
Lecture 19

Template Haskell based
implementation of printf

In the last lecture we saw a type class based solution to create functions that
take variable number of arguments. Here we give a template haskell based
solution.

19.1 What is Template Haskell ?

Template haskell is the Haskell way of doing Meta programming. At the very
least one can use it like a macro substitution but it can be used to do much
more. The idea is to process the Haskell code at compile time using Haskell
itself. A programmer can write Haskell functions to manipulate Haskell code
and using special syntax arrange the compiler to manipulate code at compile
time. In this lecture we will see how to define a version of printf using template
haskell.

Template Haskell consists of two important steps.

1. Quoting: To allow user defined function to manipulate the Haskell code
one needs to represent the program as a value in some suitable data type.
The data types defined in the module Language.Haskell.TH.Syntax is
used for this purpose. For example the type Exp defined in the above
module is used to represent a valid Haskell expression. Have a look into
the documentation of that module.

2. Splicing. Once the Haskell language fragment is processed using various
function defined by the user, it needs to be compiled by the compiler. This
processing is called splicing.

1

2LECTURE 19. TEMPLATE HASKELL BASED IMPLEMENTATIONOF PRINTF

One point to be noted though is that template haskell does not splice the code
directly but only those that are expressions that are inside the quoting monad
Q. This monad is required because while generate code various side effects are
created. For example a variable x used in a fragment of the code has a different
meaning if there is a local binding defined on it. Besides one would want to read
in data from files (think of config files) to perform compile time operations.

There are two syantactic extensions to Haskell that makes template Haskell
possible. If a haskell expression is written between [| and |], the compiler will re-
place it with the corresponding representation in Language.Haskell.TH.Syntax.
For example, the expression [| "Hello" |] is of type Q Exp. The corresponding
Exp value is LitE (StringL "Hello").

The following are the extra syntactic conventions used.

1. [e| ... |] or just [| . . . ‘|]’ for quoting expressions. This has type Q

Exp.

2. [d| ... |] for quoting declarations. This has type Q [Decl]

3. [t| ... |] for quoting types. This has type Q Type.

4. [p| ... |] for quoting patterns. This has type Q Pat.

The splicing is done using the syntax $(...) (no space between $ and ()

19.2 Some convenience types and combinators

The types Q Exp and Q Pat etc occur so often that there are aliases for them
ExpQ and PatQ respectively. As an exercise guess the types aliases for Q Type

and Q Decl.

Whenever possible it is better to make use of the [| ... |] notation to build
quoted expressions. However sometimes it is better to use the constructors of
Exp directly. Recall that we can splice only quoted expressions, i.e values of
type Q Expr (or equivalently ExpQ). Say you have a quoted expressions qe and
qf which correspondes to the haskell expression e and f respectively. If one
wants to obtaine the quoted expression which correspondes to the application
of the function f on the expression e, we would have to do something like the
following

qfe = do e <- qe

f <- qf

return $ AppE f e.

19.3. PRINTF 3

To make this efficient there is a combinator called appE which does essentially
what the constructor AppE does but works on Q Exp rather than Exp.

appE :: ExpQ -> ExpQ -> ExpQ

The above code will then look like appE qe qf. There are such monadic version
of all the constructors of Exp available. Make use of it.

19.3 Printf

First note that we have enabled template Haskell using the compiler pragma
given above. It should be the very first line of your source code. A unrecognised
pragma is ignored by the compiler but sometimes a warning is issued.

> {-# LANGUAGE TemplateHaskell #-}

> module Printf where

> import Data.List

> import Language.Haskell.TH

Few things about enabling the template haskell. Strictly speaking this module
does not need TemplateHaskell, rather it can be written without using template
Haskell. This is because all it does is define functions that process objects of
type Expr or ExprQ. I have enabled it so as to write appE [|show|] instead of
the more complicated. appE (varE ’show)

First let us capture the formating via a data type

> data Format = L String -- ^ literal string

> | S -- ^ %s

> | G -- ^ %g generic type

> deriving Show

We need a function that will parse a string and the give the corresponding list
for format. The exact details are not really of interest as far as template haskell
is concerned. See the end of the file for an implementation.

