
Lecture 5

Fibonacci Series

In continuation with the theme of the last lecture we define another infinite
series — the fibonacci series. Ofcourse all of you know the Fibonacci Series. It
is defined by the linear recurrence relation Fi+2 = Fi + Fi+1. We assume that
F0 = 1 and F1 = 1 to begin with.

The defintion is straight forward; it is just a one liner, but we use this as an
excuse to introduce two standard list functions

5.1 Ziping a list

The zip of the list x0, ..., xn and y0, . . . , ym is the list of tuples (x0, y0), . . . , (xk, yk)
where k is the minimum of n and m.

> zip :: [a] -> [b] -> [(a,b)]

> zip [] _ = []

> zip _ [] = []

> zip (x:xs) (y:ys) = (x,y) : zip xs ys

The function zipWith is a general form of ziping which instead of tupling com-
bines the values with an input functions.

> zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

> zipWith f xs ys = map (uncurry f) $ zip xs ys

We can now give the code for fibonacci numbers.

1



2 LECTURE 5. FIBONACCI SERIES

> fib = 1:1:zipWith (+) fib (tail fib)

Notice that the zip of fib and tail fib gives a set of tuples whose caluse are
consecutive fibonacci numbers. Therefore, once the intial values are set all that
is required is zipping through with a (+) operation.


	Fibonacci Series
	Ziping a list


