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Abstract

We show a simple application of Green’s theorem from multivariable calculus
to the isolation problem in planar graphs. In particular, we give a log-
space construction of a skew-symmetric, polynomially-bounded edge weight
function for directed planar graphs, such that the weight of any simple cycle
in the graph is non-zero with respect to this weight function. As a direct
consequence of the above weight function, we are able to isolate a directed
path between two fixed vertices, in a directed planar graph. We also show
that given a bipartite planar graph, we can obtain an edge weight function
(using the above function) in log-space, which isolates a perfect matching in
the given graph. Earlier this was known to be true only for grid graphs -
which is a proper subclass of planar graphs.

We also look at the problem of obtaining a straight line embedding of
a planar graph in log-space. Although we do not quite achieve this goal,
we give a piecewise straight line embedding of the given planar graph in
log-space.
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1. Introduction

We show a simple application of a celebrated theorem due to 19th cen-
tury British mathematician George Green to the isolation problems in planar
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graphs. Green’s theorem, stated below, relates certain line integrals over a
closed curve on the plane to a related double integral over the region enclosed
by this curve.

Theorem 1 (Green’s Theorem). Let C be a closed, piecewise smooth, sim-
ple curve on the plane which is oriented counterclockwise. Let RC be the
region bounded by C. Let P and Q be functions of (x, y) defined on a region
containing RC and having continuous partial derivatives in the region. Then∮

C

(P dx+Qdy) =

∫∫
RC

(
∂Q

∂x
− ∂P

∂y

)
dA.

This fundamental theorem and its generalizations (such as Stokes’ the-
orem) have deeply influenced the development of several areas of physics
and mathematics. Strikingly, Green’s Theorem also has a very immediate
and elegant practical application in calculating the area of an arbitrary two-
dimensional shape. The device known as planimeter, used to calculate the
area of an arbitrary shape (such as a region in a map) is based on the fol-
lowing instantiation of Green’s theorem, which we also use in this paper. If
we substitute Q(x, y) = x and P (x, y) = 0 in Green’s theorem we get the
following theorem.

Theorem 2 (Area by line integrals). Let C be a closed, piecewise smooth,
simple curve on the plane which is oriented counterclockwise. Let RC be the
region bounded by C. Then,

Area(RC) =

∮
C

x dy

Refer to any standard text books on calculus (such as [1]) to know more
about Green’s and other related theorems.

Distinguishing a solution out of a set of solutions is a basic algorith-
mic problem with many applications. The well-known isolating lemma (also
known as the isolation lemma) due to Mulmuley, Vazirani, and Vazirani pro-
vides a general randomized solution to this problem. Let F be a non-empty
set system on a universe U = {1, . . . , n}. Then the isolating lemma says, for
a random weight function on U (bounded by nO(1)), with high probability
there is a unique set in F of minimum weight [2]. This lemma, originally used
to give an elegant RNC algorithm for constructing a maximum matching (by
isolating a minimum weight perfect matching) in general graphs, has found
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many applications, mostly in discovering new randomized and non-uniform
upper bounds, via isolating minimum weight solutions [2, 3, 4, 5]. Clearly,
derandomizing the isolating lemma in sufficient generality will improve these
upper bounds to their deterministic counterparts and hence will be a ma-
jor result. Unfortunately, it was shown by Arvind and Mukhopadhyay that
such a derandomization will imply certain circuit lower bounds and hence
is a difficult task [6]. However, such negative results do not rule out the
possibility of bypassing the isolating lemma altogether by directly prescrib-
ing efficient deterministic weight functions for specific situations so that the
minimum weight solutions become unique. In fact, recently simple log-space
computable weight functions were prescribed for directed reachability and
bipartite perfect matching problems over grid graphs to yield new determin-
istic upper bounds [7, 8]. Grid graphs are a restricted class of planar graphs
where the graph completely lies on the two-dimensional grid. It was not
clear how to extend these weight functions to planar graphs. In this paper
we settle that question.

