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—— Abstract

We exhibit the following new upper bounds on the space complexity and the parallel com-
plexity of the Bipartite Perfect Matching (BPM) problem for graphs of small genus:
(1) BPM in planar graphs is in UL (improves upon the SPL bound from [7]);
(2) BPM in constant genus graphs is in NL (orthogonal to the SPL bound from [8));
(3) BPM in poly-logarithmic genus graphs is in NC; (extends the NC bound for O(logn) genus
graphs from [21, 18]).
For Part (1) we combine the flow technique of Miller and Naor [22] with the double counting
technique of Reinhardt and Allender [27]. For Part (2) and (3) we extend [22] to higher genus
surfaces in the spirit of Chambers et. al. [4]
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1 Introduction

1.1 Matching Problems in Graphs

A matching M in a graph G is a set of vertex disjoint edges. The end-points of the edges
in M are said to be matched. A perfect matching in a graph G is a matching M such that
every vertex of G is matched. See [20] for an excellent introduction to matching and related
problems. We consider the following computational problems related to matching;:
PERFECT-MATCHING (DECISION) : decide if G contains a perfect matching.
PERFECT-MATCHING (CONSTRUCTION) : construct a perfect matching in G (if exists).
MIN-WT-PM (DECISION) : given G together with edge-weights w : E(G) — Z such that
lw(e)] < n®1) | and an integer k - decide if G contains a perfect matching of weight at
most k.
MAaX-MATCHING (DECISION) : given G and an integer k, decide whether or not G has
a matching of cardinality at least k.
UPM (DECISION) : decide whether or not G has a unique perfect matching

Historically, matching problems play a central role in Algorithms and Complexity The-
ory. Edmond’s blossom algorithm [9] for MAX-MATCHING was one of the first examples
of a non-trivial polynomial time algorithm. It had a considerable share in initiating the

@@@@ © Samir Datta and Arjun Gopalan and Raghav Kulkarni and Raghunath Tewari;
CETWTl licensed under Creative Commons License NC-ND

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Improved Bounds for Bipartite Matching on Surfaces

study of efficient computation, including the class P itself; Valiant’s #P-hardness [30] for
counting perfect matchings in bipartite graphs provided surprising insights into the counting
complexity classes. The study of whether PERFECT-MATCHING is parallelizable has yielded
powerful tools such as isolating lemma [24] that have found numerous other applications.

The rich combinatorial structure of matching problems combined with their potential to
serve as central problems in the field invites their study from several perspectives. The focus
of this paper is on the space and parallel complexity of matching problems. The best known
upper bound for PERFECT-MATCHING (and other matching problems mentioned above) is
non-uniform SPL [2] whereas the best hardness known is NL-hardness [5]. Unless otherwise
specified all circuit classes from now on are uniform (say L-uniform).

1.2 Matching Problems in Planar Graphs

A well known example where planarity is a boon is that of counting perfect matchings.
The problem in planar graphs is in P [16] as opposed to being #P-hard in general graphs
[30]. Counting perfect matchings in planar graphs can in fact be done in NC [31]; thus
PERFECT-MATCHING (DECISION) in planar graphs is in NC. “Is the construction version
of PERFECT-MATCHING in planar graphs in NC?” remains an outstanding open question,
whereas the bipartite planar case is known to be in NC [22], [21], [18], [7].

The space complexity of matching problems in planar graphs was first studied by Datta,
Kulkarni, and Roy [7] where it was shown that MIN-WT-PM in bipartite planar graphs is in
SPL. Kulkarni [17] shows that MIN-WT-PM in planar graphs (not necessarily bipartite) is
NL-hard. The only known hardness for PERFECT-MATCHING in planar graphs is L-hardness
(cf. [6]). For bipartite planar graphs, nothing better than L-hardness is known.

Given a directed graph G and two vertices s and ¢ in G, let DIR-REACH denote the
problem of deciding if there exists a path from s to ¢ in G. DIR-REACH is NL-complete. It
turns out that DIR-REACH in planar graphs reduces (in log-space) to PERFECT-MATCHING
in bipartite planar graphs [6]; the former was proved to be in UL N coUL by Bourke, Tewari,
and Vinodchandran [3]. In this paper we show that PERFECT-MATCHING in bipartite planar
graphs is in UL, leaving the coUL bound as an intriguing open question. Appendix A records
the current knowledge (including the results in this paper) about the space complexity of
matching problems in planar graphs.

1.3 Matching Problems in small genus graphs

Counting perfect matchings in graphs embedded on O(logn) genus surfaces in NC (see Gal-
luccio and Loebl [11]). Combining this with a rounding procedure from Goldberg, Plotkin,
Shmoys, and Tardos [12], the authors of [21] and [18] obtain an NC algorithm for the de-
cision and construction versions of BPM in O(logn) genus graphs. In [8], the result of [7]
was extended to bipartite graphs of bounded genus and a tighter bound of SPL C NC was
obtained. We are able to improve these results using a technique of Miller and Naor [22]
and its extension to higher genus graphs by Chambers, Erickson and Nayyeri [4].

1.4 Our Results

» Theorem 1.1. PERFECT-MATCHING in bipartite planar graphs is in UL.

