log-space transducer that makes

several queries to the function f defined above. For a graph G′ having a unique minimum weight

perfect matching (say M ′), the weight of M ′ can be computed by iteratively querying the function

f(G′, k) for values of k ∈ W in an increasing order, starting from n ·wmin. The value k, for which

the function outputs a non-zero value for the first time, is the weight of M ′. We denote this weight

by wG′ . First compute wG. For an e in G, define the graph G−e = G\{e}. Now compute wG−e for

every edge e in G. Output the edges e for which wG−e > wG. The set of outputted edges comprise

a perfect matching (in fact the minimum weight perfect matching) because deleting an edge in this

set had increased the weight of the minimum weight perfect matching in the resulting graph.

4.3 Embedding on a polygonal schema in normal form

In this section we give a log-space, matching-preserving reduction that takes a combinatorial em-

bedding of a bounded genus bipartite graph and outputs a graph in the class BDDGENBIP.

Theorem 4.3.1. Given a 2-cell combinatorial embedding of a graph G of bounded genus, there

is a log-space transducer that constructs a graph H ∈ BDDGENBIP, such that, there is a perfect

matching in G iff there is a perfect matching in H . Moreover, given a perfect matching M ′ in H ,

in log-space one can construct a perfect matching M in G.

Proof. Given a combinatorial embedding of a graph G we apply Theorem 4.3.4 to get a combina-

torial embedding of G′ on a polygonal schema in normal form. At this point, there are no vertices

lying on the boundary of the polygonal schema, only edges crossing it. From G′ we construct

another graph G′′ ∈ BDDGENBIP as follows: for each such edge e = (u, v), such that u and v

lie on different segments of the polygon, we introduce internal vertices u′ = v′, v′′ on the edge

e(converting it to a path u, u′ = v′, v′′, v) so that u′, v′ lie on the boundary of the polygon on the
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sides nearer to u, v respectively. Now, due to this construction, the edge e gets replaced by a path

of length 3 and thus the number of perfect matchings in G′′ is preserved.1 If G was orientable, we

output H = G′′ and we are done.

If G was non-orientable, we apply Theorem 4.5.1 to get a graph G2 along with its embedding

on an orientable polygonal schema (need not be in the normal form), such that there is a one to one

correspondence between perfect matchings in G1 and G2. Once again we apply Theorem 4.3.4 to

get a graph say G′2 on a polygonal schema in normal form. Then we repeat the same procedure as

above to get the desired orientable graph in BDDGENBIP as earlier.

4.3.1 Combinatorial embedding to a polygonal schema

Lemma 4.3.2 ([ABC+09]). Let G be a graph embedded on a surface, and let T be a spanning tree

of G. Then there is an edge e ∈ E(G) such that T ∪ {e} contains a non-separating cycle.

Notice that in [ABC+09] the graph was required to be embedded on an orientable surface but

the proof did not use this requirement.

Definition 4.3.1. Given a cycle (or path) C in an embedded graph G, define by GQC the graph

constructed by “cutting” the edges incident on the cycle from the right. In other words, the neigh-

bors of u ∈ C (which are not on the cycle) can be partitioned into two sets, arbitrarily called left

and right. For every neighbor v of u which lies to the right of C, cut the edge (u, v) into two pieces

(u, xuv) and (yuv, v) where xuv, yuv are (new) spurious vertices. We add spurious edges between

consecutive spurious vertices along the cut and label all the newly formed spurious edges with the

label LC along the left set and L−1C along the right set. (see Figure 4.2).

Also, if C is a path, its endpoints will lie on two paths. Consider the first path - if the two edges

on either side of C on this path have the same label L1. This can be broken into two cases - firstly,
1That is if e was part of a matching in G′ then we include the edges (u, u′) and (v, v′′) in the matching in G′′, and

if e was not part of a matching in G′ then we include the edge (v′, v′′) in the matching in H , the rest being the same.
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X Y Z

X1 X2 Y1Y2Y3 Z1Z2Z3Z4

C

(a)

X Y Z

X ′1 X ′2 Y ′1Y
′
2Y
′
3 Z ′1Z

′
2Z
′
3Z
′
4

X ′′1 X ′′2 Y ′′1Y
′′
2Y
′′
3 Z ′′1Z

′′
2Z
′′
3Z
′′
4

X1 X2 Y1Y2Y3 Z1Z2Z3Z4

C

(b)

Figure 4.2: An example of the cut operation Q, cutting graph G along cycle (or path) C. (a) Part
of graph G and cycle C. (b) Part of the resulting graph GQC, with the dotted lines representing
the spurious edges.

if the left and right side of this endpoint are the same (in other words, the path is a cycle). In this

case, we just keep the same label L1. When the left and right side of this endpoint are distinct,

we will need to split the label into two or three new labels as detailed below and similarly for the

other path and common label L2. We will only describe the case when L1, L2 are both defined -

the other cases are similar and simpler.

First assume that L1 6= L2 and L1 6= L−12 . Then we will split remove labels L1, L2 and

replace them by four new labels say L′1,C , L
′′
1,C and L′2,C , L

′′
2,C , respectively for the two sides of

the intersection. If, on the other hand, L1 is the same as L2 or its inverse - then there are two

subcases. Firstly, if the path C is between two copies of the same vertex then we replace L1 by

two new labels L′1,C , L
′′
1,C one for either side of the cut. L2 being a copy or an inverse copy of

L1 splits automatically. The second case is if C is between two distinct points on two copies or
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L′1,C

L′′1,C

L′2,C

L′′2,C

L−1C
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(a)

L1

L1

L1

L1

C
v v

reduction

L′1,C

L′′1,C

L′1,C

L′′1,C

L−1C

LC
v v
v v

(b)

L1

L1

L1

L1

C

w w

v v

reduction

L′1,C

L′′1,C

L′′1,C

L′′′1,C

L′′′1,C

L′1,C

L−1C

LC
v w
v w

v

w

(c)

Figure 4.3: Cutting along a path C when (a) L1 6= L2 and L1 6= L−12 , (b) L1 = L2 or L1 = L−12

and C is between copies of the same vertex v, and (c) L1 = L2 or L1 = L−12 and C is between
distinct vertices v and w.

inverse copies. Then we split L1 into three parts according to the two points. The rotation system

is modified appropriately. We illustrate this in Figure 4.3.

Notice that in the process of cutting, for every new label LC we are adding at most 4 new labels.

Given a graph Gi embedded on a surface, potentially with spurious edges, we can find Ci+1, a

non-separating cycle (which does not use a spurious edge) by invoking Lemma 4.3.2. Define Gi+1

to be GiQCi+1.

Starting with G0 = G of genus g and repeating the above operation at most g times, we get a

planar graph H with at most 2g spurious faces (which consist of spurious vertices and edges).

Now find a spanning tree of this graph which does not use a spurious edge - that such a tree

exists follows from noticing that the graph without spurious edges is still connected. Find a tree

path connecting any two spurious faces. Cut along this path to combine the two spurious faces
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into one larger spurious face. Repeat the operation till all the spurious faces are merged into one

spurious face and re-embed the planar graph so that it forms the external face.

It is easy to see that the procedure above can be performed in log-space, provided that g is

constant. Thus we have sketched the proof of the following:

Lemma 4.3.3. Given the combinatorial embedding of a bounded genus graph we can find a polyg-

onal schema for the graph in log-space.

4.3.2 Normalizing a polygonal schema

We adapt the algorithmic proof of Brahana-Dehn-Heegaard (BDH) [Bra21, DH07] classification

theorem as described in Vegter-Yap [VY90] so that it runs in log-space for bounded genus graphs.

The algorithm starts with a polygonal schema and uses the following five transforms O(m) times

to yield a normalized polygonal schema, where the original polygonal schema has 2m sides.

A. Replace Xσσ̄ by X (Example given in Figure 4.4).

σ σ

X

σ

X

Figure 4.4: Reduction A (pasting along σ)

B. Replace στXτ̄Y by ρXρ̄σY (Example given in Figure 4.5).

C. Replace σXσY by ττY ∗X , where Y ∗ is reverse complement of Y (Example given in Figure

4.6).

D. Replace σXτY σ̄Uτ̄V by ρπρ̄π̄UY XV (Example given in Figure 4.7).

E. Replace σ1σ1Xσ2σ3σ̄2σ̄3Y by τ1τ1τ2τ2τ3τ3XY (Example given in Figure 4.8).
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σ τ

Y X

τ

ρ
p q

r

qr
σ ρ

Y X

τ

ρ
p q

p

qr

Figure 4.5: Reduction B (Cutting along ρ followed by pasting along τ ). Note that the number of
vertices in the equivalence class of r, reduces by 1.

Y X

σ

σ

τ X Y ∗
σ

τ τ

Figure 4.6: Reduction C (Cutting along τ followed by pasting along ρ)

σ

X

τ

Y
σ

U

τ

V
ρ

(a)

ρ

τ

Y

X
ρ

V

U

τ

σ

(b)

ρ

τ

Y

X
ρ

V

U

τ

π

(c)

ρ

π

V

U

Y

X

ρ

π

τ

(d)

Figure 4.7: Reduction D (a) Cutting along ρ. (b) Pasting along σ. (c) Cutting along π. (d) Pasting
along τ .

F. Replace σσττX by σρσ̄ρX (Example given in Figure 4.9).

The procedure is to

1. Use reductions A,B,C several times to ensure that all the sides of the polygonal schema have



58

σ1
σ2

σ1

σ2
σ3

σ3

X

(a)

τ1
τ1

τ2

τ2
τ3

τ3

X∗

(b)

Figure 4.8: Reduction E (a) Initial polygonal schema (b) Polygonal schema obtained after applying
Reduction E (replacing (i) σ1 with τ̄3τ̄2, (ii) σ2 with τ1τ2 and (iii) σ3 with τ1τ2τ3X∗).

σ

σ τ

τ

X

ρ

(a)

σ

ρ σ

ρ

X

τ

(b)

Figure 4.9: Reduction F (a) Cutting along ρ. (b) Pasting along τ .

a common endpoint.

2. a) Orientable case: Use transform D repeatedly to bring the polygon in normal form.

b) Non-orientable case:

- Use reductions C,D to convert the schema into a form where the orientable sym-

bols are clustered and non-orientable symbols are paired

- Use reduction E repeatedly (in the forward direction) to eliminate all orientable

symbols.

- Use Reduction E in the reverse direction repeatedly to eliminate all but at most

one non-orientable symbol.
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- Use Reduction F, if necessary, to ensure that there is at most one non-orientable

symbol.

Possibly, the only step requiring any explanation is the last one. We apply Reduction E in reverse

withX as the empty string to replace three non-orientable symbols by two orientable ones forming

a cluster of 4 and a single non-orientable one which forms a pair. The way we apply the reduction,

ensures that both the orientable and the non-orientable parts are contiguous.

Finally we will be left with a string in one of the first two normal forms or a string of the

form σσττX (where X is an orientable schema in normal form) in which case Reduction F is

applicable.

To see that the above procedure can be carried out in L it suffices to prove that each of the above

reductions can be carried out in L, the number of reductions is bounded by a constant and we can

decide in L when to carry out a reduction.

The Vegter-Yap paper does careful book-keeping in order to ensure that the number of opera-

tions in Step 1 is linear in the original genus. We can alternatively, follow the brute force approach

and keep on applying Reductions A,B,C while the sides of the polygon do not have a common

end-point. This will require at most linear number of applications of the first two reductions.

Observe that for the orientable case, each application of reduction D reduces the number of

unclustered symbols by two. Thus we are done in O(m) applications of this reduction. Similarly,

each application of reduction C reduces the number of unpaired non-orientable symbols by one and

as before every application of reduction D reduces the number of unclustered orientable symbols

by two. So in O(m) steps all the orientable symbols are clustered and the non-orientable symbols

are paired. Now every application of reduction E in the forward direction gets rid of two orientable

symbols so in O(m) steps all the orientable symbols are removed. Finally O(m) applications of

reduction E in reverse lead to removal of all but one non-orientable symbols.
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To see that each of the steps is in L observe that each of the steps involves one or more of the

following operations:

- find a path through the interior of the polygon between two points on its boundary

- cut along a path

- paste two paired sides of (a cut) polygon together

We know how to do the second operation in L while the third, being the reverse of the second one

is even easier, since we just have to identify corresponding spurious vertices and then excise them

out of the corresponding edge. The first operation is just an undirected reachability question in the

graph (minus its boundary) hence is in L by Theorem 2.3.1.

Finally, a determination of when to apply a particular reduction is easily seen to be in L for all

but, possibly, reduction D. In this case, for an orientable symbol σ separated from its mate σ̄ on

both sides, sequentially test for each other symbol τ if it lies in one of the two stretches that σ and

its mate divide the schema into, while its mate τ̄ lies in the other. Having found the first such τ

suffices to enable a use of the reduction.

Thus, using the above argument and Lemma 4.3.3 we have sketched the proof of the following

theorem:

Theorem 4.3.4. Given a combinatorial embedding of a bounded genus (say g ≥ 0) graph G,

in log-space we can find a polygonal schema for the graph in normal form of genus O(|g|) in

magnitude, and also the corresponding combinatorial embedding.

4.4 Isolation in bounded genus graphs

In this section we establish new upper bounds on the space complexity of certain matching prob-

lems on the class of bounded genus bipartite graphs, given as a combinatorial embedding.



61

Theorem 4.4.1 (Main Theorem). Given an orientable graph G ∈ DIRBDDGENBIP in terms of

its polygonal schema, there exists a log-space computable, polynomially bounded, skew-symmetric

weight function w : E(G)→ Z, such that for any cycle C ∈ G, w(C) 6= 0.

Proof of Theorem 4.4.1. Let (φ,S) be the polygonal schema of the given graph G, where S =

(S1, S2, . . . , S2g). We shall denote the pair of a side Si by S ′i. Let T = {T1, T2, . . . Tg} be the set

of distinct sides of the polygon, that is no two elements in T are pairs of each other. We define w

as a linear combination of the following 2g + 1 weight functions defined below.2

For each edge e = (u, v) in G, define 2g + 1 weight functions as follows:

- For each i ∈ [g],

wi(e) =


1 if u lies on the side Ti

−1 if v lies on the side Ti

0 otherwise

(4.4.1)

- For each i ∈ [g],

w′i(e) =


j if u lies on the side Ti at index j from the tail of Ti

−j if v lies on the side Ti at index j from the tail of Ti

0 otherwise

(4.4.2)

- wTV is defined to be the weight function defined by Tewari and Vinodchandran in [TV10]

by assuming G to be a planar graph.

Firstly note that each of the three kinds of weight functions that we defined above are skew-

symmetric. Therefore a linear combination of them is also skew-symmetric.

Now think of G as a planar graph by ignoring the identification of vertices along respective

sides of the polygon, which we shall call Gplanar. Gplanar is bipartite since G is bipartite. Now
2We can construct such a w in log-space since g is constant.
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wTV is the weight function defined in Lemma 3 in [TV10]. Therefore for every cycle C ∈ G that

does not cross any of the sides Si (and thus is a valid cycle in Gplanar), wTV (C) 6= 0 [TV10].

Let C be a simple cycle in G that crosses the boundary of the polygon at some point. That is,

there exists a vertex v on side Ti such that the cycle enters v from the side Ti and exits from the

vertex corresponding to v on side T ′i . Let EC
j be the set of edges of C that lie on the side Tj . From

the definition of wj it follows that wj(C) = wj(E
C
j ) (same thing holds for w′j as well). Now if

there exists a k such that |EC
k | is odd, then wk(C) 6= 0. Otherwise, if for all k, |EC

k | is even then

by Lemma 4.4.3 it follows that the edges of EC
k , alternate between going out and coming into the

side Tk if at all it passes through the side Tk. Existance of one such side is guaranteed since C

crosses the boundary of the polygon. Without loss of generality we assume that side is T1. Now

by using Lemma 4.4.4 we get that w′1(E
C
1 ) 6= 0 and thus w′1(C) 6= 0. (See below for Lemma 4.4.3

and 4.4.4)

Q2

Q1

Q′2
Q′1

C C

P1

P2 Cj

Figure 4.10: Construction of a path from Q1 to Q2 in Γ \ C (the dotted path is a path between Q1

and Q′1 (resp. between Q2 and Q′2).

To establish Lemma 4.4.3 we use an argument (Lemma 4.4.2) from homology theory. For two

cycles (directed or undirected) C1 and C2, let I(C1, C2) denote the number of times C1 and C2

cross each other (that is one of them goes from the left to the right side of the other, or vice versa).