Our results

Given a directed graph G with a planar embedding, we prescribe a skew-
symmetric, log-space computable, polynomially bounded weight function w
with the property that, with respect to w, the weight of any simple cycle in G
is non-zero. We then use arguments identical to that in [7] to show that such
weight functions isolate directed paths - that is, with respect to such weight
functions, between any pair of nodes if there is a path, then there is a unique
minimum-weight path. We also show that such weight functions isolate a
matching in bipartite graphs (by appropriately directing edges). Our weight
function is based on the line integral on the right hand side of Theorem 2.

The weighting scheme that we prescribe works for any “nice” embedding
of the graph on the plane. For ease of presentation we will assume that the
graph is presented as a straight line embedding, which means each vertex v
is given as a point, (xv, yv) on the coordinate axes, and an edge (u, v) is a line
between points (xu, yu) and (xv, yv) so that no such lines intersect other than
at the vertices. Moreover, we will assume that the coordinates are integer
points with values bounded by poly(n). Existence of such embeddings were
known earlier [9, 10, 11].

Typically for algorithmic purposes planar graphs are presented in terms
of a combinatorial embedding. Time efficient algorithms are known that can
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compute a straight line embedding of a planar graph [10, 11] from a com-
binatorial embedding. Unfortunately, these algorithms require linear space
and at present we do not know how to get a space efficient implementation
of them. In Section 4 we give a log-space algorithm that gives a piecewise
straight line embedding of the given planar graph from a combinatorial em-
bedding. This is the first log-space construction known to us, of a piecewise
straight line embedding of a given planar graph and might be of independent
interest. It will be very clear how the weight function for a straight line
embedding can be extended to a piecewise straight line embedding also.

We do not get any new upper bounds for directed planar reachability or
planar bipartite matching problems (other than simplified proofs of existing
results) since it is known that these problems over planar graphs reduce
to their counterparts in grid graphs [12, 8] and hence the weight functions
known for grid graphs suffice to derive upper bounds for planar versions of
these problems. However, we feel that the application of Green’s Theorem
to the isolation problem gives it a new dimension and might yield potential
strategies to solve the more general cases.

2. The weight function

Let G = (V,E) be a graph with a straight line embedding. Let e = (u, v)
be a directed edge directed from u to v where u is identified with the point
(xu, yu) and v is identified with (xv, yv). For such a directed edge, define
a weight function w as follows (if e is piecewise straight, we calculate the
integral over each piece and sum them up):

w(e) = 2×
∮
e

x dy = (yv − yu)(xv + xu)

In order to calculate the second equality, we can use the parametric
equation of the line segment which is given by x(t) = (xv − xu)t + xu and
y(t) = (yv − yu)t + yu where t ∈ [0, 1]. Notice that if the coordinates of the
vertices are polynomially bounded, this weight function is also polynomially
bounded. For any cycle C in G, the weight of C, w(C) is defined as the sum
of the weights of the edges in C.

An important property of this weight function is that it is skew-symmetric,
that is, w(u, v) = −w(v, u). We use this skew-symmetry property in our
proofs. We will first show the following lemma which is crucial in proving
that this weight function has the required isolation property.
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Lemma 3. Let G be a directed planar graph and let C be any directed simple
cycle in G. Let RC be the region enclosed by C. Then |w(C)| = 2×Area(Rc).
In particular, w(C) is non-zero.

Proof. Let C = (e1, e2, . . . , el) be a directed cycle oriented counterclockwise.
Then we have

w(C) =
∑
i

w(ei)

= 2×
∑
i

∮
ei

x dy

= 2×
∮
C

x dy

= 2× Area(RC)

The last equality follows from Theorem 2. If C is oriented clockwise, we
get that w(C) = −2× Area(RC). Hence the lemma.

3. Isolating paths and matchings in planar graphs

Theorem 4. Let G be a planar directed graph with a straight line embedding.
Then with respect to the weight function w, for every pair of nodes u and v,
if there is a directed path from u to v, then there is a unique path from u to
v of minimum weight.