The result holds for both decision and construction versions of the problem. We build on two
key algorithms: (1) Miller and Naor’s algorithm [22] for perfect matching in bipartite planar
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graphs; (2) Reinhardt and Allender’s [27] UL algorithm for shortest path in min-unique
graphs: graphs with polynomially bounded edge-weights and having at most one minimum
weight path between any pair of vertices. Miller and Naor reduce the PERFECT-MATCHING
(DECISION) in planar graphs to the following problem in directed planar graphs: NEG-CYCLE
(DECISION) problem - given a directed graph with polynomially bounded edge-weights, de-
cide whether or not the graph contains a negative weight cycle. We observe that this
reduction works in log-space and NEG-CYCLE problem is in NL. This yields the NL bound
for perfect matching in bipartite planar graphs (Appendix H). For the proof of the UL bound
in part (a), we first provide a technical extension of (2) when the graph contains negative
weight edges but no negative weight cycles. A simple but subtle combination of (1) and (2)
then yields the desired result. As opposed to [18] and [7], our space bounded algorithms do
not require determinant computation as a subroutine, instead we make use of a variant of
planar reachability. However, for the weighted case we do not know how to improve upon
the SPL bound in [7]. We also do not know how to improve on L% bound for maximum
matching due to Hoang [14].

» Theorem 1.2. PERFECT-MATCHING in bipartite graphs of constant genus is in NL.
» Theorem 1.3. PERFECT-MATCHING in bipartite graphs of (logn)°M genus is in NC.

Again the results hold for both decision and construction versions but we require that
a cellular embedding of the graph is given as part of the input. We adapt the approach of
Chambers et. al. [4] in the context of the flow instance corresponding to the perfect matching
problem. Chambers, Erickson and Nayyeri [4] extend the techniques of Miller and Naor to
reduce the search space of a max-s, t-flow on a surface. In particular, for genus g surface they
can formulate the flow problem as a linear program in only O(g) variables. We show that a
flow instance corresponding to perfect matching in a bipartite graph embedded on a surface is
a yes instance exactly when we can send flows along the 2g basis cycles such that the residual
graph has no negative cycle. Moreover, if we start from a PERFECT-MATCHING instance
then the flows must be integral and polynomially bounded. Thus exhaustive search in the
2g-dimensional space yields an NL algorithm for the existence of a PERFECT-MATCHING
when g is a constant. We believe that this NL bound can be improved to UL.

For poly-logarithmic genus, the ellipsoid method yields an NC bound. Our observation is
that the separation oracle, the problem of determining if a weighted directed graph contains a
negative cycle, can be implemented in NC. For the construction version, we use the rounding
procedure of Goldberg, Plotkin, Shmoys and Tardos [12] to obtain an integral solution in
NC from the fractional solution coming from the ellipsoid algorithm.

We also consider EVEN-PATH problem: deciding whether or not there is a directed path
of even length between two specified vertices. EVEN-PATH is NP-complete [19] but restricted
to planar graphs it is in P [25]. For directed acyclic graphs (DAGs), the problem is NL-
complete. The EVEN-PATH problem can be viewed as a relaxation of the RED-BLUE-PATH
problem - given a directed graph with edges colored Red or Blue, decide whether or not
there is a (simple) path between two specified vertices such that consecutive edges in the
path are of different colors. The RED-BLUE-PATH problem is known to be NL-complete for
planar DAGs [17]. THis provides context for the following theorem.

» Theorem 1.4. EVEN-PATH in planar DAG is in UL.

The hope is that the proof of this theorem contains the seeds for a proof showing that
RED-BLUE-PATH for planar DAGs is in UL which would imply that NL collapses to UL. It
is worth noting that our proof of the UL bound for EVEN-PATH in planar DAGs combines
two different deterministic isolation techniques ([3], [14]).
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1.5 Organization

Section 2 contains preliminaries. Section 3 contains the UL bound for bipartite planar
graphs. Section 4 contains the results for higher genus graphs. Section 5 contains UL bound
for EVEN-PATH problem in planar DAG. Section 6 contains some open ends.

2 Preliminaries

2.1 Space Complexity Classes

See the monograph by Vollmer [32] for definitions of standard circuit complexity classes.
(Definitions of relevant space complexity classes can also be found in Appendix B) It is
known that UL € NL € NC C P and UL C SPL. It is also known that SPL C &L C NC. NL
and SPL as well as NL and €L are not known to be comparable.

2.2 Flow Terminology

Here we rephrase the terminology used in [22]. An undirected edge is a two element unordered
set {u,v} such that u,v € V. An undirected graph G = (V, E)) consists of a set V' of vertices
and a set F of undirected edges. An arc is an ordered tuple (u,v) € V x V. A directed
graph = (v, E) consists of a set V' of vertices and a set £ C V x V of arcs. Given an
undirected graph G = (U, V), its directed version is a directed graph T - (v, ?) where
E = {(u,v) | {u,0} € EY.

A capacity-demand graph is a triple (G, ¢,d) where G = (V, E); every arc (u,v) € ?
is assigned a real value c(u,v) called the capacity of the arc and every vertex v € V is
assigned a real value d(v) called the demand at the vertex. A pseudo-flow in a capacity-
demand graph (G, c,d) is a function f : E = R such that: (i) for every arc (u,v) € FE,
we have: (skew-symmetry) f(u,v) = —f(v,u), and (ii) for every vertex v € V, we have:
(demands met) Zwev:(v,w)e(ﬁ f(v,w) = d(v). A flowin a capacity-demand graph (G, ¢, d) is
a function f : ‘E s R such that: (a) fis a pseudo-flow in (G, ¢, d); (b) for every (u,v) € ?,
we have: (capacity constraints satisfied) f(u,v) < c(u,v). A zero-demand graph (G,c) is a
capacity-demand graph in which the demand at every vertex is zero.

2.3 Main Lemmas from Miller and Naor [22]

» Definition 2.1 (Directed Dual). Let G be a planar graph. Fix an embedding of G in the
plane. Let G* denote the dual of G with respect to the fixed embedding. The directed dual
of G is the directed version of G* denoted by W The arcs of ﬁ and that of W are in
one to one correspondence.