Next we adapt the Lemma 4.4.2 from Cabello and Mohar [CM07]. Here we assume we are

given an orientable surface (Cabello and Mohar gives a proof for a graph on a surface).
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Lemma 4.4.2. Given a genus g orientable, surface Γ, let C = {Ci}i∈[2g] be a set of cycles that

generate the first homology group H1(Γ). A cycle C in Γ is non-separating if and only if there is

some cycle Ci ∈ C such that I(C,Ci) ≡ 1(mod2).

Proof. Let C̃ be some cycle in Γ. We can write C̃ =
∑

i∈[2g] tiCi since C generates H1(Γ).

Define IC̃(C) =
∑

i∈[2g] tiI(C,Ci)( mod 2). One can verify that IC̃ : C1(Γ) → Z2 is a group

homomorphism. Now since B1(Γ) is a normal subgroup of B1(Γ), IC̃ induces a homomorphism

from H1(Γ) to Z2.

Any cycle is separating if and only if it is homologous to the empty set. Therefore if C is

separating, then C ∈ B1(Γ) and thus every homomorphism from H1(Γ) to Z2 maps it to 0. Hence

for every i ∈ [2g], I(C,Ci) ≡ ICi
(C) = 0.

Suppose C is non-separating. One can construct a cycle C ′ on Γ, that intersects C exactly

once. Let C ′ =
∑

i∈[2g] t
′
iCi. Now 1 ≡ IC′(C) ≡

∑
i∈[2g] t

′
iI(C,Ci)(mod2). This implies that

there exists i ∈ [2g] such that I(C,Ci) ≡ 1(mod2).

Lemma 4.4.3. Let C be a simple directed cycle on a genus g orientable surface Γ and let C =

{Ci}i∈[2g] be a system of 2g directed cycles on Γ, having exactly one point in common and Γ \ C

is the fundamental polygon, say Γ′. If I(C,Ci) is even for all i ∈ [2g] then for all j ∈ [2g], C

alternates between going from left to right and from right to left of the cycle Cj in the direction of

Cj (if C crosses Cj at all).

Proof. Suppose there exists a j ∈ [2g] such that C does not alternate being going from left to right

and from right to left with respect to Cj . Thus if we consider the ordered set of points where C

intersects Cj , ordered in the direction of Cj , there are two consecutive points (say P1 and P2) such

that at both these points C crosses Cj in the same direction.

Let Q1 and Q2 be two points in Γ \ C. We will show that there exists a path in Γ \ C between

Q1 and Q2. Consider the shortest path from Q1 to C. Let Q′1 be the point on this path that is as

close to C as possible, without lying on C. Similarly define a point Q′2 corresponding to Q2. Note
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that it is sufficient for us to construct a path between Q′1 and Q′2 in Γ\C. If both Q′1 and Q′2 locally

lie on the same side of C, then we get a path from Q′1 to Q′2 not intersecting C, by traversing along

the boundary of C. Now suppose Q′1 and Q′2 lie on opposite sides (w.l.o.g. assume that Q′1 lies on

the right side) of C. From Q′1 start traversing the cycle until you reach cycle Cj (point P1 in Figure

4.10). Continue along cycle Cj towards the adjacent intersection point of C and Cj , going as close

to C as possible, without intersecting it (point P2 in Figure 4.10). Essentially this corresponds to

switching from one side of C to the other side without intersecting it. Next traverse along C to

reach Q′2. Thus we have a path from Q′1 to Q′2 in Γ \ C. We give an example of this traversal in

Figure 4.10. This implies that C is non-separating.

It is well known that C forms a generating set of H1(Γ), the first homology group of the sur-

face. Now from Lemma 4.4.2 it follows that I(C,Cl) ≡ 1(mod2) for some l ∈ [2g], which is a

contradiction.

Lemma 4.4.4. Let G be a graph in DIRBDDGENBIP with C being a simple cycle in G and EC
1

being the set of edges of C that lie on the side T1. Assume |EC
1 | is even and the edges in EC

1

alternate between going out and coming into the polygon. Let i1 < i2 < . . . < i2p−1 < i2p be the

distinct indices on T1 where C is incident upon. Then,
∣∣w′1(EC

1 )
∣∣ = |

∑p
k=1(i2k − i2k−1)| and thus

non-zero unless EC
1 is empty.

Proof. Let ej = (uj, vj) for j ∈ [2p] be the 2p edges of G incident on the side T1. Without loss

of generality assume that u1 lies on T1 (that is the edge e1 is directed away from the side T1).

Therefore by Lemma 4.4.3, for every i in [2p] such that i is odd, ui is incident on T1 (that is the

edge ei is directed away from the side T1) and for every i such that i is even, vi is incident on T1

(that is the edge ei is directed towards the side T1). Hence w′1(E
C
1 ) = i1 − i2 + i3 − i4 . . . − i2p.

Now removing the assumption at the beginning of this proof would show that the LHS and RHS

of the above equation are equal modulo absolute value as required.

It is interesting to note here that similar method does not show that bipartite matching in non-
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σ

σ
X2 X1

(a)

σ
τ

σ̄
τ

X2 X1

(b)

Figure 4.11: (a) Λ(Γ) when the surface is a sum of an orientable surface and the projective plane.
(b) Λ(Γ) when the surface is a sum of an orientable surface and the Klein bottle.

orientable bounded genus graphs is in SPL. The reason is that Lemma 4.4.3 crucially uses the fact

that the surface is orientable. In fact, one can easily come with counterexample to Lemma 4.4.3 if

the surface is non-orientable.

4.5 Reducing the non-orientable case to the orientable case

In this section we tackle the non-orientable case by giving a matching preserving reduction from a

graph embedded on a non-orientable surface to a graph embedded on an orientable surface.

Let G be a bipartite graph embedded on a genus g non-orientable surface. As a result of

Theorem 4.3.4 we can assume that we are given a combinatorial embedding (say Π) of G on a

(non-orientable) polygonal schema, say Λ(Γ), in the normal form with 2g′ sides. (Here g′ is a

function of g.)

Let Y = (X1, X2) be the cyclic ordering of the labels of the sides of Λ(Γ), where X2 is the

‘orientable part’ and X1 is the ‘non-orientable part’. More precisely, for the polygonal schema in

the normal form, we have: X1 is either (σ, σ) (thus corresponds to the projective plane) or it is

(σ, τ, σ̄, τ) (thus corresponds to the Klein bottle). See Figure 4.11.

Now let G be a bipartite graph embedded on a non-orientable polygonal schema Λ(Γ) with 2g′

sides. We will construct a graph G′ embedded on an orientable polygonal schema with 4g′ − 2

sides such that G has a perfect matching iff G′ has a perfect matching. Moreover, given a perfect

matching inG′ one can retrieve in log-space a perfect matching inG. This is illustrated in Theorem
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Figure 4.12: Klein bottle. (a) The two copies of Λ(Γ) with the side that is being glued shown in
dark. (b) Polygonal schema obtained after the glueing operation.

4.5.1.

Theorem 4.5.1. LetG be a bipartite graph given with its embedding on a non-orientable polygonal

schema in normal form Λ(Γ), with 2g′ sides as above. One can construct in log-space, another

graphG′ together with its embedding on the polygonal schema of an orientable surface Γ′ of genus

4g′−2 such that: G has a perfect matching iffG′ has a perfect matching. Moreover, given a perfect

matching in G′, one can construct in log-space a perfect matching in G.

Proof. We first show the case when Γ is the sum of an orientable surface and a Klein bottle.

Consider the polygonal schema formed by taking two copies of Λ(Γ) and glueing the side τ of one

copy with its partnered side τ of the other copy. We relabel the edge labelled σ in the second copy

with some unused symbol δ to avoid confusion. The entire reduction is shown in Figure 4.12. Let

G′ be the resulting graph.

Note that the polygonal schema obtained as a result represents an orientable surface and has

constantly many sides. Also every vertex and edge in G has exactly two copies in G′ and G′ is

also bipartite. Let M be a matching in G. Let M ′ be the union of the edges of M from both

the copies of G . Its easy to see that M ′ is a matching in G′. Now consider a matching M ′ in

G′. The projection of M ′ to G gives a subgraph of G where every vertex has degree (counted
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Figure 4.13: Projective plane. (a) The two copies of Λ(Γ) with the two pair of sides that are being
glued shown in dark. (b) Polygonal schema obtained after the glueing operation.

with multiplicity) exactly two. Since G is bipartite, one can obtain a perfect matching within this

subgraph.

Now consider the case when Γ is the ‘sum’ of an orientable surface and a projective plane, i.e.,

following the notation above X1 corresponds to the labels of a polygonal schema for the projective

plane and X2 corresponds to the labels of a polygonal schema of an orientable surface. Take two

copies of Λ(Γ), and glue σ of one copy with its partner σ in the other copy. We show this operation

in Figure 4.13. The rest of the proof is similar to the Klein bottle case.

Thus we see that the non-orientable case can be reduced to the orientable case. The resulting

polygonal schema need not be in the normal form. Once again we apply Theorem 4.3.4 to get a

combinatorial embedding on a polygonal schema in the normal form.

4.6 New complexity upper bounds

Theorem 4.6.1. For a graph embedded on a bounded genus surface,

(a) PM-DECISION is in SPL,

(b) PM-CONSTRUCT is in FLSPL and
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(c) PM-UNIQUE is in SPL.

Proof. As a result of Theorem 4.3.1, we can assume that our input graph G is orientable and is in

the class BDDGENBIP. This implies that the directed graph
−→
G is in the class DIRBDDGENBIP.

Using Theorem 4.4.1 and Lemma 4.2.1 we get a log-space computable weight function W , such

that the minimum weight perfect matching in G with respect to W is unique. Moreover, for any

subsetE ′ ⊆ E, Theorem 4.4.1 is valid for the subgraph
−→
G\E ′ also, with respect to the same weight

function W . Now (a) and (b) follows from Lemma 4.2.2. Checking for uniqueness can be done

by first computing a perfect matching, then deleting an edge from the matching and rechecking to

see if a perfect matching exists in the new graph. If it does, then G does not have a unique perfect

matching, else G does have a unique perfect matching.

Theorem 4.4.1 also gives an alternative proof of directed graph reachability for bounded genus

graphs.

Theorem 4.6.2 ([BTV09, KV10]). Directed graph reachability for bounded genus graphs is in

UL.

Proof. From Theorem 4.4.1, it follows easily that the class of graphs DIRBDDGENBIP is min-

unique with respect to the weight function in Theorem 4.4.1. The proof is similar to the proof of

Theorem 3.3.1 in Chapter 3. Now applying Theorem 2.3.5 from Chapter 2, we get the desired

result.

4.7 Conclusion

In this chapter we gave new upper bound on the problem of perfect matching in bounded genus

graphs via an extension of the isolating lemma. Can we use the framework of algebraic topology

to advance the isolation results to graphs of logarithmic genus?
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Chapter 5

Hardness Results for Nondeterministic

Logarithmic Space

In this chapter we exhibit three new complete problems for NL. All three problems are restriction

of the directed reachability problem and have distinct geometric and combinatorial properties. The

goal of studying these variants of reachability is that they might give new avenues of showing im-

proved upper bound on NL. In Section 5.1 we show that graphs over three pages are NL-complete.

In Section 5.2 we show that three dimensional grid graphs are NL-complete. In Section 5.3 we

show that graphs of thickness two are NL-complete.

5.1 Three pages are sufficient for nondeterministic log-space

We show that the reachability problem for directed graphs embedded on 3 pages is complete for NL.

It can be shown that the reachability problem for graphs on 2 pages is equivalent to reachability

in grid graphs and hence is in UL by the result of [BTV09]. It is also interesting to note that

graphs embedded on 1 page are outer-planar and hence reachability for directed graphs on 1 page

is complete for L [ABC+09].



70

Definition 5.1.1. ThreePage is the class of all graphs G that can be embedded on 3 pages as

follows: all vertices of G lie along the spine and the edges lie on exactly one of the three pages

without intersection. Moreover all edges are directed from top to bottom. THREEPAGEREACH is

the language consisting of tuples (G, s, t, f), such that G ∈ ThreePage, s and t are two vertices

in G and there exists a path from s to t in G, and f is an embedding of G on 3 pages (that is, f

defines the ordering of the vertices along the the spine and in which page an edge lies on).

Theorem 5.1.1. THREEPAGEREACH is complete for NL.

Proof. To show that THREEPAGEREACH is in NL we need to verify that, given an instance (G, s, t, f),

if f is an embedding of G on 3 pages. Note that, for any two edges (u1, v1) and (u2, v2) in G that

lies in the same page, the edges cross each other if and only if either (i) u2 lies in between u1

and v1, or (ii) v2 lies in between u1 and v1, in the ordering of the vertices along the spine. This

condition can be checked in NL and therefore whether f is indeed an embedding of G on 3 pages

or not can also be verified in NL.

To show that THREEPAGEREACH is hard for NL, assume that we are given a topologically

sorted DAG G, with (u1, u2, . . . , un) being the topological ordering of the vertices of G. We want

to decide if there is a path in G from u1 to un. We define an ordering on the edges of G, say E(G).

Given two edges e1 and e2, (i) if the head of e1 precedes the head of e2, then e1 precedes e2 in the

ordering, (ii) if the head of e1 is the same as the the head of e2, then e1 precedes e2 in the ordering

if tail of e1 precedes tail of e2. It is easy to see that E(G) can be constructed in log-space given G

and in any path from s to t, if edge e1 precedes e2, then e1 precedes e2 in E(G) as well. Let m be

the number of edges in G.

For any integer k, let [k] denote the set of integers {1, . . . , k}. We create 2m copies of each

vertex in G and let vji denote the jth copy of the vertex ui, for i ∈ [n] and j ∈ [2m]. We order the

vertices along the spine of H from top to bottom as follows:

(v11, v
1
2, . . . , v

1
n, v

2
n, v

2
n−1, . . . , v

2
1, v

3
1, v

3
2, . . . , v

3
n, . . . , v

2m
n , . . . , v2m1 ).
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u1

u2 u3

u4

(a) (b)

Figure 5.1: (a) Graph G. (b) The corresponding graph H . The dashed edges of H are on page 3.

Next we need to connect all the 2m vertices corresponding to each ui from the top to bottom.

We use the first 2 pages to do that. Put the edge (vji , v
j+1
i ) in H , for each i ∈ [n] and each

j ∈ [2m − 1], using page 1 when j is odd and page 2 when j is even. For the kth edge in E(G),

say ek = (uk1 , uk2), put the edge (v2k−1k1
, v2kk2 ) in H , using page 3. It is clear that this can be done

without any two edges crossing each other. We give an example of this reduction in Figure 5.1.

The claim is, there exists a path from u1 to un in G if and only if there exists a path from v11 to v2mn

in H .

Suppose there exists a path p from u1 to un in G. Let p = (ei1 , . . . eil). For each j ∈ [l], corre-

sponding to eij there exists an edge in page 3 of H by construction, say fj . Also by construction

and the ordering E(G), the tail of fj lies above the head of fj+1 along the spine of H . Further,

since the head of eij+1
is the same as the tail of eij for j ∈ [l − 1], there exists a path from the tail

of fj to the head of fj+1 (using edges from pages 1 and 2). Thus we get a path from v11 to v2mn in

H .

To see the other direction, let ρ be a path from v11 to v2mn in H . Let ρ3 = (α1, α2, . . . , αr)

be the sequence of edges of ρ that lie on page 3. Note that each of the edges in ρ3 has a unique

pre-image in G by the property of the reduction. This defines a sequence of edges p′ in G by

taking the respective pre-images of the edges in ρ3. Now the sub-path of ρ from v11 to the head

of α1 uses only edges from page 1 and 2 and thus by construction the head of α1 is a vertex vl11

(for some l1 ∈ [2m]). A similar argument establishes that the tail of αr is a vertex vl2n (for some

l2 ∈ [2m]) and also that the tail of αi and the head of αi+1 are the copies of the same vertex in G,



72

for i ∈ [r − 1]. Therefore p′ is a path from u1 to un in G.

5.2 Three dimensional grid graphs

A three-dimensional monotone grid graph is a directed graph whose vertices are [n] × [n] × [n]

with edges connecting a vertex to its immediate neighboring grid point in the positive x, y or z

direction. That is an edge is of the form ((i, j, k), (i+ 1, j, k)) (east edge) or ((i, j, k), (i, j+ 1, k))

(north edge) or ((i, j, k), (i, j, k+ 1)) (inward edge), provided the respective coordinates exist. We

refer to the st-connectivity problem in such graphs as 3D-MGGR and show that it is complete for

NL.

Theorem 5.2.1. 3D-MGGR is complete for NL.

Proof. We use the fact that the standard NL-complete reduction which generates the configuration

graph of a log-space Turing machine can be easily modified to get a topologically sorted DAG.

