
Lecture 7

Data types

We have already seen an example of a compound data type namely list. Recall
that, a list is either an empty list or a list with a head element and rest of the
list. We begin by defining a list data type. Haskell already provides a list data
type so we do not need to define a user defined data type. However, we do this
for illustration

> import Prelude hiding (sum) -- hide the standard sum function

> data List a = EmptyList

> | Cons a (List a)

One reads this as follows “List of a is either EmptyList or a Cons of a and List

of a”. Here the variable a is a type variable. The result of this is that List

is now a polymorphic data type. We can instatiate this with any other Haskell
data types. A list of integers is then List Integer.

The identifiers EmptyList and Cons are the two constructors of our new data
type List. The constructors can now be used in Haskell expressions. For
example EmptyList is a valid Haskell expression. So is Cons 2 EmptyList and
Cons 1 (Cons 2 EmptyList). The standard list actually has two constructors,
namely [] and (:).

7.1 Pattern Matching

We can now define functions on our new data type List using pattern matching
in the most obvious way. Here is a version of sum that works with List Int

instead of [Int]

1



2 LECTURE 7. DATA TYPES

> sum :: List Int -> Int

> sum EmptyList = 0

> sum (Cons x xs) = x + sum xs

As the next example, we two functions to convert from our list type to the
standard list type.

> toStdList :: List a -> [a]

> fromStdList :: [a] -> List a

> toStdList EmptyList = []

> toStdList (Cons x xs) = x : toStdList xs

> fromStdList [] = EmptyList

> fromStdList (x:xs) = Cons x (fromStdList xs)

1. Exercise: Define the functions map foldr and foldl for our new list
type.

7.2 Syntax of a data type

We now give the general syntax for defining data types.

data Typename tv_1 tv_2 tv_n = C1 te_11 te_12 ... te_1r1

| C2 te_21 te_22 ... te_2r2

| . . .

| Cm te_m1 te_m2 ... te_mrm

Here data is a key word that tells the complier that the next equation is a
data type definition. This gives a polymorphic data type with n type arguments
tv 1,...,tv n. The te ij’s are arbitrary type expressions and the identifiers
C1 to Cm are the constructors of the type. Recall that in Haskell there is a
constraint that each variable, or for that matter type variable, should be an
identifer which starts with a lower case alphabet. In the case of type names and
constructors, they should start with upper case alphabet.

7.3 Constructors

Constructors of a data type play a dual role. In expressions they behave like
functions. For example in the List data type that we defined the EmptyList



7.4. THE BINARY TREE 3

constructor is a constant List (which is the same as 0-argument function) and
Cons has type a -> List a -> List a. On the other hand constructors can
be used in pattern matching when defining functions.

7.4 The Binary tree

We now look at another example the binary tree. Recall that a binary tree
is either an empty tree or has root and two children. In haskell this can be
captured as follows

>

> data Tree a = EmptyTree

> | Node (Tree a) a (Tree a)

>

To illustrate function on tree let us define the depth function

> depth :: Tree a -> Int

> depth EmptyTree = 0

> depth (Node left _ right) | dLeft <= dRight = dRight + 1

> | otherwise = dLeft + 1

> where dLeft = depth left

> dRight = depth right


	Data types
	Pattern Matching
	Syntax of a data type
	Constructors
	The Binary tree