» Proposition 2.2 (folklore, see for instance [22]). Let (G, ¢) be a zero-demand graph. Let f
be a flow in (G, ¢). If C* = (e7, ..., e}) is a directed cycle in (G*), then

> s =o

e: ereC*

» Lemma 2.3 (Miller, Naor [22]). Let (G,c) be a zero-demand graph, then: there exists a
flow in (G,c) < (G*) has no negative weight cycle with respect to weights c.
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3 Bipartite Planar Matching: The UL Bounds

Suppose we have a directed graph G with polynomially bounded weights on its edges. The
weights could be positive or negative. Let s be a fixed vertex in G. Let d(u,v) denote
the length of the minimum length path from u to v. whenever defined. Notice that these
definitions are conditional on the non-existence of negative cycles and we show how to deal
with these cases below.

Vi :i={v | d(s,v) < k}.

Let disty, (u,v) denote the weight of the minimum weight walk (with respect to weights w)
of length at most &k from w to v. Note that disty (u,v) could be negative. We define,

Y= Z disty (s, v).

veVy

We use an extension of [27] to compute dist} (s,v) and Vj in UL. We pause to note
that the technique of [27], called double counting in [27], is a generalization of the inductive
counting technique used by Immerman [15] and Szelepcsényi [28] to show that NL = coNL.
We combine this UL algorithm with Miller and Naor’s algorithm via Weighting Scheme A
in Section 5 to obtain the UL bound for perfect matching in bipartite planar graphs.

We need an extension of [27], when the graph contains negative weight edges but no
negative weight cycle. Simple adaptations of the subroutines in [27] (Algorithm 4 and 5
in Appendix F) in a straightforward way yields such an extension. We call this extension
(Algorithm 2) as the Ertended-RA Algorithm . Following lemmas (Appendix D) are simple
consequence of the Extended-RA Algorithm and min-uniqueness achieved via generalized
BTV weights (Weighting Scheme A).

The weighting scheme A

Weighting scheme A is a generalization of the weight function in [3] to planar graphs. In
other words, given a directed planar graph G, we construct a log-space computable edge
weight function with respect to which any simple cycle in G has non-zero weight. Tewari and
Vinodchandran [29] give a log-space construction of such a weight function by an application
of Green’s Theorem. We give an alternate procedure (see Algorithm 1) that achieves the
same result.

» Lemma 3.1 (adaptation of [3]). With respect to the weight function wa the absolute value
of the sum of the weights of the arcs along any directed cycle is equal to the number of faces
in the interior of the cycle.

Proof of Lemma 3.1: For a simple cycle C of G, let us define the weight of C, w(C), to be
the sum of weights of the edges lying along C in clockwise order. It suffices to show that for
a facial cycle F of G, w(F) = +1. This is because for a simple cycle C":

w(C) = > wF).
Felnterior(c)

But w(F) equals the sum of the weights of dual edges (in G*) outgoing from the dual vertex
F* € V(G*), so it suffices to show that for every vertex u € V(G*):

Z o, = +1.

vi(u,v)EE(G*)
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Input : A planar graph G
Output : An edge weight function w4 such that for any simple cycle C' in G
’LUA(C) 75 0

1 Compute a spanning tree T" in G;

2 For any arc e € ?, set wy(e) = 0;

3 Let R denote the spanning tree in G* consisting of the edges that do not belong to
T. Fix a root r for R (say the unbounded face) and let R denote the orientation
of R where each edge is oriented towards the root;

4 An arc e* = (u,v) € R separates the tree R into two subtrees. Let o, denote the
number of vertices in the subtree containing u. Set w4 (u,v) = «, and
wa(v,u) = —ay;

5 Set wa(e) =wa(e*) for every e € E(G) where e* is the (directed) dual edge of e;

Algorithm 1: Weighting Scheme A

Observe that the number of nodes in the subtree rooted at u is one more than sum of the
number of vertices in the subtrees rooted at v for various v, such that (u,v) is a dual edge.
This, together with the skew symmetry of the weights wa(u,v), completes the proof. O

Input : A directed graph G on n vertices; edge-weights w : E(G) — Z such that
lw(e)| <nPW; 5,0 € V(G); and an integer ¢
Output : dist}’ (s, v)
Initialize Vy < {s} and X + 0;
for k=1totdo
Compute (|Vi|,2}) from (|[Vi—1], ¥ 1);
end
Compute disty’ (s, v) from (|V;], £) and output;
Algorithm 2: Extended-RA Algorithm (adapted from [27])

SV VN

» Lemma 3.2. Given a directed planar graph with polynomially bounded weights w on its
arcs such that there are no negative weight cycles, the shortest distance dist” (u,v) between
any pair of vertices with respect to weights w can be computed in UL.

» Lemma 3.3. Given a directed planar graph with polynomially bounded weights w on its
arcs, deciding whether or not the graph contains a negative weight cycle is in coUL.

Combining Algorithm 2 with Miller and Naor’s algorithm, we obtain the UL algorithm
(Algorithm 3) for PERFECT-MATCHING in bipartite planar graphs.

» Theorem 3.4. (Theorem 1.1) In bipartite planar graphs, both the decision as well as the
construction versions of the PERFECT-MATCHING are in UL.

Proof. The correctness of the above algorithm follows from [22]. To see the UL bound, note
that the Extended-RA algorithm computes dist,, correctly along a unique path assuming
min-uniqueness of the weights. If there are no negative weight cycles then the generalized
BTV weights (Section 5) guarantee min-uniqueness.