Proof. Suppose there are u, v so that there are two u to v paths P1 and
P2 of minimum weight. We will assume that the paths do not intersect on
vertices other than the end points (otherwise we can find two vertices u′

and v′ along these paths that satisfy this property using a standard cut-and-
paste argument and use these vertices instead). We have w(P1) = w(P2).
Now consider the graph G′ which is same as G except that the path P2 is
reversed so that the set of edges (P1, P

r
2 ) becomes a simple cycle in G′ (P r

2

denotes the reversal of the path P2). Let C denote this cycle. Then w(C) =
w(P1) + w(P r

2 ) = w(P1)− w(P2) = 0. The second equality holds because of
the skew-symmetry of the weight function. This contradicts Lemma 3.

Now we will consider isolation of matchings in bipartite planar graphs.
Since for matching we have undirected graphs, we need to give directions to
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the edges in order to assign weights. Let G be a bipartite graph. First we
compute the bipartition. This can be achieved in log-space by Reingold’s
reachability algorithm (say using a universal exploration sequence) for undi-
rected graphs [13]. Thus given a vertex u, we can decide in log-space whether
u ∈ L or u ∈ R, where (L,R) is a bipartition of G. For any undirected edge
{u, v} so that u ∈ L and v ∈ R, we first assign direction from u to v. Thus

in the corresponding directed graph, denoted by ~G, all the edges go from L
to R. Therefore the weight w(e) of an undirected edge e = {u, v} with u at
(xu, yu) and v at (xv, yv) is (yv − yu)(xv + xu), when directed in this way.

Theorem 5. Let G be a planar undirected bipartite graph. Then with respect
to the weight function w, if there is a perfect matching in G, the minimum
weight perfect matching in G is unique.

Proof. Suppose the theorem is not true and let M1 and M2 be two minimum-
weight matchings so that w(M1) = w(M2). Consider M1⊕M2, the symmetric
difference of M1 and M1. This is nonempty and is a collection of simple
alternating (between M1 and M2) cycles. Let C be one of the cycles. Let
C1 = C∩M1 and C2 = C∩M2. Then we claim that w(C1) = w(C2). Suppose
w(C1) < w(C2) then (M2\C2)∪C1 will be a matching of weight smaller than

that of M2. Let ~C1 and ~C2 be the corresponding set of directed edges. Now
consider a directed planar graph ~G′ which is same as ~G except that the
directions of all the edges in C2 is reversed. Thus the edges of ~C1, ~C2

r
form

a directed cycle ~C in ~G′. But w(~C) = w( ~C1) +w( ~C2

r
) = w( ~C1)−w( ~C2) = 0.

This contradicts Lemma 3.

3.1. A sufficient condition for isolating bipartite matching

Note that the above isolation theorems follow, using simple arguments,
from a weight function w for directed graphs with the property that weight
of any directed cycle is non-zero with respect to w. We state a general result
that captures the essentials of the above argument for bipartite matching. A
similar theorem holds for isolating directed paths also.

For the purpose of this section, we shall think of an edge weight function
as an n × n matrix. More formally, given a directed graph G on n vertices,
w(G) is an n× n matrix, (i, j)-th entry is the weight of the edge (i, j) in G.

Definition 1. Given a undirected graph H, let OH be the set of all di-
rected graphs H ′, such that the underlying graph of H ′ is H. For a class of
undirected graphs H, define OH = ∪H∈HOH .
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Theorem 6. Let G be a class of directed graphs and let w be an edge weight
function defined for every G ∈ G such that for every graph G ∈ G, w(G)
is skew-symmetric and for any cycle C in G, w(C) 6= 0. Let H be a class
of undirected bipartite graphs, such that OH ⊆ G. Then we can construct
a weight function w′ in log-space, such that for every graph H ∈ H, the
minimum weight perfect matching in H with respect to w′ is unique.