We simply prepend a timestamp to each configuration which results in a layered acyclic graph.

Each layer can use the canonical ordering to induce a total topological order. Thus, without loss

of generality, we will reduce such a DAG to a 3-D monotone grid graph while preserving st-

connectivity.

Let G = (V,E) be a DAG with topologically sorted vertices V = {v1, . . . , vn}. That is, if

(vi, vj) is an edge, then i < j. We construct a 3D layered grid graph G′ as follows. For each vertex

vi, we make i copies at positions (i, i, k) for k = 1, . . . , i. We also connect each of the i copies by

an edge in the positive z-direction ((i, i, k)→ (i, i, k + 1) for k = 1, . . . , i− 1).

Now, each xy plane (identified by k ∈ {1, . . . , n}) will serve to preserve connectivity for each

vertex vk. We start by connecting vertices in an eastward direction, (l, k, k) → (l + 1, k, k) for

l = k, . . . , n − 1. Next, we connect vertices in a northward direction depending on the edges in

the original graph G as follows. If (vk, vl) ∈ E then we draw a path from (l, k, k) to (l, l, k) thus
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connecting (the last copy of) vk to the k-th copy of vl. Otherwise, we do nothing. An example of

this construction from a complete DAG of size 4 can be found in Figure 5.2.

Figure 5.2: A mapped graph resulting from a complete DAG on n = 4 vertices.

The resulting graph is bounded within the n× n× n cube. Furthermore, since each edge only

requires an index look-up, the construction is clearly log-space computable.

Finally, without loss of generality we can assume that s = v1 and t = vn and so we map s

to the single copy of v1 and t to the back most copy of vn at coordinates (n, n, n). We claim that

there exists a path s  t in G if and only if there exists a path (1, 1, 1)  (n, n, n) in G′. The

construction clearly preserves st-connectivity.

5.3 Thickness two graphs

The usual graph-theoretic notion of thickness of a graph G is defined as the minimal number of

planar subgraphs whose union is G. Intuitively, we can think of thickness as the minimal number

of transparencies required to draw the graph so that no edges cross within any single transparency.

Clearly, a graph is planar if and only if it has thickness-one. Surprisingly, however, thickness-two

suffices to capture all of NL.
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We’ll actually show that completeness holds for an even more restrictive notion of thickness

called geometric thickness [HSV95, DEH00]. The geometric thickness of a graph G is defined

as the minimal number k such that we can assign planar point locations to the vertices of of G,

represent each edge as a line segment, and assign each edge to one of k transparencies so that no

two lines cross in any one transparency. The difference between these two notions is that geometric

thickness requires that all vertex placements be consistent across all transparencies.

Theorem 5.3.1. The st-connectivity problem for (geometric) thickness-two graphs is complete for

NL. Moreover, each transparency is a layered grid graph.

Proof. We will make use of the 3D monotone grid graph that results by applying the reduction in

Theorem 5.2.1. We start by embedding each xy-layer (identified as Lk, 1 ≤ k ≤ n) in the first

transparency. We do so by laying each layer above the previous layer, shifting each layer by one

unit. That is, the lower left corner of each layer Lk is oriented at (k, (k− 1)n+ 1) (the upper-right

corner is thus at ((k + n), ((k − 1)n+ 1 + n))). This results in a 2n× n2 + 1) sized grid.

We now embed the inward z-edges using the second transparency. We will do so by routing

them inside the grid defined by the xy planes. In order to do this, we first expand the grid by 3:

each unit square is replaced by a 3 × 3 grid, leading to a fine-grid. Thus, each (i, j) coordinate in

the first grid maps to

((3i− 2), (3j − 2))

in the fine grid.

We now have room to route the z-edges through the second transparency. Consider the z edges

between layer Lk and Lk+1: (i, i, k) → (i, i, k + 1) in the original 3D-mGG. The initial vertex is

now oriented at

(3(k + i)− 2, 3((k − 1)n+ 1 + i)− 2) = ((3k + 3i− 2), (3nk − 3n+ 3i+ 1))
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and the final vertex is at

(3(k + 1 + i)− 2, 3(kn+ 1 + i)− 2) = ((3k + 3i+ 1), (3kn+ 3i+ 1))

in the expanded fine-grid. We will capture the connectivity of this edge by routing a path between

these two grid points on the second transparency, avoiding contact with other z-edge/paths in the

second transparency. First, we travel east one edge in the fine-grid:

((3k + 3i− 2), (3nk − 3n+ 3i+ 1))→ ((3k + 3i− 1), (3nk − 3n+ 3i+ 1))

We then travel north until we have cleared the sub-grid corresponding to Lk; that is to

y = 3(kn+ 1)− 2 + 1 = 3kn+ 2

on the fine-grid. We then travel east again for one edge;

((3k + 3i− 1), (3kn+ 2))→ ((3k + 3i), (3kn+ 2))

and continue north again to the same row as the final vertex:

y = (3kn+ 3i+ 1)

At this point, we simply travel east again one more edge and arrive at ((3k+3i+1), (3kn+3i+1)),

the intended final vertex.

This reduction is illustrated (cf. Figure 5.3) for the first few layers resulting from the complete

DAG on 5 vertices from Figure 5.2.

It is not difficult to see that the reduction results in only two layers each of which avoids any
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L1

L2

L3

Figure 5.3: First two layers of the thickness-two reduction on the DAG in Figure 5.2. Lighter
directed edges correspond to the first transparency while the darker (routing) paths are on the
second transparency.

edge crossings and is clearly a layered grid graph. Moreover, the reduction is clearly log-space

computable.

In fact, the reduction in Theorem 5.3.1 is even stronger: each layer is actually a directed forest.

Moreover, the reduction actually gives us a thickness-two embedding using only log-space.



77

5.4 Conclusion

The results in this chapter give us possible directions of establishing an improved upper bound on

graph reachability. Although various restrictions of graph reachability characterize various log-

space complexity classes, as of now we do not know the existence of a UL-complete problem.

Coming up with a restriction of reachability (or even some other computational problem) that

characterizes UL, might throw more light into the structure of the class UL.
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Chapter 6

Graphs with few Paths and Unambiguous

Hierarchies

In this chapter we study the power and limitations of unambiguous log-space computations. We

give an introduction of the problems that we study in this chapter, in Section 6.1. In Section 6.2

we define the various log-space classes that we consider. In Section 6.3 we prove that counting the

number of paths in a certain class of graphs is in UL. In Section 6.4 we investigate the relation be-

tween min-uniquness and the NL versus UL problem. In Section 6.5 we study certain unambiguous

hierarchies and prove upper bounds on them.

6.1 Introduction

Historically, several researchers have investigated the complexity class UL (for example, [BJLR91,

BDHM92, BHS93, AJ93]) in different contexts. Reinhardt and Allender showed that UL contains

NL non-uniformly. In [ARZ99], Allender, Reinhard, and Zhou showed that, under the (very plau-

sible) hardness assumption that deterministic linear space has functions that can not be computed

by circuits of size 2εn, the constructions given by Reinhardt and Allender can be derandomized to
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show that NL = UL [ARZ99]. As the reachability problem for directed graphs is complete for NL,

it is natural to investigate the space complexity of reachability for subclasses of directed graphs

and indeed the recent progress has been in this direction. In [BTV09], it is shown that reachability

for directed planar graphs is in UL. Subsequently, Thierauf and Wagner showed that reachability

forK3,3-free andK5-free graphs can be reduced to planar reachability in log-space [TW09]. Kynčl

and Vyskočil showed that reachability for bounded genus directed graphs also reduces to the planar

case [KV10]. Thus reachability for these classes of graphs is also in UL.

6.1.1 Our Results

We extend the study of reachability to certain other important subclasses of directed graphs in this

chapter.

Reachability in graphs with few paths

FewL, the log-space analog of the polynomial time class FewP [All86, CH90], is the class of

languages that are decided by nondeterministic log-space machines that have the property that on

any input there are at most polynomially many accepting paths [BJLR91, BDHM92]. Is FewL =

UL? As FewL ⊆ NL, this is a very interesting restriction of the NL = UL question (it is known

that FewL is in LpromiseUL [All06]). While we are unable to show that FewL ⊆ UL, we prove new

unambiguous upper bounds for complexity classes related to FewL.

As one of our main results, we show that counting the number of s-t paths in graphs where the

number of paths from s to any node is bounded by a polynomial is in the unambiguous function

class FUL.

This result immediately implies a new upper bound ReachFewL ⊆ UL. ReachFewL is a re-

striction of FewL [BJLR91]. A nondeterministic machine M is called a reach-few machine, if on

any input x and any configuration c of M(x), the number of paths from the start configuration to
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c is bounded by a polynomial. ReachFewL is the class of languages decided by a reach-few ma-

chine that is log-space bounded. Our result improves on the previous known trivial upper bound

of ReachFewL ⊆ FewL.

The class ReachFewL was also investigated by Buntrock, Hemachandra, and Siefkes [BHS93]

under the notation NspaceAmb(log n, nO(1)). In [BHS93], the authors define, for a space bound

s and an unambiguity parameter a, the class NspaceAmb(s(n), a(n)) as the class of languages

accepted by s(n) space bounded nondeterministic machines for which the number of paths from the

start configuration to any configuration is at most a(n). They show that NspaceAmb(s(n), a(n)) ⊆

Uspace(s(n) log a(n)) (hence NspaceAmb(log n,O(1)) ⊆ UL). Our method can be used to show

that NspaceAmb(s(n), a(n)) ⊆ Uspace(s(n) + log a(n)), thus substantially improving their upper

bound.

Even though our techniques do not lead to a new upper bound on FewL, we show a new upper

bound for LFew (LFew is the counting verstion of FewL and is analogous to the class Few [CH90]

in the polynomial-time setting). We show that LFew ⊆ ULFewL. This puts LFew in the second level

of FewL hierarchy.

Complexity of Min-uniqueness

Our second consideration is the notion of min-uniqueness which is a central notion in the study of

unambiguity in the log-space setting. Min-uniqueness was first used by Wigderson to show that

NL ⊆ ⊕L/poly [Wig94]. For a directed graph G and two nodes s and t, G is called st-min-unique

if the minimum length s to t path is unique (if it exists). G is min-unique with respect to s, if it is

sv-min-unique for all vertices v. While st-min-uniqueness was sufficient for Wigderson’s result,

Reinhardt and Allender used the stronger version of min-uniqueness to show that NL ⊆ UL/poly.

In particular, they essentially showed that a log-space algorithm that transforms a directed graph

into a min-unique graph with respect to the start vertex can be used to design an unambiguous

algorithm for reachability. This technique was subsequently used in [BTV09] to show that reach-
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ability for planar directed graphs is in UL. These results strongly indicate that understanding

min-uniqueness is crucial to resolving the NL versus UL problem.

Our second set of results is aimed at understanding min-uniqueness from a complexity-theoretic

point of view. First we observe that min-uniqueness is necessary to show that NL = UL: if

NL = UL, then there is a UL algorithm that gives a reachability preserving mapping from any

directed graph to another graph that is min-unique with respect to the start vertex. It is an easy

observation that Reinhardt and Allender’s technique will work even if the algorithm that makes a

directed graph min-unique is only UL computable. Thus min-uniqueness is necessary and sufficient

for showing NL = UL.

OptL is the function class defined by Àlvarez and Jenner in [AJ93] as the log-space analog of

Krentel’s OptP [Kre88]. OptL is the class of functions whose values are the maximum over all the

outputs of an NL-transducer. Àlvarez and Jenner showed that this class captures the complexity of

some natural optimization problems in the log-space setting.

Consider OptL[log n], the restriction of OptL where the function values are bounded by a poly-

nomial. Àlvarez and Jenner considered this restriction and showed that OptL[log n] = FLNL[log n]

[AJ93]. Tantau showed that “given a directed graphG and two nodes s and t, computing the length

of the shortest path from s to t” is complete for OptL[log n] [Tan03].

Here we define a new unambiguous function class UOptL[log n] (unambiguous OptL: the min-

imum is output on a unique computation path) and ask the following question: can we investigate

the notion of min-uniqueness in the context of complexity classes? We show that NL = UL is

equivalent to the question whether OptL[log n] = UOptL[log n].

SPL, the ‘gap’ version of UL, is an interesting log-space class first studied in [ARZ99]. The

authors showed that the PM-DECISION is contained in a non-uniform version of SPL. They also

show that SPL is powerful enough to contain FewL. We show that UOptL[log n] ⊆ FLSPL[log n].

Thus any language that is reducible to UOptL[log n] is in the complexity class SPL. This contrasts

with the equivalence OptL[log n] = FLNL[log n]. We also show that the class LogFew reduces to
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ReachUL

ReachFewL UL ∩ coUL

UL

FewUL

LogFewFewL

LFew

NL ∩ SPL

Figure 6.1: Relations known before.

ReachUL

ReachFewL

ReachLFew

UL ∩ coUL

UL

FewUL

LogFewFewL

LFew

UOptL[log n]

NL ∩ SPL

ULFewL

Figure 6.2: New relations.

UOptL[log n] (refer to the next section for the definition of LogFew).

Finally, we also observe that UOptL[log n] is contained in FLpromiseUL. A very interesting open

question is to show that FewL reduces to UOptL[log n].

Figures 6.1 and 6.2 depict the relations among various unambiguous and ‘few’ classes known

before and new relations that we establish in this chapter, respectively. Definitions of these com-

plexity classes are given in subsequent sections.

Unambiguous hierarchies

Since it is not known whether UL is closed under complement, it is interesting to investigate ULH;

the unambiguous log-space hierarchy over UL. We first consider the hierarchy over UOptL[log n]

and then show that the UOptL[log n] hierarchy collapses: UOptL[log n]UOptL[logn] ≤ UOptL[log n].

Since UL ≤ UOptL[log n] (with relativization) it follows from this collapse result and the result

that UOptL[log n] ⊆ FLpromiseUL, in fact ULH ⊆ LpromiseUL.

We use a combination of existing techniques for proving our results.
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6.2 Log-space complexity classes

We assume familiarity with the basics of complexity theory and in particular the log-space bounded

complexity class NL. We call a nondeterministic log-space machine an NL machine. For an NL

machine M , recall the definitions of accM(x), rejM(x) and gapM(x) from Chapter 2.

We are interested in various restrictions of NL machines with few accepting paths. In the

literature (for instance [BJLR91, BDHM92, AJ93, ARZ99]) various versions of unambiguity and

fewness have been studied. We first define them all here.

Definition 6.2.1. (Unambiguous machines) A nondeterministic log-space machine M is

- reach-unambiguous if for any input and for any configuration c, there is at most one path

from the start configuration to c. (The prefix ‘reach’ in the term indicates that the property

should hold for all configurations reachable from the start configuration.)

- unambiguous if for any input there is at most one accepting path.

- weakly unambiguous if for any input and any accepting configuration c there is at most one

path from the start configuration to c.

Definition 6.2.2. (Unambiguous classes)

- ReachUL – class of languages that are decided by reach-unambiguous machines with at most

one accepting path on any input.

- UL – class of languages that are decided by unambiguous machines.

- FewUL – class of languages that are decided by weakly unambiguous machines.

- LogFew – class of languages L for which there exists a weakly unambiguous machine M

and a log-space computable predicate R such that x ∈ L if and only if R(x, accM(x)) is

true.
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We could define a ‘reach’ version of FewUL. But that coincides with ReachUL as shown in

[BJLR91]. The following containments are easy: ReachUL ⊆ UL ⊆ FewUL ⊆ LogFew. It is also

known that FewUL is Ld(UL) (log-space disjunctive truth-table closure of UL) [BJLR91].

By relaxing the unambiguity condition to a polynomial bound on the number of paths, we get

analogous ‘few’ classes.

We are interested in graphs with a bound on the number of paths. We use the following notation

due to Buntrock, Hemachandra and Siefkes [BHS93] to quantify ambiguity in a graph.

Definition 6.2.3. For a directed acyclic graph G and a node s, we say G is k-ambiguous with

respect to s, if for any node v, the number of paths from s to v is bounded by k.

Definition 6.2.4. (Few machines) A nondeterministic log-space machine M is a

- reach-few machine if there is a polynomial p so that on any input x the configuration graph

of M on x is p(|x|)-ambiguous with respect to the start configuration.

- few machine if there is a polynomial p so that on any input x there are at most p(|x|) accepting

paths.

Definition 6.2.5. (Few classes)

- ReachFewL – class of languages that are decided by reach-few machines.

- ReachLFew – class of languages L for which there exists a reach-few machine M and a

log-space computable predicate R such that x ∈ L if and only if R(x, accM(x)) is true.

- FewL – class of languages that are decided by few-machines.