Thus, if there are no negative weight cycles in (G*) then we obtain a valid flow and a
perfect matching along the unique accepting path. Otherwise, we realize that f is not a
valid flow and reject. <
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Input : A bipartite planar graph G
Output : A perfect matching in G if one exists; else reject

1 Construct a capacity-demand graph (G, ¢, d) as follows: for each vertex v € A, set
d(v) =1 and for each vertex v € B, set d(v) = —1. For u € A,v € B, set
c(u,v) =1 and ¢(v,u) = 0;

2 Run Algorithm 6 to construct a pseudo-flow f’ in (G, ¢,d);

3 Construct a zero-demand graph (G, ¢ — f');

4 Run Extended-RA Algorithm on (G*) with weights w = n*(c — f') + btv to

compute the shortest distances dist,, (u, v) in (G* , Where btv denotes generalized
BTV weights (Weighting Scheme A in Section 5);

5 Compute distfl_f/ (u,v) in W from the above by ignoring the lower order weights
from btv;

6 Run Algorithm 8 to compute f;

7 If f is a flow then for u € A and v € B, output “u is matched to v”
— f(u’ U) =1

8 otherwise reject and output “No perfect matching";

Algorithm 3: UL algorithm for PERFECT-MATCHING in bipartite planar graphs

We also obtain the following corollary on similar lines (for a proof see Appendix D):

» Corollary 3.5. Single-source, single-sink mazximum flow problem in planar networks with
polynomially bounded capacities is in LYt

4 Bipartite Perfect Matching in higher genus graphs

We need G to be given together with its cellular embedding [4] on a surface of genus g.
Every graph admits a cellular embedding as the embedding on the minimal genus surface
is always cellular [23]. We also need the 2g basis cycles in G explicitly given to us. The
advantage of cellular embedding of G is that every vertex of G corresponds to a face in the
dual graph G* and vice versa. Let G be a graph with a cellular embedding on a surface of
genus g and let C,Cy, ..., Cyy be the basis cycles. Using Steps 1, 2, and 3 of Algorithm 3,
we first obtain a multiple source multiple sink flow problem and then transform it to a zero
demand instance. None of these reductions use planarity. Let (G, ¢) denote the zero-demand
instance associated with G with capacity function c. We fix an arbitrary orientation for each
C;.Fori=1,...,2g, let F; denote the flow that is zero everywhere outside C;, i.e., F;(e) =0
if e ¢ C; and for each e € C; the flow value is f;, i.e., Fi(e) = f; Let f = (f1,..., fag) and
let ¢ — f denote the graph with the weight of edge e defined as c(e) — Y, Fi(e).

The following is a generalization of Lemma 2.3 in Section 2 (same as Lemma 4.1 in
[22]) for higher genus graphs with cellular embeddings. After we obtained the proof of this
lemma, we learned that a similar lemma is already noted by Chambers et. al. [4].

» Lemma 4.1. The zero demand instance (G,c) admits a valid flow if and only if there
exists fi,..., fag such that the dual graph G* with weights c — f has no negative cycles.
Moreover: if the capacities ¢ are integral then we can assume f; to be integral.

Proof. Analogous to the proof of Lemma 3.1 in [4].
If (G, c) admits a valid flow F' then we fix 2g basis cycles C7,...,C3, in the dual with
an arbitrarily chosen orientation and we take f; = > . F'(e). We need that C; crosses C;
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exactly once, and C; does not cross Cj if j # i. We claim that this choice leaves no negative
cycles in the dual with respect to weights ¢ — f (cf. Lemma 3.1 in [4], see Appendix G for
a proof sketch).

If there exists f such that there are no negative cycles in the dual with respect to weights
¢— f then using the shortest distance in dual (proof of Lemma 4.1 in [22]) we can get a valid
flow in the zero-demand instance. Here we use the fact that the embedding is cellular and
hence every vertex corresponds to a cycle in the dual; and the flow obtained by the shortest
distance in the dual sums up to zero on every cycle in the dual. <

We use the fact that if (G, c¢) admits a valid flow then there exists f such that the values
of f; are at most Cpqe - M, Where ¢p,q, is the maximum absolute value of the capacites to
obtain the following (Appendix J).

» Theorem 4.2. Given a bipartite graph G together with a cellular embedding on a constant
genus surface, PERFECT-MATCHING (Decision + Construction) in G is in NL.

» Theorem 4.3. Given a bipartite graph G together with a cellular embedding on a surface
of poly-logarithmic genus, PERFECT-MATCHING (Decision + Construction) in G is in NC.

Proof. Note that Lemma 4.1 reduces the decision version of the Bipartite Perfect Matching
problem to the problem of solving the feasibility of a linear program in variables fi,..., faq
with the linear constraints that every cycle in the dual is non-negative with respect to weights
¢ — f. We use ellipsoid method to solve this problem.

The crucial observation is that the separation oracle for this problem is in NC. The
separation oracle in our context is, given a weighted graph, the problem of determining
whether or not it contains a negative cycle. This problem is equivalent to checking if all
pair shortest paths are well-defined (because otherwise vertices lying on a negative cycle will
have negative shortest paths to themselves). Thus a parallelized version of Floyd-Warshall
which runs in NC even when the weights are exponential [13] is sufficient for our purpose.

The running time of the algorithm modulo the separation oracle is polynomial in the
number of variables and hence in ¢g®™) time. This yields an NC algorithm for the decision
version for poly-log genus graphs, given their embedding in the required form.

The construction version is also in NC,: A solution to the linear program in the 2g
variables naturally translates to a point inside the Perfect Matching Polytope of G [18].
Pulling back a point from R29 to RIF(&)! can be accomplished n L via an argument similar
to the proof of Lemma 4.1. An NC procedure to obtain a Perfect Matching, given a point
inside the Perfect Matching Polytope is described in [12] (also see Section 3 in [18]). <

5 Even-Path in planar DAG is in UL

» Definition 5.1 (Red-Blue-Path). Given a directed graph with each edge colored either
Red or Blue, a Red-Blue-Path from s to t is a (simple) directed path from s to ¢ such that
consecutive edges are of different colors. The RED-BLUE-PATH problem is to decide if there
is a Red-Blue-Path from s to t.