Proof. Given H, use Reingold’s undirected reachability algorithm [13], to
construct a bipartition of H, say L and R. Now orient the edges of H as
follows to get the graph H ′: for every edge e = {u, v} in H, where u ∈ L and
v ∈ R, replace e with the directed edge e′ = (u, v). By definition H ′ ∈ G and
thus w(H ′) is well defined. We now use w to define a weight function w′ on
H. For every edge e ∈ H, let w′(e) = w(e′).

Now suppose H has two distinct minimum weight perfect matchings, M1

and M2, with respect to w′. Then the symmetric difference of M1 and M2

is a collection of disjoint, even length, simple cycles, where the edges of the
cycle alternate between the matchings M1 and M2. Since M1 and M2 are
distinct, there is at least one cycle. Let C = (v1, v2, . . . v2k, v1) be one such
cycle. Let ei = (vi, v(i+1) (mod 2k)) for i ∈ [2k]. Without loss of generality
assume, v1 ∈ L and the edge e1 is in M1. Therefore if i is odd (resp. even),
then ei ∈ M1 (resp ei ∈ M2) and e′i is directed from L to R (resp from R to
L). Thus w′(e2i−1) = w(e′2i−1) and w′(e2i) = −w(e′2i) for i ∈ [k], due to the
skew-symmetry of w.

The weight of the restriction of M1 to C, w′(M1 ∩ C) =
∑k

i=1w
′(e2i−1).

Similarly w′(M2 ∩ C) =
∑k

i=1w
′(e2i). Now,

w′(M1 ∩ C)− w′(M2 ∩ C) =
k∑
i=1

w′(e2i−1)−
k∑
i=1

w′(e2i)

=
k∑
i=1

w(e′2i−1) +
k∑
i=1

w(e′2i) =
2k∑
i=1

w(e′i)

6= 0.

Therefore either M1 ∩ C or M2 ∩ C has higher weight with respect to w′.
Without loss of generality assume it is M2. Thus we get a perfect matching
M ′ = M2\(M2∩C)∪(M1∩C) in H of lesser weight, which is a contradiction.
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4. Piecewise straight line embedding of a planar graph

In this section we give a log-space algorithm to compute a piecewise
straight line embedding of a planar graph. All graphs considered in this
section are undirected, unless otherwise specified.

Definition 2. For pi ∈ R2, (p1, . . . , pk+1) is said to be a piecewise straight
line segment, if there is a straight line segment connecting pi with pi+1 for
every i ∈ [k].

Definition 3. For k ≥ 1, a k-piecewise straight line embedding of a graph
G = (V,E) is a function f : V → R2 and a collection of (k − 1) functions
gi : E → R2 for i ∈ [k−1], such that every edge e = (u, v) ∈ E is a piecewise
straight line segment, (f(u), g1(e), . . . , gle−1(e),
f(v)) for some le ≤ k and no two embedded edges intersect except possibly
at the end points.

Theorem 7. Given a combinatorial embedding of a planar graph G, there is
a log-space algorithm that computes a 4-piecewise straight line embedding of
G.

We will give an embedding of G in the first quadrant of the coordinate
plane. We first use Reingold’s undirected reachability algorithm [13] to com-
pute a spanning tree T of G rooted at some vertex r in G. Now from G we
create a new graph GT by “cutting” every non-tree edge e = (u, v) in two, to
create two edges (u,wue ) and (v, wve); thus GT is a tree and the newly intro-
duced vertices wue and wve are leaves. We then give a straight line embedding
of GT in the first quadrant of the two dimensional Cartesian coordinate sys-
tem (we shall just refer to it as the coordinate system from now on), such
that the the new leaves wue and wve (that is, the vertices that were introduced
when cutting every non-tree edge e) lie on a circle centered at the origin
and containing GT . Next we reconnect the split edges appropriately to avoid
intersections. Below we give a more formal description of the algorithm.