- LFew – class of languages L for which there exists a few machine M and a log-space com-

putable predicate R such that x ∈ L if and only if R(x, accM(x)) is true.
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As mentioned earlier, ReachFewL is the same class as NspaceAmb(log n, nO(1)) defined in

[BHS93]. In [BJLR91], the authors observe that ReachFewL ⊆ LogDCFL. This is because a depth

first search of a reach-few machine can be implemented in LogDCFL.

The following containments follow from the definitions: ReachFewL ⊆ FewL ⊆ LFew. It is

also clear that all the above-defined classes are contained in LFew and it is shown in [ARZ99] that

LFew ⊆ NL. Thus all these classes are contained in NL. We also consider the class SPL – the

‘gap’ version of UL. SPL is contained in ⊕L (in fact all ‘mod’ classes) and it is big enough to

contain LFew [ARZ99]. A nonuniform version of SPL contains the matching problem [ARZ99].

We use the facts that LUL∩coUL = UL ∩ coUL and FULUL∩coUL = FUL in our chapter. The proof of

these uses standard techniques, refer to [TW10] for a proof of the former equivalence and the latter

equivalence can be shown similarly.

We will use metric reductions for functional reducibility. A function f is log-space metric

reducible to function g, if there are log-space computable functions h1 and h2 so that f(x) =

h1(x, g(h2(x))).

6.3 Reachability in graphs with few paths

In this section we show new upper bounds on the space needed by an unambiguous machine for

reachability problems over graphs with a polynomial number of paths. Our main technical tool is

the following theorem due to Reinhardt and Allender.

The following theorem from [RA00] states that the reachability problem can be solved unam-

biguously for classes of graphs that are min-unique with respect to the start vertex. Moreover, we

can also check whether a graph is min-unique unambiguously. We give a proof of a version of

Theorem 6.3.1 in Chapter 2.

Theorem 6.3.1 ([RA00]). There is an unambiguous nondeterministic log-space machine M that

given a directed graph G and two vertices s and t as input, does the following:
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1. If G is not min-unique with respect to s, then M outputs ‘not min-unique’ on a unique path.

2. If G is min-unique with respect to s, then M accepts on a unique path if there is a directed

path from s to t, and rejects on a unique path if there are no paths from s to t.

We can also define the notion of min-uniqueness for weighted graphs. But this is equivalent to

the above definition for our purposes if the weights are positive and polynomially bounded as we

can replace an edge with weight k, with a path of length k. In fact we will some times use this

definition for weighted graphs without explicitly mentioning it. Thus for showing that NL = UL

it is sufficient to come up with a positive and polynomially bounded weight function that is UL-

computable and makes a directed graph min-unique with respect to the start vertex. For graphs

with a polynomial number of paths, we can use known hashing techniques to make the graph min-

unique. In particular, we use the hashing theorem due to Fredman, Komlós and Szemerédi based

on primes [FKS84]. The statement of the theorem is given in Chapter 2 in Theorem 2.3.4.

All our upper bounds in this section are based on the following theorem.

Theorem 6.3.2. For any polynomial q(n), there is a nondeterministic log-space bounded Turing

machine M so that, for any reachability instance 〈G, s, t〉, if G is q(n)-ambiguous with respect to

s, then M will output the number of paths from s to t on a unique path (all other paths rejects).

Proof. First we show that the reachability question in a q(n)-ambiguous graph can be decided in

an unambiguous manner. We do this by making such graphs min-unique with respect to s and

applying Theorem 6.3.1.

Theorem 6.3.3. For any polynomial q(n), there is a nondeterministic log-space bounded Turing

machine M so that, for any reachability instance 〈G, s, t〉, if G is q(n)-ambiguous with respect to

s, then M will accept on a unique path if there is a path from s to t. If there are no s to t paths, M

will reject on a unique path. All other paths will output ’?’.
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Proof. (of Theorem 6.3.3). Let 〈G, s, t〉 be an instance of reachability. Consider the edges of

G in the lexicographical order. For the ith edge give a weight 2i. This is a very good weight

function that assigns every path with unique weight. The problem is that it is not polynomially

bounded. We will give a polynomial number of weight functions that are log-space computable

and polynomially bounded so that for one of themGwill be min-unique with respect to s. Since by

Theorem 6.3.1 it is possible to check whether a given weight function makes the graph min-unique

using a UL∩coUL computation, we can go through each weight function sequentially. Let pj be the

jth prime number. Then the jth weight function (for 1 ≤ j ≤ q′(n) for an appropriate polynomial

q′ dictated by Theorem 2.3.4) is wj(ei) = 2i( mod pj). It follows from Theorem 2.3.4 that under

some wj all paths from s to t will have different weights. Hence the graph is min-unique under

this weight function.

(Proof of Theorem 6.3.2 cont.) Let G be the class of weighted graphs which are q(n)-ambiguous

with respect to a fixed vertex s, such that every path starting at s has a distinct weight. Let A be the

‘promise language’ consisting of tuples (G, s, t, i), given the promise that G ∈ G such that there

exists a path of length i from s to t. In particular, such a graph G is min-unique. Note that A is in

promiseUL,1 that is, there exists an NL machine that has zero or one accepting path on every input

that satisfies the promise. Also note that, given a q(n)-ambiguous graph G, with respect to one of

the weight functions defined in Theorem 6.3.3, G is in G.

In the above proof, a ‘good’ weight function actually does more than making the graph min-

unique: it makes weights of every path distinct. With this stronger property we can count the

number of paths by making queries of the form “is there a path of length i from s to t” to the lan-

guage A, for all i ≤ N and by counting the number of positive answers (where N is the maximum

weight possible and is bounded by a polynomial). It is important to observe that whenever we

make a query to A, the query does satisfy the necessary promise.
1We define promiseUL later in Definition 6.4.4
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But among polynomially many weight functions we have to reject those that do not give distinct

weights to paths from s to t. Theorem 6.3.1 can only be used to reject weight functions that do not

make the graph min-unique. It is possible that some weight function makes the graph min-unique

with respect to s but the graph may still have two paths from s to t of the same weight. We use the

unambiguous machine for deciding reachability in order to check this more strict condition.

Let G′ denote the standard layered graph of G: G′ will have n layers. For a vertex u of G

there will be copy ui in the ith layer of G′. There is an edge from ui in the ith layer to vi+1 in the

(i + 1)th layer if (u, v) is an edge in G. Notice that no new paths are added in this layered graph.

The following claim is straightforward to see.

Claim 6.3.4. If G is k-ambiguous, then G′ is also k-ambiguous. Moreover, there is an s to t path

of length i in G if and only if there is an s1 to ti path in G′.

Hence deciding reachability in G′ can also be done unambiguously and checking whether G

has an s to t path of weight exactly i can be done by reachability from s1 to ti in G′.

In order to check whether w is a ‘bad’ weight function, we need to check whether there are

two paths from s to t of the same weight. We can use the following equivalence for checking this

condition. α and β are integer values bounded by a polynomial.

w is bad ⇔ ∃α∃(e = uv)∃β[∃ a path of length β from s to u] ∧ [∃ a path of weight

α− w(e)− β from v to t] ∧ [∃ a path of length α from s to t in G− {e}]

Note that the total number of possible values of α, β and e are bounded by polynomials in n.

Thus we can decide whether a weight function w is ‘bad’ or not by making polynomially many

reachability queries (that is for each choice of α, β and e). Once we get a good weight function w,

we can again use reachability queries to compute the number of distinct paths from s to t using a

deterministic log-space machine. Now using the fact that LUL∩coUL = UL ∩ coUL [TW10] we get

the desired result. This proves Theorem 6.3.2.
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Theorem 6.3.5. Let L ∈ ReachFewL be accepted by a reach-few machine M . Then the #L

function accM(x) is computable in FLUL∩coUL.

Proof. By definition, the configuration graph of a machine accepting a ReachFewL language is

q(n)-ambiguous for some fixed polynomial q.

Corollary 6.3.6. ReachFewL ⊆ ReachLFew ⊆ UL ∩ coUL

Our method can be used to show that NspaceAmb(s(n), a(n)) ⊆ Uspace(s(n) + log a(n)).

This substantially improves the earlier known upper bound in [BHS93] that

NspaceAmb(s(n), a(n)) ⊆ Uspace(s(n) log a(n)) .

Theorem 6.3.7. For a space bound s(n) ≥ log n and ambiguity parameter a(n) computable in

space s(n) so that a(n) = 2O(s(n)), NspaceAmb(s(n), a(n)) ⊆ Uspace(s(n) + log a(n)).

Theorem 6.3.8. Let L ∈ FewL be accepted by a few-machine M . Then the #L function accM(x)

is computable in FULFewL.

Proof. For an input x, let G denote the configuration graph of M(x) and let cs be the start configu-

ration and ct be the unique accepting configuration. Let p be the polynomial bounding the number

of paths from cs to ct. First we will present an FLFewL computation that outputs a graph H that is

p(n)-ambiguous with respect to cs which preserves the number of paths from cs to ct. Combining

this reduction with the unambiguous machine from Theorem 6.3.2 we will get the required upper

bound.

We say a configuration c is useful if it is in some cs to ct path and c is useless if it is not useful. In

the reduced graphH , we will remove all the useless nodes fromG, and the edges incident on them.

Clearly, all the cs-to-ct paths in G will be preserved in H . Moreover, H will be p(n)-ambiguous.

We will design a FewL language for detecting whether a configuration is useful or not. For a

configuration c ∈ G, consider the following graph Gc. Take two copies of G: G1 and G2. In G1

delete all the outgoing edges from c. In G2, delete all the incoming edges to c. Now add a directed
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edge from the copy of c in G1 to the copy of c in G2 to get a single graph H . The following claim

is easy to verify.

Claim 6.3.9. c is useless if and only if there is a path from cs to ct in G′x. Moreover, if c is useful,

then the number of paths from cs to ct is at most p(n).

Thus the following language L′ = {(x, c) | there is a path from cs to ct in Hx,c} is in FewL.

The log-space machine, for each configuration c, checks whether c is useful or not by querying L′

and delete it from G if it is useless. The output graph G′ will not have any useless nodes and hence

will be p(n)-ambiguous.

As a corollary, we get the following new upper bound on the complexity class LFew. Earlier it

was known to be in NL ∩ SPL [ARZ99].

Corollary 6.3.10. LFew ⊆ ULFewL

Similar ideas together with the fact that planar reachability is in UL∩ coUL [BTV09] also gives

the following upper bound on couting the number of paths in planar directed acyclic graphs with a

polynomial bound on the number of paths. This improves the upper bound of UAuxPDA for this

problem given by Limaye, Mahajan and Nimbhorkar [LMN10].

Theorem 6.3.11. For any polynomial p, there is an unambiguous machine M that given a planar

directed acyclic graph G and two nodes s and t as input, (a) outputs the number of s to t paths

if the number of such paths are bounded by p(n) (b) outputs “more than p(n) paths” if there are

more than p(n) s to t paths.

Proof. Consider the edge weight functions defined in Theorem 6.3.3. With respect to each weight

function, we can check whether the number of s to t paths is bounded by p(n) in an unambiguous

manner by considering two cases: (i) if none of the weight functions are good, which can be

checked unambiguously, then clearly there are more than p(n) number of paths, (ii) if a weight
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function is good, then we can in fact count the number of paths from s to t and see if it is greater

than p(n) by an unambiguous algorithm that makes reachability queries (in UL ∩ coUL for planar

graphs). Since FULUL∩coUL is in FUL the theorem follows.

6.4 Complexity of min-uniqueness

Let f be a polynomially bounded, positive-valued, edge weight function (that is a function that

takes an edge as input and outputs an integer which we call the weight of the edge). Then by an

abuse of notation, for any directed graph G, we shall denote f(G) to be the weighted directed

graph obtained by taking every edge e in G and replacing it with the weighted edge having weight

f(e).

Theorem 6.3.1 states that min-uniqueness is sufficient for showing NL = UL. Next we prove

that if NL = UL then there is a UL-computable weight function that makes any directed acyclic

graph min-unique with respect to the start vertex. Thus min-uniqueness is necessary and sufficient

for showing NL = UL.

Theorem 6.4.1. NL = UL if and only if there is a polynomially-bounded UL-computable weight

function f so that for any directed acyclic graphs G, f(G) is min-unique with respect to s.

Proof. The reverse direction follows from the above theorem due to Reinhardt and Allender. For

the other direction the idea is to compute a spanning tree ofG rooted at s using reachability queries.

Since NL is closed under complement, under the assumption that NL = UL, reachability is in UL

(since UL = coUL under the above assumption). Thus the following language A = {(G, s, v, k) |

there is a path from s to v of length ≤ k} is in UL.

The tree can be described as follows. We say that a vertex v is in level k if the minimum length

path from s to v is of length k. A directed edge (u, v) is in the tree if for some k (1) v is in level k

(2) u is the lexicographically first vertex in level k − 1 so that (u, v) is an edge.
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It is clear that this is indeed a well defined tree and deciding whether an edge e = (u, v) is in

this tree is in LA ⊆ UL.

Now for each edge in the tree give a weight 1. For the rest of the edges give a weight n2. It is

clear that the shortest path from a vertex with respect to this weight function is min-unique with

respect to s and it is computable using a UL-transducer.

Àlvarez and Jenner [AJ93] define OptL as the log-space analog of Krental’s OptP [Kre88].

They show that OptL captures the complexity of some natural optimization problems in the log-

space setting (e.g. computing lexicographically maximum path of length at most n from s to t

in a directed graph). They also consider OptL[log n] where the function values are bounded by

a polynomial (hence has O(log n) bit representation). Here we revisit the class OptL [AJ93] and

study it in relation to the notion of min-uniqueness.

Definition 6.4.1. Let M be an NL-transducer. An output on a computation path of M is valid if it

halts in an accepting state. For any input x, optM(x) is the minimum value over all valid outputs

of M on x. If all the paths reject, then optM(x) =∞. Further, M is called min-unique if for all x

either M(x) rejects on all paths or M(x) outputs the minimum value on a unique path.

Definition 6.4.2. A function f is in OptL if there exists a NL-transducer M so that for any x,

f(x) = optM(x). A function f is in UOptL if there is a min-unique nondeterministic transducer

M so that for any x, f(x) = optM(x). Define OptL[log n] and UOptL[log n] as the restriction of

OptL and UOptL where the output of the transducers are bounded by O(log n) bits.

Remark 6.4.3. We can also define the class OptL[log n] (similarly UOptL[log n]) in terms of a

function that gives the maximum value over all valid outputs of M on x, instead of the minimum

value. It is easy to see that the two classes (corresponding to maximum and minimum) of functions

we thus obtain are equivalent via a log-space reduction by subtracting the value of the f(x) from

a sufficiently large polynomial whose value is greater than the maximum possible output value of

f . For the sake of convenience, we use both the notions in this paper.
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We next observe that if we restrict the output to be of O(log n) bits, the classes OptL and

UOptL coincide if and only if NL = UL.

We will need the following proposition shown in [AJ93]. FLNL[log n] denotes the subclass of

FLNL where the output length is bounded by O(log n).

Proposition 6.4.2 ([AJ93]). OptL[log n] = FLNL[log n].

Theorem 6.4.3. OptL[log n] = UOptL[log n] if and only if NL = UL.

Proof. NL = UL ⇒ OptL[log n] = UOptL[log n]: Since NL is closed under complement, if

NL = UL then NL = UL ∩ coUL. Hence OptL[log n] = FLNL[log n] = FLUL∩coUL[log n]. For a

function f ∈ OptL, let M be the FL machine that makes queries to a language L ∈ UL∩ coUL and

computes f . Let N be the unambiguous machine that decided L. The min-unique transducer M ′

will simulate M and whenever a query y is made to L, it will simulate N on y and continue only

on the unique path where it has an answer. In the end M ′ will output the value computed by M on

a unique path.

OptL[log n] = UOptL[log n]⇒ NL = UL: Let L ∈ NL. Since NL is closed under complement,

there is a nondeterministic machine M that on input x accepts on some path and outputs ‘?’ on all

other paths if x ∈ L, and rejects on some paths and outputs ‘?’ on all other paths if x 6∈ L. We will

show that L ∈ coUL. Consider the NL-transducer which on input x simulates M(x) and outputs

1 if M accepts and outputs 0 if M rejects and outputs a large value on paths with ‘?’. Let N be

a min-unique machine that computes this OptL function. Thus if x 6∈ L then N(x) has a unique

path on which it outputs 0 (and there may be paths on which it outputs 1). If x ∈ L then there is no

path on which it outputs 0. Now consider the machine N ′ that simulates N and if N outputs 0 then

it accepts. For all other values N ′ rejects. Clearly this is an unambiguous machine that decides

L.