» Definition 5.2 (Even-Path). Given a directed graph and two nodes s and ¢, an Even-Path
from s to t is a (simple) directed path from s to ¢ containing even number of edges. The
EVEN-PATH problem is to decide if there is an Even-Path from s to ¢.

» Theorem 5.3 ([17]). RED-BLUE-PATH in planar DAGSs is NL-complete.
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In this section, we prove that the EVEN-PATH problem (which can be viewed as a relaxation
of the RED-BLUE-PATH problem as a path starting with say Red edge and ending with say
Blue edge is always of even length) in planar DAG is in fact in UL. Our proof involves a
combination of two different isolation techniques that are currently available.

» Lemma 5.4. Let G be a planar DAG and u and v be any two vertices in G. Then with
respect to the weight function wa, (a) if Pr and Py are two minimum weight Even-Paths
from u to v, then P, @& Py divides the plane into at most two bounded regions; (b) no three
minimum weight Even-Paths from u to v share a common vertex w other than u and v, such
that the path segments between the vertices u and w and between w and v are not identical.
(c) there are at most 2n* minimum weight Even-Paths from u to v.

Proof. (a) For the sake of contradiction let C7, C2 and C5 be any three bounded regions of
Py @& P,. Let P;; be the restriction of the i-th path to the j-th for i € {1,2} and j € {1,2,3}.
Observe that wa(Pij) # wa(P2;) since C; is a simple cycle and by Lemma 3.1 we have
that wa(C;) # 0. Now the parity of the lengths of the path segments P; ; and P»; are
different since if they were the same, we could replace the higher weighted segment with
the lower weighted one and get an even length path of lesser weight. This implies that
wa(C1 + C2 + Cs) is odd since the weight of each C; is odd. Let P/ = J; B;; for i € {1,2}.
Therefore either wa(P]) is odd or wa(Pj), but not both. Without loss of generality lets
assume w4 (P[) is odd. For each j pick the path segment between Pi; and P»; that has
lesser weight to create a set say P’. Now w4 (P’) is strictly smaller than both w4 (P]) and
wa(Ps). If wa(P') is odd then replace P; with P’ and if w4(P’) is even then replace Pj
with P’ to get a path of smaller weight and same parity. This is a contradiction. Thus
P, & P, has at most two bounded regions.

(b) Let Py, P, and P5 be three minimum weight paths from w to v that share a common
vertex (say w) such that the segments of each of the three paths between the vertices u and
w and between w and v are distinct. In other words, if P/ and P}’ are the segments of P;
between the vertices v and w and between w and v respectively (for ¢ € {1,2,3}), then {P/}
are pairwise non-identical and so are { P/'}. There exists at least two path segments between
P, P} and P} whose lengths have the same parity. Without loss of generality assume its
P and Pj. Now if w4 (P]) # wa(P5) then since they have the same parity we can pick the
lesser weight path between P; and P, and similarly the lesser weight path between P/’ and
P} and append them to get an even path of weight less than either that of P, or P, from
u to v. Thus we can assume wa(P]) = wa(Py). By Lemma 3.1, this implies that P] & P
as at least two bounded regions. Moreover since P;’ and Py are also not identical, therefore
P{' ® PJ has at least one one bounded region. Thus P; @ P, has at least 3 bounded regions,
thus contradicting part (a).

(c) Let a, b, ¢ and d be four vertices in G and let P, pcq be the set of all minimum
weight even length paths from w to v that pass through the vertices a,b,c and d in that
order and are vertex disjoint between the vertices a and b and between the vertices ¢ and d
respectively. Then by part (b), Py.p.c,¢ will have at most 2 paths. Since the total number of
such tuples is at most n?, therefore the number of minimum weight, even length u-v paths
is bounded by 2n*. <

Constructing an auxiliary graph

Construct a directed (multi)graph G’ from G as follows: the vertex set of G’ is the vertex
set of G. An edge (v;,v;) is in G’ if and only if there exists a vertex vy in G and the edges
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(vi,vg) and (vg,v;) are in G. The weight w of an edges in G’ is the sum of the weights of
the corresponding two edges in G.
Now Lemma 5.5 follows by definition of G’ and part (c¢) of Lemma 5.4.

» Lemma 5.5. (a) G has an Even-Path from u to v if and only if G’ has a directed path
from w to v; (b) the number of minimum weights paths from u to v in G’ with respect to w4
is at most 2n*.

Weighting scheme B

Our weighting scheme B is based on a well known hashing scheme based on primes, due to
Fredman, Komlds and Szemerédi [10].

» Lemma 5.6 ([10]). Let ¢ be a constant and S be a set of n-bit integers with |S| < n®. Then
there is a ¢’ and a ¢ logn-bit prime number p so that for any © #y € S x £y (mod p).

Hoang used this scheme to give better upper bounds for PERFECT-MATCHING in certain
classes of graphs [14]. Aduri, Tewari and Vinodchandran showed that reachability in graphs
where the number of paths from s to any vertex is bounded by a polynomial is in UL, by
applying this hashing scheme. We use Lemma 5.6 here to define a weight function with
respect to which G’ in min-unique.

Let p; be the i*" prime number. Consider the lexicographical ordering of the edges
of G' and denote the ;" edge in this ordering by e;. Define the i** weight function (for
1 < i < g(n) and an appropriate polynomial ¢(n) dictated by Lemma 5.6), wp, (e;) = 27(
mod p;).

» Lemma 5.7 (Adapted from [1]). There exists an i < g(n) such that the graph G’ with
respect to the weight function W; = wa - n'® + wp, is min-unique.

