
Lecture 11

Towards type inference

A powerful feature of Haskell is the automatic type inference of expressions. In
the next few lectures, we will attempt to give an idea of how the type inference
algorithm works. Ofcourse giving the type inference algorithm for the entire
Haskell language is beyond the scope of this lecture so we take a toy example.
Our aim is to give a complete type inference algorithm for an enriched version
of lambda calculus, that has facilities to do integer arithmetic. Therefore, our
lambda calulus expressions have, besides the other stuff we have seen, integer
constants and the built in function ‘+’. We limit ourselves to only one opera-
tor because it is straight forward to extend our algorithm to work with other
operation

11.1 Syntax of our Enriched Lambda calculus.

The syntax is given below. Here v and x stands for arbitrary variable and e1,e2
stands for arbitrary expressions.

e = ...| − 1|0|1|...|+ |v|e1e2|λx.e

We will write the lambda calculus expression +e1e2 in its infix form e1 + e2 for
ease of readability.

The haskell datatype that captures our enriched lambda calculus expression is
the following

> module Lambda where

>

> -- | The enriched lambda calculus expression.
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> data Expr = C Integer -- ^ A constant

> | P -- ^ The plus operator

> | V String -- ^ The variable

> | A Expr Expr -- ^ function application

> | L String Expr -- ^ lambda abstraction

> deriving (Show, Eq, Ord)

Clearly stuff like A (C 2) (C 3) are invalid expressions but we ignore this for
time being. One thing that the type checker can do for us is to catch such stuff.

11.2 Types

We now want to assign types to the enriched lambda calculus that we have. As
far as we are concerned the types for us are

t = Z|α|t1 → t2

Here α is an arbitrary type variable. Again, we capture it in a Haskell datatype.

> data Type = INTEGER

> | TV String

> | TA Type Type deriving (Show, Eq, Ord)

11.3 Conventions

We will follow the following convention when dealing with type inference. The
lambda calculus expressions will be denoted by Latin letters e, f , g etc with
appropriate subscripts. We will reserve the Latin letters x, y, z and t for lambda
calculus variables. Types will be represented by the Greek letter τ and σ with
the letters α and β reserved for type variables.

11.4 Type specialisation

The notion of type specialisation is intuitivly clear. The type α→ β is a more
general type than α→ α. We use σ ≤ τ to denote the fact that σ is specialisation
of τ . How do we formalise this notion of specialisation ? Firstly note that any
constant type like for example integer cannot be specialised further. Secondly
notice that a variable α can be specialised to a type τ as long as τ does not
have an occurance of α in it. We will denote a variable specialisation by α← τ .
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When we have a set of variable specialisation we have to ensure that there
is no cyclicity indirectly. We doe this as follows. We say a sequence Σ =
{α1 ← τ1, . . . , αn ← τn} is a consistent set of specialisation if for each i, τi
does not contain any of the variables αj , 1 ≤ j ≤ i. Now we can define what a
specialisation is. Given a consistent sequence of specialisation Σ let τ [Σ] denote
the type obtained by substituting for variables in τ with their specialisations in
Σ. Then we say that σ ≤ τ if there is a specialisation Σ such that τ [Σ] = σ. The
specialisation order gives a way to compare two types. It is not a partial order
but can be converted to one by appropriate quotienting. We say two types τ σ
are isomorphic, denoted by σ ≡ τ if σ ≤ τ and τ ≤ σ. It can be shown that
≡ forms an equivalence relation on types. Let dτe denote the equivalence class
associated with τ then, it can be show that ≤ is a partial order on dτe.

11.5 Type environment

Recall that the value of a closed lambda calculus expression, i.e. a lambda calcu-
lus expression with no free variables, is completely determined. More generally,
given an expression M , its value depends only on the free variables in it. Simi-
lary the type of an expression M is completely specified once all its free variables
are assigned types. A type environment is an assignment of types to variables.
So the general task is to infer the type of a lambda calculus expression M in a
given type environment Γ where all the free varaibles of M have been assigned
types. We will denote the type environments with with capital Greek letter
Γ with appropriate subscripts if required. Some notations that we use is the
following.

1. We write x :: τ to denote that the variable x has been assigned the type
τ .

2. For a variable x, we use Γ(x) to denote the type that the type environment
Γ assigns to x.

3. We write x ∈ Γ if Γ assigned a type for the variable x.

4. The type environment Γ1 ∪ Γ2 denotes the the type environment Γ such
that Γ(x) = Γ2(x) if x ∈ Γ2 and Γ1(x) otherwise, i.e. the second type
environment has a precedence.

As we described before, given a type environment Γ, the types of any lambda
calculus expression whose free variables are assigned types in Γ can be infered.
We use the notation Γ ` e :: τ to say that under the type environment Γ one
can infer the type τ for e.

The type inference is like theorem proving: Think of infering e :: τ as proving
that the expression e has type τ . Such an inference requires a set of rules which
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for us will be the type inference rules. We express this inference rules in the
following notation

Premise 1, . . . ,Premise n

conclusion

The type inference rules that we have are the following

Rule Const :

Γ ` n :: Z

where n is an arbitrary integer.

Rule Plus :

Γ ` + :: Z→ Z→ Z

Rule Var :

Γ ∪ {x :: τ} ` x :: τ

Rule Apply :
Γ ` f :: σ → τ, Γ ` e :: σ

Γ ` fe :: τ

Rule Lambda :
Γ ∪ {x :: σ} ` e :: τ

Γ ` λx.e :: σ → τ

Rule Specialise :
Γ ` e :: τ, σ ≤ τ

Γ ` e :: σ

The goal of the type inference algorithm is to infer the most general type,
i.e. Given an type environment Γ and an expression e find the type τ that
satisfies the following two conditions

1. Γ ` e :: τ and,

2. If Γ ` e :: σ then σ ≤ τ .

11.6 Exercises

1. A pre-order is a relation that is both reflexive and transitive.

• Show that the specialisation order ≤ defined on types is a pre-order.
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• Given any pre-oder � define the associated relation ' as a ' b if
a � b and b � a. Prove that ' is an equivalence class. Show that �
can be converted into a natural partial order on the equivalence class
of '.

2. Prove that if σ and τ are two types such that σ ≡ τ then prove that
there is a bijection between the set V ar(σ) and V ar(τ) given by αi 7→ βi
such that σ[Σ] = τ where Σ is a specialisation {αi ← βi|1 ≤ i ≤ n}. In
particular isomorphic types have same number of variables. (Hint: use
induction on the number of variables that occur in σ and τ).
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