We create GT = (VT , ET ) from G as follows. For each edge e = (u, v)
in E \ T , we introduce two new vertices wue and wve . Now replace e with
the edges (u,wue ) and (v, wve). Denote the newly introduced set of vertices
and edges as V ′T and E ′T . Thus VT = V ∪ V ′T and ET = T ∪ E ′T . Note
that GT is a tree and every vertex in V ′T is a leaf. We shall think of GT as
a tree rooted at r as well. Next we define the height function, h for every
vertex in GT . For the root node h(r) = 0. For every vertex v 6= r in V ,
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h(v) = h(p) + 1, where p is the parent node of v in GT and for every vertex v
in V ′T , h(v) = max{h(u) + 1 : u ∈ V }. Define h(GT ) = max{h(v) : v ∈ VT}.
For a vertex v, let A(v) be the set of leaves u in GT , such that u is not present
in the subtree rooted at v and the path from u to r lies to the left of the
path from v to r. Let L be the set of leaves in GT . Then θ(v) = |A(v)|

|L|
π
2
.

The coordinates of a vertex v in our embedding are

F (v) = (h(v) cos (θ(v)) , h(v) sin (θ(v))).

For every edge e = (u, v) ∈ ET draw a straight line segment between F (u)
and F (v) to represent the edge. We shall denote the embedding of this edge
(line segment) by F (e). Note that the circle with radius h(GT ) contains the
entire embedded graph GT , and that the vertices v in V ′T lie on this ciccle.

Next we compare the sets A(u) and A(v) for two vertices u and v.

Lemma 8. Let u and v be two distinct vertices in G. (a) If u is an ancestor
of v then A(u) ⊆ A(v). (b) If u lies to the left of v, then A(u) ( A(v) (and
hence for any descendant w of u, A(w) ( A(v)).

Proof. (a) follows from the observation that any vertex to the left of a node
also lies to the left of any of its descendants. Similarly, if u lies to the left of
v, then any node to the left of u also lies to the left of v. The containment
is proper, since leaves in the subtree rooted at u are contained in A(v) but
not in A(u). Also if w is a descendant of u, then w lies to the left of v and
hence A(w) ( A(v). This proves (b).

In Lemma 9 we show that distinct vertices get mapped to distinct coor-
dinates by F . In Lemma 10 we prove that no two edges of GT intersect at
an intermediate point.

Lemma 9. Let u, v be two vertices in GT . Then u = v if and only if F (u) =
F (v).

Proof. Let u and v be two distinct vertices. If h(u) 6= h(v) then F (u) 6= F (v)
since they lie in different concentric cycles around the origin by definition of
F . If h(u) = h(v), then it follows from Lemma 8.

Lemma 10. Let e1 and e2 be two edges in GT . Then F (e1) and F (e2) do
not intersect except possibly at end points.
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Proof. Let e1 = (u1, v1) and e2 = (u2, v2) such that ui is the parent of vi. If
u1 = u2 then since v1 6= v2, e1 and e2 do not intersect non-trivially. Also if
v1 is an ancestor of u2 then v1 is an ancestor of v2 as well and therefore they
cannot intersect since they lie in concentric circles of different length around
the origin.

We now consider the case when u1 is not an ancestor or descendant of
u2. Without loss of generality assume u1 is to the left of u2, which implies
that A(u1) ( A(u2). From Lemma 8 we get θ(u1) ≤ θ(v1) < θ(u2) ≤
θ(v2). Therefore the line segments (F (u1), F (v1)) and (F (u2), F (v2)) do not
intersect.

Next we rejoin the split edges to get back the original graph. After joining,
a split edge would be embedded as a piecewise straight line as we describe
below. Recall that precisely the non-tree edges in G are the edges that were
split.

Suppose e = (u, v) was a non-tree edge in G. Then e was replaced by
the edges (u,wue ) and (v, wve) by the introduction of two new vertices wue and
wve . We remove the vertices wue and wve and the edges (u,wue ) and (v, wve) and
draw the piecewise straight line segment

(F (u), F (wue ),max{F (wue ), F (wve)}, F (wve), F (v))

to represent edge e (where the max function is defined as max{(a1, b1), (a2, b2)} ,
(max{a1, a2},max{b1, b2})).