As UOptL[log n] ⊆ OptL[log n], UOptL[log n] is in FLNL[log n]. Here we show that UOptL[log n]

can be computed using a SPL oracle. Thus if NL reduces to UOptL[log n], then NL ⊆ SPL.
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Theorem 6.4.4. UOptL[log n] ⊆ FLSPL[log n]

Proof. Let f ∈ UOptL[log n] and let M be the min-unique NL-transducer that witnesses that

f ∈ UOptL[log n] and let p be the polynomial bounding the value of f . Consider the following

language L:

L = {(x, i) | f(x) = i and i ≤ p(|x|)}.

We will show that L ∈ SPL. Then in order to compute f a log-space machine will ask polyno-

mially many queries (x, i) for 1 ≤ i ≤ p(n).

Consider the following machine N : on input x and i ≤ p(n), it simulates M on input x and

accepts if and only if M halts with an output at most i. Let g(x, i) be the number of accepting

paths of N on input (x, i). Notice that for i < f(x), g(x, i) = 0, for i = f(x) then g(x, i) = 1, and

for i > f(x), g(x, i) ≥ 1.

Now consider the GapL function h(x, i) = g(x, i)
∏i−1

j=1(1 − g(x, j)) (to know more about

closure properties of GapL functions see [AO94]). It follows that h(x, i) = 1 exactly when f(x) =

i. For the rest of i, h(x, i) = 0. Thus L ∈ SPL.

An interesting question is whether FewL reduces to UOptL. We are not able to show this, but

we show that the class LogFew reduces to UOptL.

Theorem 6.4.5. LogFew ≤ UOptL[log n] (under metric reductions)

Proof. In this proof we define the class UOptL[log n] as a maximization class (see Remark 6.4.3).

LetL be a language in LogFew. LetM be a weakly unambiguous machine that decidesL. Consider

the NL-transducer N that on input x computes the number of accepting paths of M(x): N(x)

guesses an integer l so that 1 ≤ l ≤ p(n) (where p is the polynomial bounding the number of

accepting configurations) and then guesses l distinct accepting paths to l accepting configurations,

in a lexicographically increasing order, and accepts and outputs l if all of them accept. Clearly N
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outputs accM(x) on exactly one computation path and all other paths that accept will have output

less than accM(x).

Definition 6.4.4. (Promise classes)

- A promise language is a tuple (Iy, In), where Iy and In are disjoint subsets of {0, 1}∗ (col-

lectively known as the promise instances).

- A promise language (Iy, In) is said to be in promiseUL if there is an NL machine M , such

that M has a unique accepting path for instances in Iy, and no accepting paths for instances

in In, but could have any number of accepting paths for all other instances.

- A language A is said to be consistent with a promise language (Iy, In), if x ∈ Iy =⇒ x ∈ A

and x ∈ In =⇒ x /∈ A.

- f is said to be in FLpromiseUL if there exists a promise language (Iy, In) in promiseUL and

a log-space transducer M such that for every language A consistent with (Iy, In), f(x) =

MA(x) for all x ∈ {0, 1}∗.

We next show that a function in UOptL[log n] is also contained in FLpromiseUL.

Theorem 6.4.6. UOptL[log n] ⊆ FLpromiseUL

Proof. In this proof we define the class UOptL[log n] as a maximization class (see Remark 6.4.3).

Let f be a UOptL[log n] function computed by a UOptL[log n] machine. We will first define a

promiseUL problem.

The instances of the problem are: 〈M,x, k〉 where M is a nondeterministic log-space bounded

transducer, k is an integer and x is an input to M . The promise language (Iy, In) of ‘Yes’ and ‘No’

instances is defined as follows.

Iy = {〈M,x, k〉 so that M is a UOptL[log n] machine and optM(x) = k}

In = {〈M,x, k〉 so that M is a UOptL[log n] machine and optM(x) < k}
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Now an NL machine on input 〈M,x, k〉 simulates M(x) and accepts if the output is k and

rejects otherwise.

On Iy instances it accepts on a unique path. In instances it rejects on all paths.

Now consider a UOptL[log n] function computed by a machineM . An FL machine asks queries

〈M,x, k〉 starting from the largest possible k and comes down until it gets a yes answer at which

point it outputs that k. The FL machine is only asking queries in the promised region.

6.5 Unambiguous hierarchies

Since UL is not known to be closed under complement, it is interesting to study the complexity

class hierarchy over UL which can be defined in natural way: ULH1 = UL and ULH(i+1) = ULULHi .

Then ULH =
⋃
i ULHi. We show that ULH ⊆ LpromiseUL. For showing this we in fact first show that

the hierarchy over UOptL[log n] collapses. We then use the fact that UOptL[log n] ⊆ FLpromiseUL

from Theorem 6.4.6.

We assume RST-relativizations when dealing with nondeterministic log-space oracle classes.

When the machine enters the query state it behaves deterministically until the entire query is writ-

ten. One important consequence of this is that, since the number of configurations of a log-space

machine is polynomial, the total number of queries that such a machine can make on any input is

polynomially bounded. Moreover, the set of all potential queries that can be asked by a nondeter-

ministic machine on any specific input can be computed by a deterministic log-space machine.

Theorem 6.5.1. UOptL[log n] hierarchy collapses. That is, UOptL[log n]UOptL[logn] ≤ UOptL[log n]

under metric reductions.

Proof. We use an enhanced census technique, similar to the ones that are used to prove collapses

of hierarchies over log-space classes [Hem89, SW88, Ogi95, ABO99]. But since we are dealing
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with function classes we need to be a bit more careful. Also, in this proof we define the class

UOptL[log n] as a maximization class (see Remark 6.4.3).

Let f be a UOptL[log n] function computed by an oracle machine M making oracle calls to

a UOptL[log n] function g. Let N be a UOptL[log n] machine computing g. We will show that f

reduces to a UOptL[log n] function h. An important consideration (which makes the proof a bit

more complicated) is that f and g could be partial and on the inputs where the value is not defined,

the corresponding machines reject on all paths (and hence do not have the unambiguous behavior).

Consider the computation of M(x). Let Qx = {q1, . . . , qnc} be all the potential queries of

M(x) to the function g. Let Dx = {q | q ∈ Qx and g(q) is defined}. Let Sx =
∑

q∈Dx
g(x). That

is, Sx is the sum of all the values of the function g on queries on which g is defined. This value is

polynomially bounded.

Consider the function h, which has two components, defined as h(x) = 〈Sx, f(x)〉 (obtained

by concatenating Sx and f(x)). Clearly given x and h(x), we can decode f(x) in log-space and

hence f ≤ h. We will show that h(x) is a UOptL[log n] function.

Consider the following nondeterministic transducer Mh which operates in two phases, on input

x. In the first phase, on input x, Mh tries to compute the sum Sx. Towards this Mh initializes a

sum S = 0 and guesses a subset A ⊆ Qx of potential queries and simulates N on this subset: that

is, Mh generates the potential queries q ∈ Qx one by one, for each of q, it guesses 0 or 1. If it

guessed 0 (meaning g is not defined) it goes to the next query. If the guess is 1 then it guesses a

computation path ρ of N on q. If the path rejects, Mh rejects. Otherwise it updates S = S+ρN(x)

(that is, it adds the value computed byN(q) on this path ρ to S). We claim that after the first phase,

Mh will have computed Sx on a unique path, and all other paths the value computed will be less

than Sx. Mh will output this sum S as the first component of the function. Since the highest value

Sx is output on a unique path, for the second phase we will ignore the computation on any path

that is a continuation of the paths that compute a value S < Sx.

In the second phase Mh will start simulating M(x). For each query q asked by M , Mh will
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simulate the answer as follows (if g(q) is defined, thenMh could have just guessed a path of N and

continued; but a problem arises on queries for which the oracle function is undefined and hence

the computation does not have an unambiguous behavior; we need to take care of this). Mh again

guesses a subset A of queries as in phase one and for each of the queries in A, it also guesses a

computation path ρ, of N and computes the sum S of values for each of the queries. It continues

the computation only on the unique path where S = Sx. For this path if q is not in A, then Mh

treats the answer to the query as “not defined” and continues. If q is in A then Mh treats the value

computed byN(q) on the path ρ as answer to the oracle query q. Finally, Mh outputs 〈Sx, v〉where

v is the value that N computes on a path.

Corollary 6.5.2. ULH ⊆ LpromiseUL

Proof. Follows from Theorem 6.4.6 and Theorem 6.5.1.

6.6 Conclusion

In this chapter, we proved certain important results on log-space unambiguity. We established that

min-uniqueness is the only way to show that NL = UL. Our results raised some very intriguing

questions as well. We showed that ReachFewL ⊆ UL, but is FewL also in UL? Or at the very least,

is FewL in UOptL[log n]? Also is UL closed under complement?
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Chapter 7

Bipartite Planar Matching in Unambiguous

Logarithmic Space

In this chapter we study the perfect matching and some related problems in bipartite planar graphs.

We give a brief introduction of the problems that we study in Section 7.1. In Section 7.2 we state

the necessary definitions and terminology that we use in the rest of this chapter. In Section 7.3, we

present the algorithms to decide the existence of a perfect matching and compute one if it exists, in

a bipartite planar graph. In Section 7.4, we show that the algorithms discussed in Section 7.3 can

be done in unambiguous log-space. In Section 7.5 we study some related problems and establish

certain upper bounds on them as well. In particular we show that the even path problem is in UL.

7.1 Introduction

Historically, matching problems have been occurring as central problems in algorithms and com-

plexity theory. Edmonds blossom algorithm [Edm65] for computing a maximum cardinality match-

ing (MAX-MATCH) was one of the first examples of a non-trivial polynomial time algorithm. It

had a considerable share in initiating the study of efficient computation, including the class P it-



100

self; Valiant’s #P-hardness [Val79] for counting perfect matchings in bipartite graphs provided

surprising insights into the counting complexity classes. The question of whether or not a graph

has a perfect matching is also well-studied (we denote this problem as PM). The study of whether

or not PM is well parallelizable has yielded powerful tools such as isolating lemma [MVV87] that

have found numerous applications elsewhere.

The rich combinatorial structure of matching problems combined with their potential to serve

as central problems in the field invites their study from several perspectives. The focus of this

chapter is on the space complexity of the matching problems. The best known upper bound for

PM (and other matching problems mentioned above) is non-uniform SPL [ARZ99] whereas the

best hardness known is NL-hardness [CSV84].

7.1.1 Matching problems in planar graphs

A well known example where planarity is a boon is that of counting perfect matchings. The

problem in planar graphs is in P [Kas67] as opposed to being #P-hard in general graphs [Val79].

Counting perfect matchings in planar graphs can in fact be done in NC [Vaz88]; thus PM-DECISION

in planar graphs is in NC. In contrast, constructing a perfect matching (PM-CONSTRUCT) in NC

remains an outstanding open question, whereas the bipartite planar case is known to be in NC

[MN89].

The space complexity of matching problems in planar graphs was first studied by Datta, Kulka-

rni, and Roy [DKR10] where it was shown that finding a minimum weight perfect matching

(MIN-WT-PM) in bipartite planar graphs is in SPL. This result was recently generalized to

bounded genus bipartite graphs by Datta, Kulkarni, Tewari, and Vinodchandran [DKTV11]. Kulka-

rni [Kul09] shows that MIN-WT-PM in planar graphs (not necessarily bipartite) is NL-hard. The

only known hardness for PM in planar graphs is L-hardness (see for instance [DKLM10]). For

bipartite planar graphs, nothing better than L-hardness is known for any matching problem.
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Table 7.1: Space Complexity of Matching Problems in Planar Graphs

Problem in Planar Graphs Upper Bound Hardness
PM-CONSTRUCT PSPACE 1 L
MAX-MATCH PSPACE L
MIN-WT-PM LC=L [Kas67] NL [Kul09]
PM-DECISION LC=L [Kas67] L
bipartite MAX-MATCH LC=L [Hoa10] L
bipartite MIN-WT-PM SPL [DKR10] L
bipartite HALL-OBS (CONSTRUCT) NL (new) L
bipartite HALL-OBS (DECISION) coUL (new) L
bipartite PM UL (new) L
bipartite UPM UL (new) L [DKLM10]

Recall the problem of reachability in directed graphs. We know that directed reachability is NL-

complete. It turns out that reachability in planar graphs reduces (in log-space) to PM in bipartite

planar graphs [DKLM10]; the former was proved to be in UL ∩ coUL by Bourke, Tewari, and

Vinodchandran [BTV09]. In this chapter we show that the latter is in UL, leaving the coUL bound

as an intriguing open question. Table 7.1.2 records the current knowledge (including the current

results) about the space complexity of matching problems in planar graphs.

7.1.2 The Hall-obstacle problem

Hall’s Theorem (see for instance [LP86]) asserts that a bipartite graph G = (A ∪ B,E) has a

perfect matching if and only |A| = |B| and for every S ⊆ A : |N(S)| ≥ |S|, where N(S) :=

{v ∈ B | ∃u ∈ A : (u, v) ∈ E}. A Hall-obstacle in a bipartite graph G = (A ∪ B,E) is a

set S ⊆ A such that |N(S)| < |S|. We consider the following computational problems related to

Hall-obstacle:

- HALL-OBS (DECISION) : decide if a bipartite G contains a Hall-obstacle.

- HALL-OBS (CONSTRUCT) : construct a Hall-obstacle in a bipartite G (if exists).
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7.1.3 Our results

Theorem 7.1.1. In bipartite planar graphs:

(a) PM-DECISION and PM-CONSTRUCT are in UL (the latter is in the functional version of UL);

(b) HALL-OBS (DECISION) is in coUL;

(c) HALL-OBS (CONSTRUCT) is in NL.

We build on two key algorithms: (i) Miller and Naor’s algorithm [MN89] for perfect matching

in bipartite planar graphs; (ii) Reinhardt and Allender’s [RA00] UL algorithm for computing the

shortest path in min-unique graphs. Miller and Naor reduce the PM-DECISION in planar graphs

to the following problem in directed planar graphs: NEG-CYCLE (DECISION) problem - given a

directed graph with polynomially bounded edge-weights, decide whether or not the graph contains

a negative weight cycle. We observe that this reduction works in log-space and NEG-CYCLE prob-

lem is in NL. This immediately yields an NL bound for perfect matching in bipartite planar graphs.

To see that the bound can be brought down to UL in part (a), we first provide a technical exten-

sion of (ii) when the graph does not contain any negative weight cycles (it may contain negative

weight edges though). A simple but subtle combination of (i) and (ii) then yields the desired result.

Part (b) is just the complement of PM-DECISION and hence trivially in coUL. For part (c), we

argue that via a simple adaptation of Miller and Naor’s algorithm, the NEG-CYCLE directly corre-

sponds to a Hall-obstacle. To the best of our knowledge this is the first time a bound on the space

complexity (and the parallel complexity) of constructing Hall-obstacle in bipartite planar graphs is

being noted. As opposed to [KMV08] and [DKR10], our space bounded algorithms do not require

determinant computation as a subroutine, instead we make use of a variant of planar reachability.

However, for the weighted case we do not know how to improve upon the SPL bound in [DKR10].

Let EXACT-PM (DECISION) denote the problem of deciding, given an integer k, whether or

not a graph G with edges colored Red or Blue contains a perfect matching with exactly k Red

edges. This problem was first posed by Papadimitriou and Yannakakis [PY82]. It is known to be in
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RNC [MVV87] but not known to be in P. We consider the following relaxation of the EXACT-PM

problem: let EVEN-PM (DECISION) denote the problem of deciding whether or not a graph G

with edges colored Red or Blue contains a perfect matching with even number of Red edges. In

this chapter, we observe the following:

Theorem 7.1.2. (a) EVEN-PM in bipartite graphs is in P;

(b) EVEN-PM in bipartite planar graphs is in NL.

We also consider EVEN-PATH problem: deciding whether or not there is a directed path of

even length between two specified vertices. EVEN-PATH is NP-complete [LP83] but restricted to

planar graphs it is in P [Ned99]. In DAG, the problem is NL-complete. EVEN-PATH problem

in planar DAG can be viewed as a relaxation of the following problem, which is NL-complete in

planar DAG [Kul09]: RED-BLUE-PATH problem - given a directed graph with edges colored Red

or Blue, decide whether or not there is a (simple) path between two specified vertices such that any

two consecutive edges in the path are of two different colors. Here we show that:

Theorem 7.1.3. EVEN-PATH in planar DAG is in UL.