Proof. Let P, be the set of minimum weight paths from s to a vertex v in G’, with respect
to wa. Then by Lemma 5.5, |P,| is bounded by 2n*. It follows from Lemma 5.6 that
with respect to some wpg,, all paths in (J, P, will have distinct weights. Therefore G’ is
min-unique with respect to W; for some 1. |

For each ¢ € [g(n)], check if G’ is min-unique with respect to W; or not. Once we have
an appropriate ¢, we can decide reachability in G’ in UL [27]. By Lemma 5.5 a path in G’
corresponds to an EvenPath in G and thus we have Theorem 5.8.

» Theorem 5.8. (Theorem 1.4) EVEN-PATH in planar DAGSs is in UL.

6 Open Ends

Is NEG-CyCLE (DECISION) in planar graphs in UL? Is ODD-CYCLE in planar graphs in L7
Is PERFECT-MATCHING (DECISION) in bipartite planar graphs in coUL? Is MIN-WT-PM
in bipartite planar graphs in NL? Is MAX-MATCHING in bipartite planar graphs in NL?
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A Table

Table 1 Space Complexity of Matching Problems in Planar Graphs

Problem in Planar Graphs ‘ Upper Bound ‘ Hardness ‘
PERFECT-MATCHING (CONSTRUCTION) PSPACE L
MAX-MATCHING (DECISION) PSPACE L

MIN-WT-PM (DECISION) LO=L [16] NL [17]
PERFECT-MATCHING (DECISION) LC=L [16] L
bipartite MAX-MATCHING LC=L [14] L
bipartite MIN-WT-PM SPL [7] L
bipartite HALL-OBS (CONSTRUCTION) NL (new) L
bipartite HALL-OBs (DECISION) coUL (new) L
bipartite PERFECT-MATCHING UL (new) L
bipartite UPM UL (new) L [6]

B Space Complexity Classes

» Definition B.1 (Space Complexity Classes).

- The class L consists of the decision problems that can be solved using a deterministic

log-space Turing machine.

- The class NL consists of the decision problems that can be solved using a non-deterministic

log-space Turing machine.

- The class UL consists of the decision problems that are solvable by an NL machine with

at most one accepting path.

- The class #L consists of functions of the form #accps(x) : ¥* — N (counting the number

of accepting computations of an NL machine M on input z).
- The class GapL consists of functions that are the difference of two #L functions.

- The class SPL consists of those decision problems A C X* for which the characteristic

vector x4 € GapL, where x4 € {0, 1}2* indicates membership in A.
- The class @L consists of the decision problems A C ¥* defined as follows:

®L ={A|3f € GapL such that: z € A <= f(z)=1 (mod 2).}

C Hall Obstacles

The Hall’s Theorem (see for instance [20]) asserts that a bipartite graph G = (AU B, E)
has a perfect matching iff |A| = |B| and for every S C A : |[N(S)| > |S|, where N(S) :=
{veB|3JueA: (uwv)e E}. A Hall-obstacle in a bipartite graph G = (AU B, E) is a set
S C A such that |[N(S5)| < |S|. We consider the following computational problems related

to Hall-obstacle:
HALL-OBS (DECISION) : decide if a bipartite G contains a Hall-obstacle.
HALL-OBS (CONSTRUCTION) : construct a Hall-obstacle in a bipartite G (if exists).

13
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» Theorem C.1. In bipartite planar graphs, (o) HALL-OBs (DECISION) is in coUL;
(b) HALL-OBs (CONSTRUCTION) 4s in NL.

C.1 Constructing a Hall-obstacle

In this section, we note the correspondence between the Hall-obstacles in a bipartite planar
graph and the negative weight cycles in a related planar graph with suitable weights. Let
G = (AUB, E) be a bipartite planar graph. Let (G, ¢, d) be a capacity-demand graph defined
as follows: for each vertex v € A, set d(v) = 1 and for each vertex v € B, set d(v) = —1. For
u€ Av € B, set ¢(u,v) =1 and ¢(v,u) = 0. Let f' be a pseudo-flow in (G, ¢, d). Let C* be a
negative weight cycle in (G*) with respect to weights ¢c— f’. Let (V} = A;UBy, Vo = A3UBs)
be the directed cut in ﬁ corresponding to C*, where V; corresponds to the set of faces of
G*) that are in the interior of C* or equivalently the vertices on that are on one side of
the cut corresponding to C*. Since f’ is skew-symmetric, f/(C*) decomposes into the sum

of f’s of the faces (in (G*)) that are in the interior of C*. Thus we have:
(@) = 1A = |Bi- (1)

» Lemma C.2. If (a,b) € (V1,Va) such that a € Ay1,b € By and c(a,b) =1 then, moving b
from By to By does not increase the weight of the cut (and the corresponding cycle in the
dual) with respect to the weights ¢ — f’.

Proof. From Eqn. 1, f/ decreases by 1 by such a move; ¢ decreases at least by 1. |

» Corollary C.3. (G*) has a negative weight cycle with respect to weights ¢ — f' iff (a) there
exists one with respect to weights —f', i.e., the total weight contribution from c is zero, and
hence iff (b) it has a negative weight cycle with respect to weights ¢ -n* — f.

» Theorem C.4. (Theorem 1.1 (c)) HALL-OBS (CONSTRUCTION) in a bipartite planar
graphs is in NL.

Proof. Constructing a negative weight cycle with respect to the weights c-n* — f’ is in NL.
The set A; forms a Hall-obstacle since N(A;) C By and |A4;1] > |B1| (see Eqn. 1). <

» Theorem C.5. HALL-OBS (DECISION) in bipartite planar graphs is in coUL.

