
Lecture 9

Lambda Calculus

We now look at lambda calculus, the theoretical stuff that underlies functional
programming. It was introduced by Alonzo Church to formalise two key con-
cepts when dealing with functions in mathematics and logic namely: function
definition and function application. In this lecture, we build enough stuff to get
a lambda calculus evaluator.

> module Lambda where

> import Data.List -- I need some standard list functions

We start with an example. Consider the squaring function, i.e. the function
that maps x to x2. In the notation of lambda calculus this is denoted as λx.x2.
This is called a lambda abstraction. Apply a function f on an expression N is
written as fN . The key rule in expression evaluation is the β-reduction: the
expression (λx.M)N reduces under β-reduction to the expression M with N
substituted in it. We now look at lambda calculus formally.

The goal of this lecture is to introduce basics of lambda calculus and on the way
implement a small lambda calculus interpreter.

9.1 Abstract syntax

As with any other formal system we first define its abstract syntax. A lambda
calculus expression is defined via the grammar

e := v|e1e2|λx.e

Here e1 and e2 expressions themselves. We now capture this abstract syntax as
a Haskell data type

1

2 LECTURE 9. LAMBDA CALCULUS

> -- | The datatype that captures the lambda calculus expressions.

> data Expr = V String -- ^ A variable

> | A Expr Expr -- ^ functional application

> | L String Expr -- ^ lambda abstraction

> deriving Show

9.2 Free and bound variables

The notion of free and bound variables are fundamental to whole of mathemat-
ics. For example in the integral

∫
sinxydy, the variable x occurs free where as

the variables y occurs bound (to the corresponding
∫
dy). Clearly the value of

the expression does not depend on the bound variable; in fact we can write the
same integral as

∫
sinxtdt.

In lambda calculus we say a variable occurs bound if it can be linked to a lambda
abstraction. For example in the expression λx.xy the variable x is bound where
as y occurs free. A variable can occur free as well as bound in an expression —
consider x in λy.x(λx.x).

Formally we can define the free variables of a lambda expression as follows.

FV (v) = {v}

FV (e1e2) = FV (e1) ∪ FV (e2)

FV (λx.e) = FV (e) \ {x}

We turn this into haskell code

> freeVar :: Expr -> [String]

> freeVar (V x) = [x]

> freeVar (A f e) = freeVar f ‘union‘ freeVar e

> freeVar (L x e) = delete x $ freeVar e

9.3 Variable substitution

We often need to substitute variables with other expressions. Since it is so
frequent we give a notation for this. By M [x := e], we mean the expression
obtained by replacing all free occurrence of x in M by e. Let us code this up in
haskell.

9.4. CHANGE OF BOUND VARIABLES (α-REDUCTION) 3

> subst :: Expr -> String -> Expr -> Expr

> subst var@(V y) x e | y == x = e

> | otherwise = var

> subst (A f a) x e = A (subst f x e) (subst a x e)

> subst lam@(L y a) x e | y == x = lam

> | otherwise = L y (subst a x e)

9.4 Change of bound variables (α-reduction)

You are already familiar with this in mathematics. If we have an integral of the
kind

∫
xtdt we can rewrite it as

∫
xydy by a change of variable. The same is

true for lambda calculus. We say call the “reduction” λx.M ← λt.M [x := t] as
the α-reduction. However care should be taken when the new variable is chosen.
Two pitfalls to avoid when performing α-reduction of the expression λx.M to
λt.M [x := t] is

1. The variable t should not be free in M for otherwise by changing from x
to t we have bound an otherwise free variable. For example if M = t then
λt.M [x = t] becomes λt.t which is clearly wrong.

2. If M has a free occurrence of x in the scope of a bound occurrence of t
then we cannot perform change the bound variable x to t. For example
consider M = λt.xt. Then λt.M [x = t] will become λt.λt.tt which is
clearly wrong.

Clearly, one safe way to do α-reduction on λx.M is to use a fresh variable t,
i.e. a variable that is neither free nor bound in M . We write a helper function
to compute all the variables of a lambda calculus expression.

> varsOf :: Expr -> [String]

> varsOf (V x) = [x]

> varsOf (A f e) = varsOf f ‘union‘ varsOf e

> varsOf (L x e) = varsOf e ‘union‘ [x]

We now give the code to perform a safe change of bound variables.

> alpha :: Expr -> [String] -> Expr

> alpha (A f e) vars = A (alpha f vars) (alpha e vars)

> alpha (L x e) vars | x ‘elem‘ vars = L t $ alpha e’ vars

> | otherwise = L x $ alpha e vars

4 LECTURE 9. LAMBDA CALCULUS

> where t = fresh (varsOf e ‘union‘ vars)

> e’ = subst e x (V t)

> alpha e _ = e

9.5 Function evaluation (β-reduction)

The way lambda calculus captures computation is through β reduction. We
already saw what is β reduction. Under beta reduction, an expression (λx.M)N
reduces toM [x := N], whereM [x := N] denotes substitution of free occurrences
of x by N . However, there is a chance that a free variable of N could become
bound suddenly. For example consider N to be just y and M to be λy.xy. Then
reducing (λx.M)N to M [x := N] will bind the free variable y in N .

We now give the code for β reduction. It performs one step of beta reduction
that too if and only if the expression is of the form (λx.M)N .

> beta :: Expr -> Expr

> beta (A (L x m) n) = carefulSubst m x n

> carefulSubst m x n = subst (alpha m $ freeVar n) x n

>

9.6 Generating Fresh variables

We saw that for our evaluator we needed a source of fresh variables. Our function
fresh is given a set of variables and its task is to compute a variable name that
does not belong to the list. We use diagonalisation, a trick first used by Cantor
to prove that Real numbers are of strictly higher cardinality than integers.

> fresh :: [String] -> String

> fresh = foldl diagonalise "a"

>

> diagonalise [] [] = "a" -- diagonalised any way

> diagonalise [] (y:ys) | y == ’a’ = "b" -- diagonalise on this character

> | otherwise = "a"

> diagonalise s [] = s -- anyway s is differnt from t

> diagonalise s@(x:xs) (y:ys) | x /= y = s -- differs at this position anyway

> | otherwise = x : diagonalise xs ys

>

9.7. EXERCISE 5

9.7 Exercise

1. Read up about β-normal forms. Write a function that converts a lambda
calculus expression to its normal form if it exists. There are different
evaluation strategies to get to β-normal form. Code them all up.

2. The use of varOf in α-reduction is an overkill. See if it can be improved.

3. Read about η-reduction and write code for it.

http://en.wikipedia.org/wiki/Beta_normal_form

	Lambda Calculus
	Abstract syntax
	Free and bound variables
	Variable substitution
	Change of bound variables (-reduction)
	Function evaluation (-reduction)
	Generating Fresh variables
	Exercise