A motivation to study whether EVEN-PATH in planar DAG is in UL is the hope to develop

new techniques to prove RED-BLUE-PATH in planar DAG is in UL, and thus NL = UL. Indeed,

our proof of the UL bound for EVEN-PATH in planar DAG combines two different isolation tech-

niques ([BTV09], [Hoa10]) in a non-obvious way. In the process, we also give a simple log-space

procedure to obtain generalized BTV weights (see Section 7.5.2) in planar graphs without going

through any piecewise linear embedding of the graph. Our procedure is inspired by the subroutine

of computing pseudo-flow in Miller and Naor’s algorithm and it might be of independent interest.
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7.2 Preliminaries

See for instance [Vol99] for definitions of standard complexity classes. It is known that UL ⊆

NL ⊆ NC ⊆ P and UL ⊆ SPL (See Proposition 2.2.1). It is also known that SPL ⊆ ⊕L ⊆ NC. As

of now, NL and SPL as well as NL and ⊕L are incomparable.

7.2.1 Flow terminology

An undirected edge is a two element unordered set {u, v} such that u, v ∈ V. An undirected graph

G = (V,E) consists of a set V of vertices and a set E of undirected edges. An arc is an ordered

tuple (u, v) ∈ V × V . A directed graph
−→
G = (V,

−→
E ) consists of a set V of vertices and a set

−→
E ⊆ V × V of arcs. Given an undirected graph G = (U, V ), its directed version is a directed

graph
←→
G = (V,

←→
E ) where

←→
E := {(u, v) | {u, v} ∈ E}.

Definition 7.2.1 (Capacity demand graph). A capacity-demand graph is a triple (G, c, d) where

G = (V,E); every arc (u, v) ∈
←→
E is assigned a real value c(u, v) called the capacity of the arc

and every vertex v ∈ V is assigned a real value d(v) called the demand at the vertex.

Definition 7.2.2. (Flow)

- A pseudo-flow in a capacity-demand graph (G, c, d) is a function f :
←→
E → R such that:

1. for every arc (u, v) ∈
←→
E , we have:

(skew-symmetry) f(u, v) = −f(v, u),

and

2. for every vertex v ∈ V, we have:

(demands met)
∑

w∈V :(v,w)∈
←→
E

f(v, w) = d(v).
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- A flow in a capacity-demand graph (G, c, d) is a function f :
←→
E → R such that:

1. f is a pseudo-flow in (G, c, d), and

2. for every (u, v) ∈
←→
E , we have:

(capacity constraints satisfied) f(u, v) ≤ c(u, v).

- A zero-demand graph (G, c) is a capacity-demand graph in which the demand at every vertex

is zero.

It is important to note that, in this chapter we only study flows that have integral values. There-

fore the term flow means integral flow, unless otherwise specified.

Definition 7.2.3 (Directed Dual). Let G be an undirected planar graph. Fix an embedding of G in

the plane. Note that, this induces an embedding on
←→
G where one can imagine the arc (u, v) lying

on top of the arc (v, u). Let G∗ denote the dual of G with respect to the embedding. The directed

dual of G is the directed version of G∗ denoted by
←→
G∗. The arcs of

←→
G and that of

←→
G∗ are in one to

one correspondence as follows: an arc (u, v) ∈
←→
G corresponds to the arc (u∗, v∗) ∈

←→
G∗, where u∗

and v∗ are the faces in
←→
G to the left and and right of the arc (u, v) respectively.

7.2.2 Important results

Below we state some results from earlier papers that we use to prove our theorems.

Proposition 7.2.1 (folklore, see for instance [Has81]). Let (G, c) be a zero-demand graph. Let f

be a flow in (G, c). If C∗ = (e∗1, . . . , e
∗
k) is a directed cycle in

←→
G∗, then

∑
e:e∗∈C∗

f(e) = 0.
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Proof. The cycle C∗ defines a cut, V = V1 ∪ V2, in G, where the vertices in V1 lie inside C∗

and the vertices in V2 lie outside2, and for every arc e∗i , without loss of generality assume that the

corresponding primal arc ei = (ui, vi) has ui ∈ V1 and vi ∈ V2. Since G is a planar embedding,

the set of arcs {ei}i∈[k] are the only cut edges from V1 to V2. Now,

0 =
∑
u∈V1

d(v) =
∑
u∈V1

∑
v∈V :(u,v)∈

←→
E

f(u, v)

=
∑
u∈V1

 ∑
v∈V1:(v,w)∈

←→
E

f(u, v) +
∑

v∈V2:(v,w)∈
←→
E

f(u, v)


=

∑
u∈V1

∑
v∈V1:(v,w)∈

←→
E

f(u, v) +
∑
u∈V1

∑
v∈V2:(v,w)∈

←→
E

f(u, v)

= 0 +
∑
u∈V1

∑
v∈V2:(v,w)∈

←→
E

f(u, v)

=
∑

e:e∗∈C∗
f(e).

Thus the proposition follows.

Lemma 7.2.2 ([MN89]). If (G, c) be a zero-demand graph. There exists a flow in (G, c) if and

only if
←→
G∗ has no negative weight cycle with respect to weights c.

Proof. Suppose there exists a flow f in (G, c). Let C∗ be a negative weight cycle in
←−→
(G∗) with

respect to the weight function c. Then by Proposition 7.2.1 we have that

0 =
∑

e:e∗∈C∗
f(e)

≤
∑

e:e∗∈C∗
c(e)

=
∑
e∗∈C∗

c(e∗)

< 0

2Note that vertices in G correspond to faces in G∗.
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Thus we get a contradiction which implies that
←→
G∗ does not have any negative weight cycle.

To see the other direction, we construct a flow f in G, assuming that
←→
G∗ does not have any

negative weight cycle. Fix a vertex s∗ in
←→
G∗. For any vertex u∗ in

←→
G∗, define distc(s∗, u∗) to be the

shortest distance of u∗ from s∗ with respect to the weight function c. Since
←→
G∗ does not have any

negative weight cycle, p is well defined and finite for any vertex reachable from s∗. Now for an arc

(u, v) in G, define f(u, v) = distc(s∗, u∗)− distc(s∗, v∗). By definition, f(u, v) = −f(v, u). Also

for any vertex v ∈ G, d(v) =
∑

(v,w)|(v,w)∈
←→
E
f(v, w) = 0 by Proposition 7.2.1, since the dual arcs

corresponding to the set of outgoing arcs from v, constitute a cycle. Finally, since dist is a distance

function, distc(s∗, v∗) ≤ distc(s∗, u∗) + c(u∗, v∗), which implies that f(u, v) ≤ c(u, v). Therefore

f is a flow in G.

7.3 Algorithms for the perfect matching problem in planar

bipartite graphs

Let G = (A ∪ B,E) be a bipartite planar graph. Assume that |A| = |B|, otherwise G does not

have a perfect matching. In this section we show that deciding if G has a perfect matching reduces

to the problem of deciding if a polynomially weighted planar graph has a negative weight cycle.

We also show how to construct a perfect matching in G, if one exists. Our techniques are based on

the paper by Miller and Naor, which gives an NC algorithm for the problem [MN89]

We first show how to convert the graph G into a capacity-demand graph (G, c, d), so that there

is a one-to-one correspondence between flows in (G, c, d) and perfect matchings inG. The conver-

sion is a straightforward extension of the usual matching to flow reduction. The only difference is

that, here we have multiple sources and sinks instead of a single source/sink, in order to preserve

planarity.

Proposition 7.3.1. Let G = (A∪B,E) be a bipartite planar graph. Let c be the capacity function
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defined as follows: for every edge {u, v} ∈ E where u ∈ A and v ∈ B, c(u, v) = 1 and

c(v, u) = 0. Let d be the demand function defined as follows: for every vertex v ∈ A, d(v) = 1,

and for every vertex v ∈ B, d(v) = −1. Then there exists a one-to-one correspondence between

flows in the capacity-demand graph (G, c, d), and perfect matchings in G. Also given a flow f , the

corresponding perfect matching M can be constructed in log-space.

Proof. Let M be a perfect matching in G. For every edge {u, v} ∈ M where u ∈ A and v ∈ B,

set f(u, v) = 1 and f(v, u) = −1. By definition f satisfies the capacity constraint. It also satisfies

the demand constraint, since M is a perfect matching and therefore every vertex has degree one,

when restricted to M . Therefore f is a flow.

To start with, let M = ∅. Let f be a flow in (G, c, d) (note that f takes integral values only).

For every edge (u, v) ∈
←→
E , such that u ∈ A and v ∈ B, f(u, v) is either 1 or 0. This is because,

0 = −c(v, u) ≤ −f(v, u) = f(u, v) ≤ c(u, v) = 1. If f(u, v) = 1, add the edge {u, v} to M .

Now M cannot have two edges of the form {u, v} and {u,w}, since that would violate the demand

constraint at u. AlsoM cannot have a unmatched vertex, since that would again violate the demand

constraint. Therefore M is a perfect matching. Also it is easy to see that the construction of M is

possible in log-space.

7.3.1 Existence of a perfect matching

We next give an algorithm (Algorithm 4) to decide if G has a perfect matching. The idea is to

construct a capacity-demand graph (G, c, d) similar to Proposition 7.3.1 and see if a flow exists in

it. To see the existence of a flow we use Lemma 7.2.2 and see if a negative weight cycle exists in a

suitably weighted planar graph. A crucial step in Algorithm 4 is to construct a pseudo-flow in the

capacity-demand graph, for which we use the subroutine, Algorithm 5.

Lemma 7.3.2. Algorithm 4 outputs ‘Yes’ if and only if the input graph has a perfect matching
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Input: A bipartite planar graph G = (A ∪B,E)

Output: Yes if G has a perfect matching; No otherwise

1 Construct a capacity-demand graph (G, c, d) as follows: for each vertex v ∈ A, set
d(v) = 1 and for each vertex v ∈ B, set d(v) = −1. For an edge {u, v} such that
u ∈ A, v ∈ B, set c(u, v) = 1 and c(v, u) = 0;

2 Construct a pseudo-flow f ′ in (G, c, d) by using Algorithm 5;
3 Construct a zero-demand graph (G, c− f ′);

4 Output Yes if
←→
G∗ has no negative weight cycle with respect to weights (c− f ′);

Output No otherwise;
Algorithm 4: Deciding if a bipartite planar graph has a perfect matching (adapted
from [MN89])

Proof. By definition of d,
∑

v d(v) = 0 in G. Thus we can use Algorithm 5 to construct a pseudo-

flow, f ′, in (G, c, d). If the Algorithm outputs ‘Yes’, then by Lemma 7.2.2 there exists a flow (say

f ′′) in the zero demand graph (G, c − f ′). We claim that f = f ′ + f ′′ is a flow in (G, c, d). f

is skew-symmetric since both f ′ and f ′′ are skew symmetric. To see that f meets the capacity

constraint observe that, f(u, v) = f ′(u, v) + f ′′(u, v) ≤ f ′(u, v) + (c − f ′)(u, v) = c(u, v). To

see that f meets the demand constraint, for any vertex u ∈ V , observe that,
∑

(u,v)∈
←→
E
f(u, v) =∑

(u,v)∈
←→
E
f ′(u, v) +

∑
(u,v)∈

←→
E
f ′′(u, v) =

∑
(u,v)∈

←→
E
f ′(u, v) = d(v).

If the Algorithm outputs ‘No’, then there does not exist a flow in (G, c − f ′) and hence in

(G, c, d).

To see correctness of Algorithm 5, observe that f ′(u, v) = −f ′(v, u), since we have the

promise that
∑

v d(v) = 0. For any vertex v ∈ V ,
∑

(v,w)∈
←→
E
f(v, w) =

∑
w∈V \{v}−d(w) = d(v).

Thus f ′ is a pseudo-flow.

7.3.2 Constructing a perfect matching

We next see how a perfect matching can be constructed in G, if one exists. We give an algorithm

(Algorithm 6) that constructs a flow in (G, c, d). Then by applying Proposition 7.3.1 we get a
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Input: A capacity-demand graph (G, c, d)

Promise:
∑

v d(v) = 0

Output: A pseudo-flow in (G, c, d)

1 Compute a spanning tree T in G;

2 For any arc (u, v) /∈
←→
T , set f ′(u, v) = 0;

3 For an arc (u, v) ∈
←→
T , removing the edge {u, v} separates the tree T into two

subtrees. Let Tu denote the subtree containing u and Tv denote the subtree
containing v. For any (u, v) ∈

←→
T , set f ′(u, v) =

∑
w∈Tu d(w);

Algorithm 5: Constructing a pseudo-flow in a zero demand graph (adapted from
[MN89])

perfect matching in G. The fact that f is indeed a flow in (G, c, d) follows from Lemma 7.3.2.

Input: A planar bipartite graph G = (A ∪B,E)

Promise:
←→
G∗ has no negative weight cycle with respect to w = c− f ′

Output: A Perfect Matching in G

1 Fix a vertex s∗ ∈
←→
G∗;

2 Set f ′′(u, v) := distw(s∗, v∗)− distw(s∗, u∗);
3 Set f = f ′′ + f ′;
4 For u ∈ A, v ∈ B output “u is matched to v” if and only if f(u, v) = 1;

Algorithm 6: Constructing a perfect matching in a bipartite planar graph (given that
one exists) (adapted from [MN89])

7.3.3 Constructing a Hall-obstacle

As we know existence of an obstacle is an equivalence condition for a bipartite graph not to have a

perfect matching. Therefore ifG does not have a perfect matching, then it is an interesting problem

to construct a Hall-obstacle inG. In this subsection, we note the correspondence between the Hall-

obstacles in a bipartite planar graph and the negative weight cycles in a related planar graph with

suitable weights.
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Given a bipartite planar graph G = (A ∪B,E), Algorithm 7 outputs a Hall-obstacle if G does

not have a perfect matching, else it outputs ‘Does not exist’.

Input: A bipartite planar graph G = (A ∪B,E)

Output: A set of vertices that forms a Hall-obstacle; ‘Does not exist’ otherwise

1 Construct a capacity-demand graph (G, c, d) as follows: for each vertex v ∈ A, set
d(v) = 1 and for each vertex v ∈ B, set d(v) = −1. For an edge {u, v} such that
u ∈ A, v ∈ B, set c(u, v) = 1 and c(v, u) = 0;

2 Construct a pseudo-flow f ′ in (G, c, d) by using Algorithm 5;

3 if there is a negative weight cycle in
←→
G∗ with respect to weights c · n5 − f ′ then

4 Let C∗ be a negative weight cycle in
←→
G∗ with respect to weights c · n5 − f ′;

5 Let (V1 = A1 ∪B1, V2 = A2 ∪B2) be the directed cut in
←→
G corresponding to C∗

where V1 corresponds to the set of faces of
←→
G∗ that are in the interior of C∗ or

equivalently the vertices on
←→
G that are on one side of the cut corresponding to

C∗;
6 Output A1;

7 else
8 Output ‘Does not exist’;
9 end
Algorithm 7: Constructing a Hall-obstacle in a bipartite planar graph

Lemma 7.3.3. Let G = (A ∪ B,E) be a bipartite planar graph and C∗ be a cycle in
←→
G∗. Let f ′

be a pseudo flow in (G, c, d) (where (G, c, d) is constructed as in Algorithm 7). Then,

f ′(C∗) = |A1| − |B1|.

Proof. Let F ∗ be the set of faces in
←→
G∗ that lie in the interior of C∗. Since f ′ is skew-symmetric,

f ′(C∗) =
∑

v∗∈F ∗ f
′(v∗) =

∑
v∈V1 f

′(v) = |A1| − |B1|.

Lemma 7.3.4. Let (a, b) be an edge in
←→
G , such that a ∈ A1 and b ∈ B2. Then, moving b from B2

to B1 does not increase the weight of the cut (and the corresponding cycle in the dual) with respect

to the weights c− f ′.
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Proof. By moving a vertex b from B2 to B1, f ′ decreases by 1 by Lemma 7.3.3, and c decreases at

least by 1.

Lemma 7.3.5.
←→
G∗ has a negative weight cycle with respect to weights c− f ′ if and only if

←→
G∗ has

a negative weight cycle with respect to weights c · n5 − f ′ (that is, the total weight contribution

from c is zero).

Proof. Let C∗ be a negative weight cycle with respect to weights c − f ′ in
←→
G∗. Applying Lemma

7.3.4, we can get a cycle C ′ in
←→
G∗, such that there are no edges (a, b) ∈

←→
G , with a ∈ A and

b ∈ B, such that a is inside C ′ and b is outside. Thus (c · n5 − f ′)(C ′) < 0, since by construction,

c(C ′) = 0. The reverse direction follows trivially since c is non-negative.

Theorem 7.3.6. (Theorem 7.1.1 (c)) HALL-OBS (CONSTRUCT) in a bipartite planar graphs is in

NL.