C.2 Neg-Cycle Problem

» Lemma C.6. In planar graphs:
(a) BIP-PERFECT-MATCHING < NEG-CYCLE < MIN-WT-PM (bipartite), and
(b) NEG-CYCLE(DECISION + CONSTRUCTION) s in NL N SPL.

Proof. (Sketch) The first inequality in Part (a) follows from Miller and Naor’s algorithm. To
prove the second inequalityin Part (a), given a directed graph G with polynomially bounded
weights, construct an undirected graph H as follows: for each vertex u € G we have two
vertices u;, and ugy: in H; a directed edge (u,v) in G becomes an undirected edge between
Ugyt and vy, in H. In addition we have weight 0 edges between u;, and wuy,:. It is easy to
check that G has a negative weight cycle iff H has a perfect matching of negative weight.
Note that H is bipartite. Moreover, by replacing a vertex of degree d by a cycle of length d
we can transform G such that the sum of in-degree and out-degree at any vertex is at most
3. Now H will also be planar. |
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D Proofs of the UL bound for Perfect-Matching in bipartite planar
graphs

D.1 Proof of Lemma 3.2

Proof: If there are no negative weight cycles then every minimum weight walk between any
pair of vertices is a path and dist,, (u,v) = disty, = dist”(u,v). In the absence of negative
weight cycles, the generalized BTV weights (Section 5) guarantee min-uniqueness and hence
the Algorithm 4 computes disty (u,v) in UL. O

D.2 Proof of Lemma 3.3

Proof: Let N denote the sum of the absolute values of the weights on the arcs. If there
were no negative weight cycle then dist;’(u,v) remains unchanged for ¢ > n; otherwise for
t > Nn the dist;’ (u,v) would decrease for some (u,v). O

D.3 Proof of Corollary 3.5

Proof: As observed in [22], all the subroutines of the above UL algorithm work for any
capacity-demand graph such that the sum of the demands is zero. If one knows the value
a of the maximum flow then one can construct such a capacity-demand graph by setting
demands of all vertices other than s and ¢ to be zero and demand of s to @ and demand of
t to —a. Now, one could search through all possible values of a. O

E Even-PM

Let ExacT-PM (DECISION) denote the problem of deciding, given an integer k, whether or
not a graph G with edges colored Red or Blue contains a perfect matching with exactly k
Red edges. This problem was first posed by Papadimitriou and Yannakakis [26]. Tt is known
to be in RNC [24] but not known to be in P. We consider the following relaxation of the
EXACT-PM problem: Let EVEN-PM (DECISION) denote the problem of deciding whether
or not a graph G with edges colored Red or Blue contains a perfect matching with even
number of Red edges. In this paper, we observe the following:

» Theorem E.1. (a) EVEN-PM in bipartite graphs is in P;
(b) EVEN-PM in bipartite planar graphs is in NL.

E.1 Even Perfect Matching in bipartite planar graphs is in NL

» Definition E.2 (Even-PM). Given a graph with each edge colored either Red or Blue, an
Even-PM is a perfect matching that contains even number of Red edges. Let EVEN-PM
denote the problem of deciding whether or not there exists such a perfect matching.

» Theorem E.3. (Theorem E.1 (a)) EVEN-PM in bipartite graphs is in P.

Proof: Given a bipartite graph G, first find a perfect matching M in it. If M is Even-PM we
are done, otherwise construct an auxiliary directed graph H with respect to M as follows:
u — g v iff Jw such that {u,w} € M and {w,v} ¢ M. If the matching edge {u,w} as well as
the non-matching edge {w, v} are of the same color then set the weight of the directed edge
(u,v) to 0; otherwise set it to 1. Notice that the underlying undirected graph corresponding
to H has two connected components (if G is connected) - one for each bipartition of G.

15
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It is easy to check that there exists Even-PM iff H has a cycle of odd weight. Testing
for odd weight cycle can be done in NL. It is easy to see that the complexity of the entire
procedure is NLBIP-PERIECT-MATCHING. oo}) ore B1p- PERFECT-MATCHING denotes the complexity
of PERFECT-MATCHING in bipartite graphs. ]

» Corollary E.4. (restatement of Theorem E.1 (b)) EVEN-PM in bipartite planar graphs is
in NL.

F Adaptations of subroutines of [27]

Input : (G,s), (k,|Vi|,Z}), and v
Output : dist} (s,v) ( < oo if v € Vj; 0o otherwise)

1 Initialize ¢ <— 0; s < 0; disty (s,v) < 00 ;
2 foreach x € V do
3 Guess a walk of length at most k from s to z;
4 if Guess fails then
5 ‘ Halt and reject
6 else
7 Let p be the weight of the walk;
8 Set c=c+1;s =5+ p;
9 end
10 if = v then Set dist} (s,v) < p
11 end

12 if ¢ = |Vi| and s = £} then
13 ‘ Output dist}, (s, v);

14 else

15 ‘ Halt and Reject;

16 end

Algorithm 4: Constructing V;, from (k, |Vi|,X}¥) (adapted from [27])
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Input : (G,s) and (k,|Vi—1|,2}_;)
Output : (|Vi],Z})

1 Initialize ¢ <= [Vip—1|; s < X}, ;

2 foreach v € V do

3 if v eV \V;_; then

4 ‘ Set dist}, (s,v) <= ming. ;. v)ep(e) [disty_ (s, 2) + w(z,v)];
5 end

6 if dist'(s,v) < oo then

7 ‘ Set ¢ ¢+ 1 and s « s+ disty (s, v);

8 end

9 if there exist x1 and xo such that

disty_1(s,21) + w(zy,v) = disty,_; (s, z2) + w(x2,v) then

10 ‘ Halt and reject (saying that graph is not min-unique);
11 end
12 end

13 Set [Vi| < cand ZY « s;
14 Output (|Vi|,2});

Algorithm 5: Computing (|Vi|, X)) from (|Vi—1],Z}_,) (adapted from [27])

G Proof Sketch of the Claim in Lemma 4.1

Every directed cycle C* in G* can be written as a linear combination ), a;C; of the directed
cycles CF, ..., (3, and the facial cycles in the dual, i.e., those corresponding to the vertices
of the primal. Let F'(C*) := ) .o F(e), then F'(C*) =, a; F(C}) since F' sums to zero
for any facial cycle in the dual because of the zero-demand property in the primal. Now we
note that >, a; F;(C)) = F(C*), where Fi(e) =0if e ¢ C; and F(e) = f; = Zeecg F(e) if
e € C;. We use the property that C; crosses C; exactly once.