We shall denote the embedding of this edge (piecewise line segment) by
F (e). In Lemma 11 we show that non-tree edges do not intersect non-trivially,
to complete the proof of Theorem 7.

Lemma 11. Let e1 = (u1, v1) and e2 = (u2, v2) be two non-tree edges in G.
Then the edges F (e1) and F (e2) do not intersect non-trivially.

Proof. We only need to show that the piecewise line segments

- (F (wu1e1 ),max{F (wu1e1 ), F (wv1e1 )}, F (wv1e1 )) and

- (F (wu2e2 ),max{F (wu2e2 ), F (wv2e2 )}, F (wv2e2 ))

do not intersect.
Case 1 (One end point of e1 and e2 is common): Without loss of generality

assume u1 = u2 = u(say) and θ(v1) ≤ θ(v2). Thus in GT , wue2 lies to the
left of wue1 which implies θ(wue2) < θ(wue1) by Lemma 8. Also θ(wv1e1 ) < θ(wv2e2 )
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since wv1e1 and wv2e2 are children of v1 and v2 respectively. This shows the
Lemma for Case 1.
Case 2 (All end points of e1 and e2 are distinct): Without loss of generality
assume θ(u1) ≤ θ(u2) and θ(ui) ≤ θ(vi) for i ∈ {1, 2}. Since e1 and e2
cannot intersect, therefore if θ(v1) ≥ θ(u2), then θ(u1) ≤ θ(v2) ≤ θ(v1),
and if θ(v1) < θ(u2), then either θ(v2) ≥ θ(v1). This implies that either
θ(wu1e1 ) < θ(wu2e2 ) < θ(wv2e2 ) < θ(wv1e1 ) or θ(wu1e1 ) < θ(wv1e1 ) < θ(wu2e2 ) < θ(wv2e2 ).
Hence the Lemma holds for this case too.

Note that the coordinates that we assign are real numbers and need not
be computable in log-space. To take care of this problem we can “inflate” the
entire mapping by multiplying each coordinate with a suitable large number
(say |V |5) and then taking the floor of each point to get an integral em-
bedding. Also it has been shown that good enough approximations of the
functions sin(θ) and cos(θ) and the constant π can be computed efficiently
[14, 15].

As an application of Theorem 6 and 7, we get a simpler proof of the
following result from Datta, Kulkarni and Roy [8].

Corollary 12 ([8]). There is a log-space computable weight function, with
respect to which there is a unique minimum weight perfect matching in every
bipartite, planar, undirected graph.

Lemma 3 gives a weight function for the class of directed planar graphs
that is skew-symmetric. Then we apply Theorem 6 to get the above Corollary.

a b

c d e f g

h i

r

Figure 1: Example of a graph G containing a spanning tree T (solid edges) rooted at r.
The dashed edges are the non-tree edges.
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Figure 2: Piecewise straight line embedding of G.

5. Final remarks

It is clear that there are many other weight functions that will work. In

fact any “nice” solution to the differential equation
(
∂Q
∂x
− ∂P

∂y

)
= 1 will yield

isolating weight functions. In particular, setting P (x, y) = −y
2

and Q(x, y) =
x
2

to the left hand side of Green’s theorem yields the weight function w(e) =
(xuyv − xvyu) which is isolating.

One can easily verify that the weight function we give here is a true
extension of the following weight function prescribed in [7] for isolating paths
in grid graphs: east and west edges are given 0 weight, a north edge at
((i, j), (i, j + 1)) is given a weight i, and a south edge at ((i, j), (i, j − 1)) is
given a weight −i. However, if we apply our theorem for the case of isolating
matching in grid graphs, we get a different (slightly simpler) weight function
than the one prescribed in [8]. We believe that this paper better explains the
reason behind why these weight functions work.
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