Proof. Constructing a negative weight cycle with respect to the weights c · n5 − f ′ is in NL. The

set A1 forms a Hall-obstacle since N(A1) ⊆ B1 and |A1| > |B1| (see Lemma 7.3.3).

7.4 Complexity analysis and an unambiguous log-space bound

Suppose we have a directed graphGwith polynomially bounded weights on its edges. The weights

could be positive or negative. Let s be a fixed vertex in G. Let len(u, v) denote the length of the

minimum length path from u to v. Let Vk be the set of vertices in G, at a distance at most k from

s. That is,

Vk := {v | len(s, v) ≤ k}.

Let distwk (u, v) denote the weight of the minimum weight walk of length at most k from u to v, with

respect to the weight function w. We also denote distw(u, v) = distw∞(u, v). Note that distwk (u, v)

could be negative. Let Σw
k be the sum of the minimum weight walks (with respect to the weight
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function w) from s to every vertex in Vk. That is,

Σw
k :=

∑
v∈Vk

distwk (s, v).

7.4.1 Weighting scheme A

First we describe a log-space subroutine (Algorithm 8), that when given a planar graph G defines

a skew-symmetric edge weight function wA, on the directed graph
←→
G , such that the weight of any

cycle in
←→
G is non-zero. The weight function is a generalization of the weight function in [BTV09]

to planar graphs. Tewari and Vinodchandran had given a log-space construction of a similar weight

function by an application of Green’s Theorem [TV10].

Input: A planar graph G

Output: An edge weight function, wA :
←→
E −→ [n] such that for any simple cycle

−→
C in

←→
G wA(

−→
C ) 6= 0

1 Compute a spanning tree T in G;

2 For any arc e ∈
←→
T , set wA(e) = 0;

3 Let R denote the spanning tree in G∗ consisting of the edges that do not belong to T.
Fix a root r for R (say the unbounded face) and let

−→
R denote the orientation of R

where each edge is oriented towards r;

4 An arc e∗ = (u, v) ∈
−→
R separates the tree R into two subtrees. Let αu denote the

number of vertices in the subtree containing u. Set wA(u, v) = αu and
wA(v, u) = −αu;

5 Set wA(e) = wA(e∗) for every e ∈
←→
E where e∗ is the (directed) dual edge of e;

Algorithm 8: Weighting Scheme A

Lemma 7.4.1 (adaptation of [BTV09]). Let G be a planar graph and
−→
C be a simple cycle in

←→
G .

Then wA(
−→
C ) is equal to the number of faces in the interior of

−→
C . In particular, wA(

−→
C ) 6= 0.

Proof. It is enough to prove the case when
−→
C is anti-clockwise because the clockwise case follows

due to the skew-symmetry of wA. Also it suffices to show that for a facial cycle (anti-clockwise)
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−→
F in

←→
G , w(

−→
F ) = 1. This is because, for a simple cycle

−→
C :

w(
−→
C ) =

∑
−→
F ∈Int(

−→
C )

w(
−→
F ).

But w(
−→
F ) equals the sum of the weights of dual edges (in

←→
G∗) outgoing from the dual vertex

F ∗ ∈
←→
G∗), so it suffices to show that for every vertex u ∈

←→
G∗):

∑
v:(u,v)∈

←→
G∗

αv = 1.

Observe that the number of nodes in the subtree rooted at u is one more than sum of the number of

vertices in the subtrees rooted at v for various v, such that (u, v) is a dual edge. Hence the above

equation follows.

Note that a planar graph G is min-unique with respect to the weight function wA. In the rest of

this chapter, we refer to the weight function defined in Algorithm 8 as wA.

7.4.2 Computing the distance function

In this section we give a UL algorithm that computes the distance function, distw(s, v) in a planar

graph. The idea is to extend the UL algorithm of Reinhardt and Allender [RA00], to work when

the graph contains negative weight edges but no negative weight cycles.

Let w be a polynomially bounded weight function defined on the arcs of
←→
G , such that w can

assign negative weights to the edges in
←→
G , but there is no negative weight cycle in

←→
G with respect

to w. Let W (u, v) = wA(u, v) · n5 + w(u, v). We show in Lemma 7.4.2 that min-uniqueness with

respect to the weight function wA implies min-uniqueness with respect to the weight function W

as well.
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Lemma 7.4.2. If G is min-unique with respect to wA, then G is also min-unique with respect to

W .

Proof. Let u and v be two vertices in G. Suppose there are two minimum weight paths P1 and P2,

from u to v with respect to the weight function W . This implies w(P1) = w(P2) and wA(P1) =

wA(P2). Also there are no paths from u to v of weight lesser than wA(P1). This is a contradiction

to the min-uniqueness of G with respect to wA.

Given a planar graph G, a source vertex s and a vertex v, Algorithm 11 computes the value of

distw(s, v). It uses the following two subroutines. (i) Algorithm 9 is an unambiguous procedure,

which given the tuple (G, s, v, k, |Vk|,ΣW
k ), computes the value of distWk (s, v) if v is in Vk, else it

assigns the value∞ to it, on a unique computation path and all other paths reject. (ii) Algorithm

10 computes the values |Vk| and ΣW
k , given the tuple (G, s, k, |Vk−1|,ΣW

k−1).

We then combine Algorithm 11 with the perfect matching algorithms in Section 7.3 (Algorithm

5 and 6) to obtain the UL bound for perfect matching in bipartite planar graphs.

Lemma 7.4.3. Given a directed planar graph G, with polynomially bounded weights w on its arcs

such that there are no negative weight cycles, the shortest distance distw(u, v) between any pair of

vertices in G with respect to w can be computed in UL.

Proof. Since there are no negative weight cycles then every minimum weight walk between any

pair of vertices is a path. We set t to be equal to n in Algorithm 11 and observe that distwn (u, v) =

distw(u, v), since the maximum length of a path is at most n. Also, G is min-unique with respect

to wA and therefore with respect to W also. The UL bound follow from the fact that, between a

pair of vertices u and v, if there is a path from u to v, then a unique computation path outputs the

value of the minimum weight path from u to v (all other paths halt and reject). If there is no path

from u to v, all paths halt and reject.



116

Input: The tuple (G, s, v, k, |Vk|,ΣW
k )

Promise: G is min-unique with respect to W
Output: distWk (s, v) ( <∞ if v ∈ Vk;∞ otherwise)

1 Initialize c← 0; s← 0; distWk (s, v)←∞ ;
2 foreach x ∈ V do
3 Guess a walk of length at most k from s to x;
4 if Guess fails then
5 Halt and reject
6 else
7 Let p be the weight of the walk;
8 Set c = c+ 1; s = s+ p;

9 end
10 if x = v then Set distWk (s, v)← p

11 end
12 if c = |Vk| and s = ΣW

k then
13 Output distWk (s, v);
14 else
15 Halt and Reject;
16 end
Algorithm 9: An unambiguous procedure to compute the value of the function
distWk (s, v) in a planar graph G.

Lemma 7.4.4. Given a directed planar graph G with polynomially bounded weights w on its arcs,

deciding if G contains a negative weight cycle is in coUL.

Proof. Let N denote the sum of the absolute values of the weights on the arcs. If G has a negative

weight cycle, then for some pair of vertices u, v and some index i such that, Nn ≤ i ≤ 2Nn,

distwi (u, v) < distwi−1(u, v) (where distwi (u, v) < ∞). Therefore, going through the different

possible values of u, v and i, gives us coUL upper bound.

Theorem 7.4.5. (Theorem 7.1.1 (a)) PM-DECISION and PM-CONSTRUCT in bipartite planar

graphs are in UL.

Proof. We know that if there are no negative weight cycles in
←→
G∗ with respect to the weight func-
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Input: The tuple (G, s, k, |Vk−1|,ΣW
k−1)

Promise: G is min-unique with respect to W
Output: (|Vk|,ΣW

k )

1 Initialize c← |Vk−1|; s← ΣW
k−1 ;

2 foreach v ∈ V do
3 if v ∈ V \ Vk−1 then
4 Set distWk (s, v)← minx:(x,v)∈E(G)[distWk−1(s, x) +W (x, v)];
5 end
6 if distWk (s, v) <∞ then
7 Set c← c+ 1 and s← s+ distWk (s, v);
8 end
9 end

10 Set |Vk| ← c and ΣW
k ← s;

11 Output (|Vk|,ΣW
k );

Algorithm 10: A procedure to compute the values |Vk| and ΣW
k in a planar G.

Input: The tuple (G,w, s, v, t), where G is a directed graph on n vertices,
w : E(G)→ Z such that |w(e)| ≤ nO(1) is an edge weight function, s and v
are vertices in G and t is a positive integer

Output: distwt (s, v)

1 Compute the weight function wA using Algorithm 8;
2 Initialize V0 ← {s} and ΣW

0 ← 0;
3 for k ∈ [t] do
4 Compute (|Vk|,ΣW

k ) from (|Vk−1|,ΣW
k−1);

5 end
6 Compute distWt (s, v) from (|Vn|,ΣW

n );

7 Output the coefficient of n5 in distWt (s, v) (by ignoring the lower order bits from
wA);

Algorithm 11: Unambiguous log-space procedure to compute the value distwt (s, v)
for a positive integer t and weight function w.
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tion c − f ′, then there exists perfect matching in G. Therefore from Lemma 7.4.4, we get the UL

bound. Correctness follows from the correctness of Algorithm 4 and 6.

Therefore if there are no negative weight cycles in
←→
G∗ then we get a valid flow and thus a valid

perfect matching along a unique accepting path; otherwise we get f that is not a valid flow and we

reject.

Corollary 7.4.6. (Theorem 7.1.1 (b)) HALL-OBS (DECISION) in bipartite planar graphs is in

coUL.

7.5 Improved upper bound on some related problems

In this section we study certain generalizations of the perfect matching problem and the graph

reachability problem - namely the EVEN-PM problem and the EVEN-PATH problem respectively.

7.5.1 Even perfect matching in bipartite planar graphs is in

nondeterministic log-space

Definition 7.5.1 (Even-PM). Given a graph with each edge colored either Red or Blue, an Even-

PM is a perfect matching that contains an even number of Red edges. Let EVEN-PM denote the

problem of deciding whether or not there exists such a perfect matching.

Theorem 7.5.1. (Theorem 7.1.2 (a)) EVEN-PM in bipartite graphs is in P.

Proof. Given a bipartite graph G = (V,E), first find a perfect matching M in it. If M is Even-PM

we are done, otherwise construct an auxiliary directed graph H with respect to M as follows: edge

(u, v) is in H if and only if there exists a vertex w such that {u,w} ∈ M and {w, v} ∈ E \M .

Define a weight function w′ on H as follows: if the matching edge {u,w} as well as the non-

matching edge {w, v} are of the same color then w′(u, v) = 0, else w′(u, v) = 1.
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Claim 7.5.2. G has an Even-PM if and only if H has a cycle of odd weight.

Proof. Let M ′ be an Even-PM in G. Then since M is not an Even-PM, M 6= M ′. The symmetric

difference of M and M ′, M ⊕ M ′ is a collection of even length disjoint cycles, whose edges

alternate between M and M ′. Also since M and M ′ have a different parity of red edges, there

exists one cycle C in M ⊕M ′ which has a different parity of red edges from M and M ′. This

implies that C has an odd number of red edges. Now consider the corresponding cycle C ′ in H .

By definition of w′, w′(C ′) is odd.

Let C ′ be a cycle of odd weight in H . Then consider the corresponding even length cycle C in

G, where every alternate edge of C belongs to M . Let CM and CM be the edges of C belonging

to M and M respectively. Then by definition of w′, the parity of red edges in CM and CM are

different. Consider the perfect matching M ′ = (M \CM)∪CM , formed by replacing the edges of

CM with the edges CM . By construction, M ′ is an Even-PM.

(Proof of Theorem 7.5.1 cont.) By Claim 7.5.2 we can detect and construct an Even-PM in G

by finding an odd weight cycle in H . Computing a perfect matching in a bipartite graph is in P

and checking if a graph has an odd weight cycle is in NL. Therefore, the complexity of the entire

procedure is P.

Corollary 7.5.3. (restatement of Theorem 7.1.2 (b)) EVEN-PM in bipartite planar graphs is in

NL.

7.5.2 The Even-Path problem in planar DAGs is in unambiguous log-space

Definition 7.5.2 (Red-Blue-Path). Given a directed graph with each edge colored either Red or

Blue, a Red-Blue-Path from s to t is a (simple) directed path from s to t such that every two con-

secutive edges are of different colors. The RED-BLUE-PATH problem is the problem of deciding

whether or not there is a Red-Blue-Path from s to t.
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Definition 7.5.3 (Even-Path). Given a directed graph and two vertices s and t, an Even-Path from

s to t is a simple, directed path from s to t containing an even number of edges. The EVEN-PATH

problem is the problem of deciding whether or not there is an Even-Path from s to t.

It is important to mention here that the even length path that we consider, is a simple path, that

is it does not contain any repeated vertices.

Theorem 7.5.4 ([Kul09]). RED-BLUE-PATH in planar DAG is NL-complete.

In this section, we prove that the EVEN-PATH problem (which can be viewed as a relaxation

of the RED-BLUE-PATH problem as a path starting with say Red edge and ending with say Blue

edge is always of even length) in planar DAG is in fact in UL. Our proof involves a combination of

two different isolation techniques that are currently available.

In Lemma 7.5.5 we show that the number of minimum weight, even length paths in a planar

DAG is bounded by a polynomial in n. We then apply the isolation technique obtained from

hashing by primes, from Theorem 2.3.4 in Chapter 2, to get the desired UL bound.

Lemma 7.5.5. Let G be a planar DAG and u and v be any two vertices in G. Then with respect

to the weight function wA, (a) if P1 and P2 are two minimum weight Even-Paths from u to v,

then P1 ⊕ P2 divides the plane into at most two bounded regions; (b) no three minimum weight

Even-Paths from u to v share a common vertex w other than u and v, such that the path segments

between the vertices u and w and between w and v are not identical. (c) there are at most 2n4

minimum weight Even-Paths from u to v.

Proof. (a) For the sake of contradiction let C1, C2 and C3 be any three bounded regions of P1⊕P2.

Let Pij be the restriction of the i-th path to the j-th for i ∈ {1, 2} and j ∈ {1, 2, 3}. Observe that

wA(P1j) 6= wA(P2j) since Cj is a simple cycle and by Lemma 7.4.1 we have that wA(Cj) 6= 0.

Now the parity of the lengths of the path segments P1,j and P2,j are different since if they were the

same, we could replace the higher weighted segment with the lower weighted one and get an even
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length path of lesser weight. This implies that wA(C1 + C2 + C3) is odd since the weight of each

Ci is odd. Let P ′i =
⋃
j Pij for i ∈ {1, 2}. Therefore either wA(P ′1) is odd or wA(P ′2), but not both.

Without loss of generality lets assume wA(P ′1) is odd. For each j pick the path segment between

P1j and P2j that has lesser weight to create a set say P ′. Now wA(P ′) is strictly smaller than both

wA(P ′1) and wA(P ′2). If wA(P ′) is odd then replace P ′1 with P ′ and if wA(P ′) is even then replace

P ′2 with P ′ to get a path of smaller weight and same parity. This is a contradiction. Thus P1 ⊕ P2

has at most two bounded regions.

(b) Let P1, P2 and P3 be three minimum weight paths from u to v that share a common vertex

(say w) such that the segments of each of the three paths between the vertices u and w and between

w and v are distinct. In other words, if P ′i and P ′′i are the segments of Pi between the vertices u

and w and between w and v respectively (for i ∈ {1, 2, 3}), then {P ′i} are pairwise non-identical

and so are {P ′′i }. There exists at least two path segments between P ′1, P
′
2 and P ′3 whose lengths

have the same parity. Without loss of generality assume its P ′1 and P ′2. Now if wA(P ′1) 6= wA(P ′2)

then since they have the same parity we can pick the lesser weight path between P ′1 and P ′2 and

similarly the lesser weight path between P ′′1 and P ′′2 and append them to get an even path of weight

less than either that of P1 or P2 from u to v. Thus we can assume wA(P ′1) = wA(P ′2). By Lemma

7.4.1, this implies that P ′1 ⊕ P ′2 as at least two bounded regions. Moreover since P ′′1 and P ′′2 are

also not identical, therefore P ′′1 ⊕ P ′′2 has at least one one bounded region. Thus P1 ⊕ P2 has at

least 3 bounded regions, thus contradicting part (a).

(c) Let a, b, c and d be four vertices in G and let Pa,b,c,d be the set of all minimum weight even

length paths from u to v that pass through the vertices a, b, c and d in that order and are vertex

disjoint between the vertices a and b and between the vertices c and d respectively. Then by part

(b), Pa,b,c,d will have at most 2 paths. Since the total number of such tuples is at most n4, therefore

the number of minimum weight, even length u-v paths is bounded by 2n4.