Since F' is a valid flow in primal, F(C*) is at most the total capacity of C*. Thus total
weight of C* with respect to the capacities c is at least the total value of f = )", a; F; on
C*. This means that C* is non-negative with respect to weights ¢ — f. Here we assume (for
simplicity) that Fi(C;) = 0 if j # 4. Such an assumption is not necessary, although it is easy
to maintain for instance if we assume that C; is edge disjoint from Cj if ¢ # j.

H Bipartite Planar Matching: The NL Bounds

H.1 Decision Version

In this section, we describe Miller and Naor’s algorithm (Algorithm (I) in [22], Algorithm 7
below) for solving the decision version of the PERFECT-MATCHING problem in bipartite
planar graphs. We refer the reader to [22] for the proof of correctness of the algorithm. Our
main observation is that the algorithm can be implemented in NL.

Here, we describe Miller and Naor’s algorithm (Algorithm 8) for constructing a perfect
matching in bipartite planar graphs.

» Observation H.1. Given a directed graph 8 with polynomially bounded weights on its
arcs, the problem of deciding whether or not the graph contains a negative weight cycle is
in NL.

17
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Input : A capacity-demand graph (G, ¢, d)

Promise ) d(v) =0

Output : A pseudo-flow in (G, ¢, d)

Compute a spanning tree 7" in G;

For any arc (u,v) ¢ ?, set f'(u,v) =0;

For an arc (u,v) € T , removing the edge {u, v} separates the tree T into two

subtrees. Let T;, denote the subtree containing v and T denote the subtree
containing v. Set, f'(u,v) =3, cp d(w);

Algorithm 6: MN-Pseudo-Flow [22]

Input : A bipartite planar graph G = (AU B, E)
Output : Yes if G has a perfect matching; No otherwise

Construct a capacity-demand graph (G, ¢, d) as follows: for each vertex v € A, set
d(v) =1 and for each vertex v € B, set d(v) = —1. For u € A,v € B, set

c(u,v) =1 and ¢(v,u) = 0;

Construct a pseudo-flow f’ in (G, ¢, d);

Construct a zero-demand graph (G, c — f');

Output Yes if W has no negative weight cycle with respect to weights (¢ — f');
Output No otherwise;

Algorithm 7: MN-Decision [22]

W N =

Input : A planar bipartite graph G = (AU B, E) with residual capacities ¢ — f’

Promise (G*) has no negative weight cycle with respect to w = ¢ — f’

Output : A Perfect Matching in G

Fix a vertex s* € (G*);

Set f"(u*,v*) := dist"(s*, v*) — dist"(s*, u*);

Set f = "+ "

For u € A,v € B output “u is matched to v” iff f(u,v) =1;

Algorithm 8: MN-Construction [22]
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» Corollary H.2. Algorithm 7 shows that PERFECT-MATCHING (DECISION) in bipartite
planar graphs is in NL.

Constructing a pseudo-flow

Algorithm 6 gives a Log-space procedure to construct a pseudo-flow in a zero-demand graph.

Miller and Naor (Algorithm (I) in [22]) use this as a subroutine to reduce PERFECT-MATCHING
(DEC1sION) to NEG-CYCLE (DECISION) We observe that NEG-CYCLE (DECISION+ CONSTRUCTION)
is in NL. This immediately yields an NL algorithm for PERFECT-MATCHING (DECISION).

» Observation H.3. Constructing a pseudo-flow is in Log-space.

» Observation H.4. Given a directed graph 8 with polynomially bounded weights on its
arcs, the problem of deciding whether or not the graph contains a negative weight cycle is
in NL.

» Corollary H.5. (of Observation H.3 and Observation H.j) Algorithm 7 shows that:
PERFECT-MATCHING (DECISION) in bipartite planar graphs is in NL.

H.2 Constructing a Perfect Matching

» Observation H.6. Given a directed graph with polynomially bounded weights w such that
there are no negative weight cycles, computing the shortest distance dist" (u,v) between any
two vertices with respect to weights w is in NL.

» Corollary H.7. (of Observation H.6) Algorithm 8 shows that PERFECT-MATCHING (DECISION +
CONSTRUCTION) in bipartite planar graphs is in NL.

I  Proof of Corollary 3.5

Proof: As observed in [22], all the subroutines of the above UL algorithm work for any
capacity-demand graph such that the sum of the demands is zero. If one knows the value
a of the maximum flow then one can construct such a capacity-demand graph by setting
demands of all vertices other than s and ¢ to be zero and demand of s to e and demand of
t to —a.. Now, one could search through all possible values of a. O

J Proof Sketch of Theorem 4.2

Proof Sketch: Note that when we write a Bipartite PM instance as a zero-demand instance
the capacities are integers and are bounded by n in absolute value.

If g is a constant then we can exhaustively search all possible values of fi,..., faog. It
would suffice to check the values of f; in the range —n? < f; < n? because if the graph has
a perfect matching then the corresponding zero-demand instance admits a valid flow, which

in turn gives the values of f1,..., fa, such that f; € {-—n?,...,n?}
O
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