
Lecture 3

More on pattern matching.

In the last lecture we, defined the factorial function and illustrated the use of
pattern matching. In this chapter we elaborate on it a bit more.

3.1 Pattern matching on lists.

We have already seen the list type. There is an algebraic way of defining a list.
A list either an empty list or an element attached to the front of an already
constructed list. An empty list in Haskell is expressed as [] where as a list
whose first element is x and the rest is xs is denoted by x:xs. The notation
[1,2,3] is just a syntactic sugar for 1:(2:(3:[])) or just 1:2:3:[] as : is
a right associative operator. We now illustrate pattern matching on list by
giving the example of the map function. The map function takes a function and
a list and applies the function on each element of the list. Here is the complete
definition including the type

> import Prelude hiding (map, null, curry, uncurry)

> -- hide Prelude functions defined here

>

> map :: (a -> b) -> [a] -> [b]

> map f [] = []

> map f (x:xs) = f x : map f xs

Since a list can either be empty or of the form (x:xs) this is a complete defini-
tion. Also notice that pattern matching of variables is done here.

1

http://en.wikipedia.org/wiki/Syntactic_sugar

2 LECTURE 3. MORE ON PATTERN MATCHING.

3.2 Literate programming detour.

Before we proceed further, let us clarify the >’s at the beginning of the of
the lines. This is the literate programming convention that Haskell supports.
Literate programming is a style of programming championed by Knuth, where
comments are given more importance than the code. It is not restricted to
Haskell alone; in fact TeX and METAFONT were written first written by Knuth
in a literate version Pascal language called WEB and later on ported to CWEB,
a literate version of the C Programming language. The ghc compiler and the
ghci interpreter supports both the literate and non-literate version of Haskell.

Normally any line is treated as part of the program unless the commented. In
literate haskell all lines other than

1. Those that start with a ‘>’ or

2. A block of lines enclosed in a \begin{code} \end{code}

are treated as comments. We will use this literate style of programming; we will
use only the first form i.e. program lines start with a >. The advantage is that
one can download the notes directly and compile and execute them.

3.3 Wild card patterns.

We now illustrate the use of wild card patterns. Consider the function that tests
whether a list is empty. This can be defined as follows.

> null [] = True

> null _ = False

The pattern (under score) matches any expression just like a variable pattern.
However, unlike a variable pattern where the matched value is bound to the
variable, a wild card discards the value. This can be used when we do not care
about the value in the RHS of the equation.

3.4 Tuples and pattern matching.

Besides lists Haskell supports the tuple type. Tuple types corresponds to taking
set theoretic products. For example the tuple (1,"Hello") is an ordered pair
consisting of the integer 1 and the string "Hello". Its type is (Int,String) or
equivalently (Int,[Char]) as String is nothing but [Char]. We illustrate the
pattern matching of tuples by giving the definition of the standard functions
curry and uncurry.

http://en.wikipedia.org/wiki/Literate_programming
http://en.wikipedia.org/wiki/Literate_programming
http://www-cs-faculty.stanford.edu/\protect $\relax \sim $knuth
http://www.tug.org
http://en.wikipedia.org/wiki/METAFONT
http://www-cs-faculty.stanford.edu/\protect $\relax \sim $knuth
http://en.wikipedia.org/wiki/WEB
http://www-cs-faculty.stanford.edu/\protect $\relax \sim $knuth/cweb.html
http://www.haskell.org/haskellwiki/Literate_programming

3.5. A BRIEF DETOUR ON CURRYING 3

3.5 A brief detour on currying

In haskell functions are univariate functions unlike other languages. Multi-
parameter functions are captured using the process called currying. A function
taking two arguments a and b and returning c can be seen as a function taking
the a and returning a function that takes b and returning c. This kind of
function is called a curried function. Another way in which we can represent a
function taking 2 arguments is to think of the function as taking a tuple. This
is its uncurried form. We now define the higher order functions that transforms
between these two forms.

> curry :: ((a,b) -> c) -> a -> b -> c

> uncurry :: (a -> b -> c) -> (a,b) -> c

>

> curry f a b = f (a,b)

> uncurry f (a,b) = f a b

The above code clearly illustrates the power of Haskell when it comes to ma-
nipulating functions. Use of higher order functions is one of the features that
we will find quite a bit of use.

3.6 Summary

In this lecture we saw

1. Pattern matching for lists,

2. Tuples and pattern matching on them,

3. Literate haskell

4. Higher order functions.

	More on pattern matching.
	Pattern matching on lists.
	Literate programming detour.
	Wild card patterns.
	Tuples and pattern matching.
	A brief detour on currying
	Summary