We next reduce the problem of finding an even length path in a DAG to finding a simple path in



122

a corresponding graph. Construct a directed graph G′ (possibly a multi-graph) from G as follows:

the vertex set of G′ is the vertex set of G. An edge (vi, vj) is in G′ if and only if there exists a

vertex vk in G and the edges (vi, vk) and (vk, vj) are in G. The weight w of an edges in G′ is the

sum of the weights of the corresponding two edges in G.

Now Lemma 7.5.6 follows by definition of G′ and part (c) of Lemma 7.5.5.

Lemma 7.5.6. (a) G has an Even-Path from u to v if and only if G′ has a directed path from u to

v; (b) the number of minimum weights paths from u to v in G′ with respect to wA is at most 2n4.

7.5.3 Weighting scheme B

Weighting scheme B is based on a well known hashing scheme based on primes, due to Fredman,

Komlós and Szemerédi [FKS84]. The statement of the theorem is given in Chapter 2 in Theorem

2.3.4.

Let pi be the ith prime number. Consider the lexicographical ordering of the edges of G′ and

denote the jth edge in this ordering by ej . Define the ith weight function (for 1 ≤ i ≤ q(n) and an

appropriate polynomial q(n) dictated by Theorem 2.3.4), wBi
(ej) = 2j( mod pi).

Hoang used this scheme to give better upper bounds for perfect matching in certain classes

of graphs [Hoa10]. Pavan, Tewari and Vinodchandran showed that reachability in graphs where

the number of paths from s to any vertex is bounded by a polynomial is in UL, by applying this

hashing scheme. We use Theorem 2.3.4 here to define a weight function with respect to which G′

in min-unique.

Lemma 7.5.7 (Adapted from [PTV10]). There exists an i ≤ q(n) such that the graph G′ with

respect to the weight function Wi = wA · n10 + wBi
is min-unique.

Proof. Let Pv be the set of minimum weight paths from s to a vertex v in G′, with respect to wA.

Then by Lemma 7.5.6, |Pv| is bounded by 2n4. It follows from Theorem 2.3.4 that with respect to
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some wBi
, all paths in

⋃
v Pv will have distinct weights. Therefore G′ is min-unique with respect

to Wi for some i.

For each i ∈ [q(n)], check if G′ is min-unique with respect to Wi or not. Once we have

an appropriate i, we can decide reachability in G′ in UL [RA00]. By Lemma 7.5.6 a path in G′

corresponds to an Even-Path in G and thus we have Theorem 7.5.8.

Theorem 7.5.8. (Theorem 7.1.3) EVEN-PATH in planar DAG is in UL.

7.6 Conclusion

In this chapter we gave a UL upper bound on some important graph theoretic problems like perfect

matching in bipartite planar graphs and deciding an even length path in planar DAGs. In light of

these results, the following questions might be worth looking at. (a) Similar to directed planar

reachability, is bipartite planar perfect matching in coUL as well? (b) Is perfect matching in higher

genus graphs in UL as well? (c) Can we show that RED-BLUE-PATH problem in planar DAGs is

in UL?
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Chapter 8

Conclusion

In this chapter, we give a brief overview of the results that we have discussed in this dissertation

and their importance to complexity theory in general. We also look at the scope of extending these

results and solving certain important open problems in the area of small space complexity.

8.1 Our progress so far

In our attempt to study the power of unambiguity in log-space, we have made some definite

progress. We have shown that some important and interesting subclasses of general reachabil-

ity are in UL. Our result that planar reachability is in UL, made a significant impact on the area of

small space computations. Thierauf and Wagner first applied it to show that reachability in K3,3-

free graphs and K5-free graphs are in UL [TW09] and then to show that isomorphism testing for

3-connected planar graphs can be done in UL [TW10]. Limaye, Mahajan and Nimbhorkar used

it to show that the shortest and longest paths in planar DAGs can be computed in UL [LMN10].

Datta, Kulkarni and Roy showed that the weight function that we used to show that planar graphs

are min-unique (a crucial step in showing that planar reachability is in UL), can be easily modi-

fied to obtain a deterministic weight function that isolates a perfect matching over bipartite planar
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graphs (thus showing that bipartite, planar perfect matching is in SPL) [DKR10]. Datta, Kulkarni,

Limaye and Mahajan used our result to show that testing the uniqueness of a perfect matching over

bipartite planar graphs is in ⊕L. Kynčl and Vyskočil had shown that bounded genus reachability

reduces to planar reachability [KV10]. Combining their result with the fact that planar reachability

is in UL, immediately gave a UL upper bound on the reachability problem over bounded genus

graphs.

In an attempt to generalize our results beyond planar graphs we studied the isolation problem

and its connection to showing reachability in UL. In the planar case, we obtained a nice application

of Green’s Theorem on the isolation problem. This connection gave us more intuition as to what

was happening in the planar case. Also it immediately implied that perfect matching in bipartite

planar graphs is in SPL. This result was already known due to [DKR10], but our method was

much simpler and it showed the upper bound without involving the machinery of grid graphs.

Moreover, the isolation result provided us a way to go past the class of grid graphs, which was

unknown till then. Using algebraic topological techniques, we generalized our isolation result

to the class of bounded genus graphs. This immediately gave the following upper bounds - (i)

bounded genus reachability is in UL and (ii) perfect matching in bounded genus bipartite graphs

is in SPL. Although the former was already known due to [BTV09, KV10], the latter result was a

completely new upper bound on this problem.

We knew that matching in bipartite planar graphs is in SPL, but even an NL upper bound was

unknown for this problem (note that SPL and NL are incomparable classes as of now). We showed

that matching over bipartite planar graphs is in UL which is a vast improvement on the space

complexity of the problem.

In the process of achieving the above results, we gave some new embedding algorithms for

certain classes of graphs, that run in log-space. We gave a piecewise straight-line embedding of

a planar graph and a combinatorial embedding on the fundamental polygon for a bounded genus

graph (given the promise that the genus is bounded). Both these embedding algorithms are the first
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of their kind.

Pursuing our study of unambiguous log-space computations, we showed that a certain restric-

tion of the complexity class FewL (ReachFewL), is in UL. In fact we proved a stronger statement

that even the number of accepting paths in such computations can be counted in UL. This result

immediately gave an affirmative answer to a question by [LMN10], who asked whether counting

the number of paths in a planar DAG, with a polynomial bound on the number of paths, can be

done in UL? We also showed that achieving min-uniqueness is necessary and sufficient to show

that NL = UL.

Our progress in the above problems furthered our knowledge of unambiguous log-space com-

putations, and more generally about nondeterminism in small space computations.

8.2 Open questions

Our research has also raised a number of questions that are interesting and important to the area

of small space computations. Is NL = UL? How close are we towards answering this conundrum?

This is one of the key questions in understanding nondeterministic log-space computations. We

showed several new complete problems for NL in this dissertation and hope that they turn out to be

useful in settling the above question. Showing that FewL ⊆ UL might also be a good intermediate

step in this direction.

More generally, can we extend our isolating results to general graphs (or even an interesting

subclass like graphs of logarithmic genus)? This not only would show that NL = UL but would also

imply that bipartite matching is in SPL (in particular in NC), another longstanding open problem.

Our UL bound on the space complexity of planar bipartite perfect matching problem naturally

raises the question whether generalizations of planarity (like higher genus) also admit a UL al-

gorithm for the perfect matching problem. This might be a bit of a challenge because the UL

algorithm heavily uses planarity. Nevertheless, the possibility of improvement cannot be ruled out.
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It is known that perfect matching in bipartite planar graphs is L-hard. This brings forth the question

that can we improve our UL upper bound to match the lower bound for the planar bipartite case

(that is L).

In contrast to our earlier result on planar reachability, where we show that planar reachability

is in UL ∩ coUL, in the case of bipartite planar matching, we are only able to show that deciding if

a perfect matching exists is in UL. Can we show the coUL bound as well on the problem? Again

this might be a starting point to aim for an L upper bound. Also, the complexity of computing

a minimum weight perfect matching in bipartite planar graphs, is still in SPL. Can we bring the

complexity down to NL?

Finally, what is the best deterministic space upper bound on NL? Can we improve Savitch’s

Theorem even by an arbitrarily small amount, that is, can we show that NL ⊆ DSPACE(log2−ε n),

for any ε > 0?



128

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.

Cambridge University Press, 1 edition, 2009.

[ABC+09] Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sam-

buddha Roy. Planar and grid graph reachability problems. Theory Comput. Syst.,

45(4):675–723, 2009.

[ABO99] Eric Allender, Robert Beals, and Mitsunori Ogihara. The complexity of matrix rank

and feasible systems of linear equations. Comput. Complex., 8:99–126, November

1999.

[ADR05] Eric Allender, Samir Datta, and Sambuddha Roy. The directed planar reachability

problem. In Proceedings of the 25th Annual Conference on Foundations of Software

Technology and Theoretical Computer Science. Springer, 2005.

[Agr07] Manindra Agrawal. Rings and integer lattics in computer science. A lecture series at

the Annual Workshop in Computational Complexity, Barbados, 2007.

[AJ93] Carme Àlvarez and Birgit Jenner. A very hard log-space counting class. Theoretical

Computer Science, 107:3–30, 1993.

[AL98] Eric Allender and Klaus-Jörn Lange. RUSPACE(log n) ⊆

DSPACE(log2 n/ log log n). Theory of Computing Systems, 31:539–550, 1998.



129

Special issue devoted to the 7th Annual International Symposium on Algorithms and

Computation (ISAAC’96).

[All86] Eric Allender. The complexity of sparse sets in P. In Proc. of the conference on

Structure in complexity theory, pages 1–11, 1986.

[All06] Eric Allender. NL-printable sets and nondeterministic Kolmogorov complexity. Theor.

Comput. Sci., 355(2):127–138, 2006.

[AM04] Eric Allender and Meena Mahajan. The complexity of planarity testing. Information

and Computation, 189:117–134, 2004.

[AM08] V. Arvind and Partha Mukhopadhyay. Derandomizing the isolation lemma and lower

bounds for circuit size. In Proceedings of RANDOM ’08, pages 276–289, 2008.

[AO94] Eric Allender and Mitsunori Ogihara. Relationships among PL, #L, and the determi-

nant. In Structure in Complexity Theory Conference, 1994., Proceedings of the Ninth

Annual, pages 267 –278, 1994.

[ARZ99] Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting:

Uniform and nonuniform upper bounds. Journal of Computer and System Sciences,

59:164–181, 1999.

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching programs rec-

ognize exactly those languages in NC1. Journal of Computer and System Sciences,

38:150–164, 1989.

[BDHM92] Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph Meinel.

Structure and importance of logspace-mod class. Mathematical Systems Theory,

25(3):223–237, 1992.



130

[BHS93] Gerhard Buntrock, Lane A. Hemachandra, and Dirk Siefkes. Using inductive

counting to simulate nondeterministic computation. Information and Computation,

102(1):102–117, 1993.

[BJLR91] Gerhard Buntrock, Birgit Jenner, Klaus-Jörn Lange, and Peter Rossmanith. Unam-

biguity and fewness for logarithmic space. In Proceedings of the 8th International

Conference on Fundamentals of Computation Theory (FCT’91), Volume 529 Lecture

Notes in Computer Science, pages 168–179. Springer-Verlag, 1991.

[BLMS98] David A. Mix Barrington, Chi-Jen Lu, Peter Bro Miltersen, and Sven Skyum. Search-

ing constant width mazes captures the AC0 hierarchy. In 15th International Sympo-

sium on Theoretical Aspects of Computer Science (STACS), Volume 1373 in Lecture

Notes in Computer Science, pages 74–83. Springer, 1998.

[Bra21] H. R. Brahana. Systems of circuits on two-dimensional manifolds. The Annals of

Mathematics, 23(2):144–168, 1921.

[BTV09] Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed planar reacha-

bility is in unambiguous log-space. ACM Trans. Comput. Theory, 1(1):1–17, 2009.

[CH90] Jin-Yi Cai and Lane Hemachandra. On the power of parity polynomial time. Mathe-

matical Systems Theory, 1990.

[CM07] Sergio Cabello and Bojan Mohar. Finding shortest non-separating and non-

contractible cycles for topologically embedded graphs. Discrete Comput. Geom.,

37(2):213–235, 2007.

[CSV84] Ashok K. Chandra, Larry Stockmeyer, and Uzi Vishkin. Constant depth reducibility.

SIAM Journal on Computing, 13(2):423–439, 1984.



131

[DEH00] Michael B. Dillencourt, David Eppstein, and Daniel S. Hirschberg. Geometric thick-

ness of complete graphs. Journal of Graph Algorithms and Applications, 4(3):5–17,

2000.

[dFPP90] Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph

on a grid. Combinatorica, 10(1):41–51, 1990.

[DH07] Max Dehn and Poul Heegaard. Analysis situs. Enzyklopädie der mathematischen

Wissenschaften mit Einschluß ihrer Anwendungen, III.AB(3):153–220, 1907.

[Die10] Reinhard Diestel. Graph Theory. Springer-Verlag, 2010.

[DKLM10] Samir Datta, Raghav Kulkarni, Nutan Limaye, and Meena Mahajan. Planarity, deter-

minants, permanents, and (unique) matchings. ACM Trans. Comput. Theory, 1:10:1–

10:20, March 2010.

[DKR10] Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating a

perfect matching in bipartite planar graphs. Theory of Computing Systems, 47:737–

757, 2010.

[DKT10] Samir Datta, Raghav Kulkarni, and Raghunath Tewari. Perfect matching in bipar-

tite planar graphs is in UL. Technical Report TR10-151, Electronic Colloquium on

Computational Complexity, 2010. Submitted to conference.

[DKTV11] Samir Datta, Raghav Kulkarni, Raghunath Tewari, and N. V. Vinodchandran. Space

Complexity of Perfect Matching in Bounded Genus Bipartite Graphs. In 28th In-

ternational Symposium on Theoretical Aspects of Computer Science (STACS 2011),

volume 9 of Leibniz International Proceedings in Informatics (LIPIcs), pages 579–

590, Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Edm65] Jack Edmonds. Paths, trees and flowers. Canad. J. Math., 17:449–467, 1965.



132

[Ete97] Kousha Etessami. Counting quantifiers, successor relations, and logarithmic space.

Journal of Computer and System Sciences, 54(3):400–411, June 1997.

[Fár48] István Fáry. On straight line representation of planar graphs. Acta Univ. Szeged. Sect.

Sci. Math., 11:229–233, 1948.

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table

with O(1) worst case access time. J. ACM, 31(3):538–544, 1984.

[GS88] Joachim Grollmann and Alan L. Selman. Complexity measures for public-key cryp-

tosystems. SIAM J. Comput., 17:309–335, April 1988.

[GW96] Anna Gal and Avi Wigderson. Boolean complexity classes vs. their arithmetic

analogs. Random Structures and Algorithms, 9:1–13, 1996.

[Has81] Refael Hassin. Maximum flow in (s, t)-planar networks. Information Processing

Letters, 13:107, 1981.

[Hem89] Lane A. Hemachandra. The strong exponential hierarchy collapses. J. of Computer

and System Sciences, 39(3):299–322, 1989.

[Hoa10] Thanh Minh Hoang. On the matching problem for special graph classes. In IEEE

Conference on Computational Complexity, pages 139–150, 2010.

[HSV95] Joan P. Hutchinson, Thomas C. Shermer, and Andrew Vince. On representations of

some thickness-two graphs. In GD ’95: Proceedings of the Symposium on Graph

Drawing, pages 324–332, London, UK, 1995. Springer-Verlag.

[Imm88] Neil Immerman. Nondeterministic space is closed under complement. SIAM Journal

on Computing, 17:935–938, 1988.



133

[Kas67] Pieter W. Kasteleyn. Graph theory and crystal physics. Graph Theory and Theoretical

Physics, 1:43–110, 1967.

[KMV08] Raghav Kulkarni, Meena Mahajan, and Kasturi R. Varadarajan. Some perfect match-

ings and perfect half-integral matchings in NC. Chicago Journal of Theoretical Com-

puter Science, 2008(4), September 2008.

[Ko85] Ker-I Ko. On some natural complete operators. Theoretical Computer Science, 37:1

– 30, 1985.

[Kre88] Mark Krentel. The complexity of optimization problems. J. of Computer and System

Sciences, 36:490–509, 1988.

[Kul09] Raghav Kulkarni. On the power of isolation in planar graphs. Technical Report

TR09-024, Electronic Colloquium on Computational Complexity, 2009.
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