Lecture 5

Fibonacci Series

In continuation with the theme of the last lecture we define another infinite series - the fibonacci series. Ofcourse all of you know the Fibonacci Series. It is defined by the linear recurrence relation $F_{i+2}=F_{i}+F_{i+1}$. We assume that $F_{0}=1$ and $F_{1}=1$ to begin with.

The defintion is straight forward; it is just a one liner, but we use this as an excuse to introduce two standard list functions

5.1 Ziping a list

The zip of the list x_{0}, \ldots, x_{n} and y_{0}, \ldots, y_{m} is the list of tuples $\left(x_{0}, y_{0}\right), \ldots,\left(x_{k}, y_{k}\right)$ where k is the minimum of n and m.

```
> zip :: [a] -> [b] -> [(a,b)]
> zip [] _ = []
> zip _ [] = []
> zip (x:xs) (y:ys) = (x,y) : zip xs ys
```

The function zipWith is a general form of ziping which instead of tupling combines the values with an input functions.

```
> zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
> zipWith f xs ys = map (uncurry f) $ zip xs ys
```

We can now give the code for fibonacci numbers.

```
> fib = 1:1:zipWith (+) fib (tail fib)
```

Notice that the zip of fib and tail fib gives a set of tuples whose caluse are consecutive fibonacci numbers. Therefore, once the intial values are set all that is required is zipping through with a (+) operation.