> format :: String -> [Format]

The printf function can then be defined as.

4LECTURE 19. TEMPLATE HASKELL BASED IMPLEMENTATIONOF PRINTF

> printf :: String -> ExpQ

> printfP :: [Format] -> ExpQ

> printf = printfP . format

We would rather implement the prinfP function. Let the list of formatting
instructions be [f 1,..,f n], then we want prinfP [f 1,...,f n] when spliced
to return the code.

\ x0 ... xm -> concat [e1,...,e_n]

Here e i depends on the ith format instruction f i. If f i is a literal then it will
just be a literal string. Otherwise it would be an appropriate variable. In our
case it should be xj where j is the number of non-literal, i.e. S or G, formating
instructions to the left of e i. The number m is the total number of non-literal
formatting instructions in the list [f 1,. . . ,f n] and should be less than or equal
to n.

Suppose we know the number of variables to the left of a format instruction f i,
how do we generate the expression e i ? The following function does that

> toExpQ :: Int -- ^ formatting instructions to the left

> -> Format -- ^ The current spec.

> -> (Int,ExpQ) -- ^ The total number of non-literal instruction

> -- to the left and the resulting expression.

> toExpQ i (L s) = (i,string s)

> toExpQ i S = (i+1,varExp i)

> toExpQ i G = (i+1,showE $ varExp i)

Here we make use of the following helper Template haskell functions which we
have defined subsequently.

> string :: String -> ExpQ -- ^ quote the string

> showE :: ExpQ -> ExpQ -- ^ quoted showing

> varExp :: Int -> ExpQ -- ^ quoted variable xi

> varPat :: Int -> PatQ -- ^ quoted pattern xi

The printfP function then is simple. Recall that when spliced it should generate
the expression

\ x0 ... xm -> concat [e1,...,e_n]‘

19.3. PRINTF 5

The complete definition is given below.

> printfP fmts = lamE args . appE conc $ listE es

> where (nvars,es) = mapAccumL toExpQ 0 fmts

> args = map varPat [0 .. (nvars-1)]

> conc = [|concat|]

Here are the definition of the helper functions

> string = litE . StringL

> varExp i = varE $ mkName ("x" ++ show i)

> varPat i = varP $ mkName ("x" ++ show i)

> showE = appE [|show|]

We now come to the parsing of the format string. For simplicity of imple-
mentation if % occurs before an unknow format string it is treated as literal
occurance.

> format "" = []

> format [’%’] = [L "%"]

> format (’%’:x:xs)

> | x == ’s’ = S : format xs

> | x == ’g’ = G : format xs

> | x == ’%’ = L "%" : format xs

> | otherwise = L [’%’,x] : format xs

> format zs = L x : format xs

> where (x,xs) = span (/=’%’) zs

To try it out load it with ghci using the option -XTemplateHaskell. You need
this option to tell ghci that it better expect template haskell stuff like Oxford
bracket [| |] and splicing $(...)

$ ghci -XTemplateHaskell src/lectures/Template-Haskell-based-printf.lhs

GHCi, version 7.0.3: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Loading package ffi-1.0 ... linking ... done.

[1 of 1] Compiling Printf (src/lectures/Template-Haskell-based-printf.lhs, interpreted)

Ok, modules loaded: Printf.

6LECTURE 19. TEMPLATE HASKELL BASED IMPLEMENTATIONOF PRINTF

*Printf> $(printf "%s is a string") "Hello"

"Hello is a string"

*Printf> $(printf "%s is a string %g is an int") "Hello" 10

"Hello is a string 10 is an int"

*Printf>

19.4 Exercise

1. Write a function that will optimise the format instructions by merging
consecutive literal strings. Is there any point in optimising the format
instructions?

2. Rewrite the printf module to not use any template haskell itself.

	Template Haskell based implementation of printf
	What is Template Haskell ?
	Some convenience types and combinators
	Printf
	Exercise

