
Lecture 18

Functions with varible
number of arguments.

Consider the printf function in C. The number of arguments it take depends
on the format string that is provided to it. Can one have similar functions in
Haskell ?

Let us analyse the type of printf in various expressions. In the expression
printf "Hello", printf should have type String -> IO () where as in an
expression like printf "Hello %s" "world", it should have the type String

-> String -> IO(). This chamelon like behaviour is what we need to define
printf.

In this lecture we show how to hack Haskell’s type class mechanism to simulate
such variable argument functions. The stuff we will do is beyond Haskell 98 and
hence we need to enable certain extensison. We do it via the following compiler
pragmas. The very first set of lines in the source code if they are comments
that start with {-# and end with #-} are treated as compiler pragmas. In this
case we want to allow the extensions FlexibleInstances OverlappingInstances
and InvoherentInstances. One can also give these extensions at compile time;
to enable the extension Foo use the flag -XFoo at compile time.

Ofcourse it is difficult to remember all the extensions that you need for this
particular code to work. The easiest way to know what extensions are required
is to go ahead and use it in your file. GHC will warn you with an appropriate
error message if it expects an extension.

> {-# LANGUAGE FlexibleInstances #-}

> {-# LANGUAGE OverlappingInstances #-}

> {-# LANGUAGE IncoherentInstances #-}

1



2LECTURE 18. FUNCTIONSWITH VARIBLE NUMBEROF ARGUMENTS.

>

> module Printf where

Recall that an expression using printf would look something like the one below.

printf fmt e1 e2 ... em

We want our type system to infer IO () for this expression. The type of printf
in such a case should be String -> t1 -> ... -> tm -> IO () where ti

is the type of ei. The main idea is to define a type classes say Printf whose
instances are precisely those types that are of the form t1 -> ... -> tm

-> IO (). As a base case we will define an instance for IO (). We will then
inductively define it for other types.

The definition of the type class Printf and therefore printf will be easier if
we first declare a data type for formating.

>

> data Format = L String -- ^ A literal string

> | S -- ^ %s

> | G -- ^ %g for instances of Show

>

>

We would rather work with the more convenient [Format] instead of the format
string. Writing a function to convert from format string to [Format] is not too
difficult.

Now for the actual definition of the Printf class.

> class Printf s where

> printH :: IO [Format] -> s

>

The member function printH of the class Printf is a helper function that will
lead us to definition of printf. Intutively it takes as argument an IO action
which prints whatever arguments it has seen so far and returns the rest of the
formating action required to carry out s.

We will define the Printf instances for each of the type t1 -> ... tm ->
I0 () inductively. The base case is when there are no arguments.



3

> instance Printf (IO ()) where

> printH fmtIO = do fmt <- printLit fmtIO

> if null fmt then return ()

> else fail "Too few arguments provided"

>

Now the inductive instance declaration.

> instance (Printf s, Show a) => Printf (a -> s) where

> printH fmtIO a = printH action

> where action = do rfmt <- printLit fmtIO

> case rfmt of

> [] -> fail "Too many argument"

> (_:xs) -> do putStr $ show a; return xs

We give a specialised instance for string which depending on whether the for-
mating character is %s or %g uses putStr or print.

>

> instance Printf s => Printf (String -> s) where

> printH fmtIO s = printH action

> where action = do rfmt <- printLit fmtIO

> case rfmt of

> [] -> fail "Too many arguments"

> (G:xs) -> do putStr $ show s; return xs

> (S:xs) -> do putStr s; return xs

>

What is remaining is to define printLit

>

> printLit fmtIO = do fmt <- fmtIO

> let (lits,rest) = span isLit fmt

> in do sequence_ [putStr x | L x <- lits]

> return rest

> isLit (L _) = True

> isLit _ = False

>

We can now define printf



4LECTURE 18. FUNCTIONSWITH VARIBLE NUMBEROF ARGUMENTS.

> printf :: Printf s => String -> s

> printf = printH . format

>

> format :: String -> IO [Format]

> format "" = return []

> format "%" = fail "incomplete format string"

> format (’%’:x:xs) = do fmts <- format xs

> case x of

> ’s’ -> return (S:fmts)

> ’g’ -> return (G:fmts)

> ’%’ -> return (L "%" :fmts)

> _ -> fail ("bad formating character %" ++ [x])

> format zs = let (lit,xs) = span (/=’%’) zs

> in do fmts <- format xs

> return (L lit:fmts)

>


	Functions with varible number of arguments.

