
Lecture 4

The Sieve of Eratosthenes.

In this lecture, we look at an algorithm to find primes which you might have
learned in school. It is called the Sieve of Eratosthenes. The basic idea is the
following.

1. Enumerate all positive integers starting from 2.

2. Forever do the following

3. Take the smallest of the remaining uncrossed integer say p and circle it.

4. Cross out all numbers that are the factors of the circled integer p.

All the circled integers are the list of primes. For an animated description see
the wiki link http://en.wikipedia.org/Sieve_of_Eratosthenes.

We want to convert this algorithm to haskell code. Notices that the Sieve
seperates the primes from the composites. The primes are those that are circled
and composites are those that are crossed. So let us start by defining

> primes = circledIntegers

i.e. the primes are precisely the list of circled integers.

An integer gets circled if and only if it is not crossed at any stage of the sieving
process. Furthermore, a integer gets crossed in the stage when its least prime
factor is circled. So to check whether an integer is crossed all we need to do is
to check whether there is a prime which divides it.

1

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://en.wikipedia.org/Sieve_of_Eratosthenes

2 LECTURE 4. THE SIEVE OF ERATOSTHENES.

> divides x n = n ‘mod‘ x == 0

>

> check (x:xs) n | x * x > n = True -- the rest are bigger.

> | x ‘divides‘ n = False -- We hit a factor

> | otherwise = check xs n -- need to do more work

>

> isCircled = check primes

>

The function isCircle x checks whether x will eventually be circled. One
need not go over all primes as the smallest non-trivial prime p that divides a
composite number n should always be less than or equal to

√
n. This explains

the first guard statement of the check function.

4.1 Guards detour.

We now explain another feature of Haskell namely guards. Look at the definition
of the function check. Recall that a function is defined by giving a set of
equations. For each such equation, we can have a set of guards. The syntax of
these guarded equation looks like

f p_1 ... p_n | g_1 = e_1

| g_2 = e_2

| g_3 = e_3

| ...

| g_m = e_m

Each of the guards g i is a boolean expression. You should read this as “if f’s
arguments match the patterns p1 ... pn then its value is e 1 if g 1 is true,
e 2 if g 2 is true, etc e m if g m is true”. If multiple guards are true then the
guard listed first has priority. For example consider the following function

>

> f x | x >= 0 = "non-negative"

> | x <= 0 = "negative"

Then f 0 is the string "non-negative". If you want to add a default guard,
then use the keyword otherwise. The keyword otherwise is nothing but the
boolean value True. However, in guards it is a convention to write otherwise

instead of True.

4.2. HOW IS THE CIRCULARITY OF PRIMES HANDLED? 3

Finally, we want to define the list of circledInteger. Clearly the first integer
to be circled is 2. The rest are those integers on which the function isCircled

returns true. And here is the Haskell code.

>

> circledIntegers = 2 : filter isCircled [3..]

>

Here filter is a function that does what you expect it to do. Its first argument
is a predicate, i.e it take an element and returns a boolean, and its second
argument is a list. It returns all those elements in the list that satisfies the
predicate. The type of filter is given by filter :: (a -> Bool) -> [a]

-> [a]. This completes the program for sieving primes. Now load the program
into the interperter

$ ghci Sieve-of-Eratosthense.lhs

GHCi, version 7.0.3: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Loading package ffi-1.0 ... linking ... done.

[1 of 1] Compiling Main (src/lectures/Sieve-of-Eratosthenes.lhs, interpreted)

Ok, modules loaded: Main.

*Main> :type take

take :: Int -> [a] -> [a]

*Main> take 10 primes

[2,3,5,7,11,13,17,19,23,29]

The take n xs returns the first n elements of the list xs.

4.2 How is the circularity of primes handled?

One thing you might have noticed is that the list primes has a circular definition.
The compiler is able to grok this circularity due to the fact that Haskell is a lazy
language. No expression is evaluated unless it is required. For each integer in
the list primes to decide that it is circled, we need to consider only the primes
that are less than its square root. As a result the definition of primes does not
blow up into an infinitary computation.

4 LECTURE 4. THE SIEVE OF ERATOSTHENES.

4.3 Infix application of function and prefix ap-
plication of operators.

We now explain another feature of a Haskell. Notice the use of mod in the
expression n ‘mod‘ x == 0 in the definition of the function divides and in the
guard x ‘divides‘ n in the definition of the function check. We have used a two
argument function (i.e. its type is a -> b -> c) like an operator. For any such
function foo we can convert it into a binary operator by back quoting it, i.e.
‘foo‘.

The converse is also possible, i.e. we can convert an operator into the corre-
sponding function by enclosing it in a bracket. For example the expression (+)

(there is no space in side the bracket otherwise it is an error) is a function Int

-> Int -> Int.

> incr1 = map ((+) 1)

> incr2 = map (+1)

The two function incr1 and incr2 both does the same thing; increments all
the elements in a list of integers by 1.

	The Sieve of Eratosthenes.
	Guards detour.
	How is the circularity of primes handled?
	Infix application of function and prefix application of operators.

