
Lecture 20

Concurrent programming in
Haskell

Haskell has a very good support for concurrent programming. In this lecture
we see a very basic introduction to concurrent programming.

20.1 Threads

The Haskell runtime implements threads which are really lightweight. This
means that on a decent machine you can open say 10K threads and still be have
decent performance. This makes Haskell a great platform to implement high
connectivity servers like http/ftp servers etc.

However you need to be carefull about FFI calls to C code. If one of your
thread makes a call to a C function that blocks then all the threads will block.
Sometimes the call to C functions might be indirect, you might use a library
that uses Haskells FFI to talk to an already implemented C library. Then you
can be in trouble if you are not careful.

One creates threads in Haskell using the forkIO :: IO () -> IO ThreadId

function. The threads created using forkIO are really local to you ghc process
and will not be visible in the rest of the OS. There is a similar forkOS function
that creates an OS level thread. As long as the code uses pure haskell functions
forkIO is all that you need.

We give here a basic function that forks a lot of worker process. The module to
import is Control.Concurrent.

> import Control.Concurrent -- Concurrency related module

1



2 LECTURE 20. CONCURRENT PROGRAMMING IN HASKELL

> import System.Environment -- For command line args in main

This is the worker process. In real life program this is were stuff happen.

> worker :: Int -> IO ()

> worker inp = do tId <- myThreadId

> let say x = putStrLn (show tId ++ ": " ++ x)

> in do say ("My input is " ++ show inp)

> say "Oh no I am dying."

>

Here is where the process is created. Note that forkIO . worker takes as input
an integer and runs the worker action on it in a seperate thread

> runThreads :: [Int] -> IO ()

> runThreads = sequence_ . map (forkIO . worker)

>

And finally this is the main function where all the command line arguments are
parsed and things done.

> main = do args <- getArgs

> case args of

> [a] -> let nthreads = read a

> in runThreads [1..nthreads]

> _ -> putStrLn "Bad arguments"

>

20.2 Daemonic thread termination

There is a big bug in the code you just saw. All threads are terminated as soon
as the main thread terminates. For real world applications one wants main
thread to hang around till the others are done. We will see one way to handle
this in the next lecture.


	Concurrent programming in Haskell
	Threads
	Daemonic thread termination


