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Recap: The Expectation Maximization (EM) Algorithm

Used for doing parameter estimation in latent variable models

ΘMLE = arg max
Θ

log p(X|Θ) = arg max
Θ

log
∑

Z

p(X,Z|Θ)

The EM Algorithm

Initialize Θ as Θ(0), set t = 1

Step 1: Compute conditional posterior of latent vars given current params Θ(t−1)

p(z (t)
n |xn,Θ

(t−1)) =
p(z (t)

n |Θ(t−1))p(xn|z (t)
n ,Θ(t−1))

p(xn|Θ(t−1))
∝ prior× likelihood

Step 2: Now maximize the expected complete data log-likelihood w.r.t. Θ

Θ(t) = arg max
Θ
Q(Θ,Θ(t−1)) = arg max

Θ

N∑
n=1

E
p(z (t)

n |xn,Θ(t−1))
[log p(xn, z (t)

n |Θ)]

If not yet converged, set t = t + 1 and go to Step 1.

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 2



Recap: The Expectation Maximization (EM) Algorithm

Used for doing parameter estimation in latent variable models

ΘMLE = arg max
Θ

log p(X|Θ) = arg max
Θ

log
∑

Z

p(X,Z|Θ)

The EM Algorithm

Initialize Θ as Θ(0), set t = 1

Step 1: Compute conditional posterior of latent vars given current params Θ(t−1)

p(z (t)
n |xn,Θ

(t−1)) =
p(z (t)

n |Θ(t−1))p(xn|z (t)
n ,Θ(t−1))

p(xn|Θ(t−1))
∝ prior× likelihood

Step 2: Now maximize the expected complete data log-likelihood w.r.t. Θ

Θ(t) = arg max
Θ
Q(Θ,Θ(t−1)) = arg max

Θ

N∑
n=1

E
p(z (t)

n |xn,Θ(t−1))
[log p(xn, z (t)

n |Θ)]

If not yet converged, set t = t + 1 and go to Step 1.

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 2



Making EM Faster: Online EM

Needn’t compute p(zn|xn) for every xn in each EM iteration (computational/storage efficiency)

Recall that the expected CLL is often a sum over all data points

Q(Θ,Θold) = E[log p(X,Z|Θ) =
N∑

n=1

E[log p(xn|zn, θ)] + E[log p(zn|φ)]

Can compute this quantity recursively using small minibatches of data

Qt = (1− γt)Qt−1 + γt

[
Nt∑
n=1

E[log p(xn|zn, θ)] + E[log p(zn|φ)]

]
.. where γt = (1 + t)−κ, 0.5 < κ ≤ 1 is a decaying learning rate

Requires computing p(zn|xn) only for data in current mini-batch (computational/storage efficiency)

MLE on above Qt can be shown to be equivalent to a simple recursive updates for Θ

Θ(t) = (1− γt)×Θ(t−1) + γt × arg max
Θ
Q(Θ,Θt−1)︸ ︷︷ ︸

computed using only
the Nt examples

from this minibatch
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How M Step uses Sufficient Statistics

First recall the batch EM algorithm for a K component Gaussian mixture model

Cluster id zn s.t. znk = 1 if xn belongs to cluster k, and zero otherwise

The conditional posterior of znk is p(znk = 1|xn,Θ) ∝ πkN (xn|µk ,Σk)

Denoting current iteration by t, and the expectation computed in E step: E[z
(t)
nk ] = γ

(t)
nk

The M step updates for params Θ = {πk , µk ,Σk}Kk=1 are

µ
(t)
k =

1

Nk

N∑
n=1

γ
(t)
nk xn

Σ
(t)
k =

1

Nk

N∑
n=1

γ
(t)
nk (xn − µ

(t)
k )(xn − µ

(t)
k )>

π
(t)
k =

∑N
n=1 γ

(t)
nk

N

Each update depends on sum of expected sufficient statistics (ESS). For each data point xn, zn

ESS for µk is γ
(t)
nk xn; ESS for Σk is γ

(t)
nk (xn − µ

(t)
k )(xn − µ

(t)
k )>; ESS for πk is γ

(t)
nk
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Batch EM Algorithm in terms of Sufficient Statistics

Denote the sum of ESS as S =
∑N

n=1 sn where each ESS sn =
∑

zn
p(zn|xn,Θ)φ(xn, zn)

Here φ(xn, zn) is the SS associated with one observation xn and its latent variable zn

M step updates of Θ are like computing a function of S, i.e., Θ = f (S)

Batch EM in terms of ESS

Initialize S and compute parameters Θ = f (S)

For t = 1 : T (or until convergence)

Snew = 0 (fresh sum of ESS; will be computed in this iteration)
For n = 1 : N

sn =
∑
zn

p(zn|xn,Θ)φ(xn, zn) = E[φ(xn, zn)]

Snew = Snew + sn

S = Snew

Recompute parameters Θ = f (S)

Note: In general, there may be more than one sum of ESS (one for each parameter update)
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Online EM Algorithm in terms of Sufficient Statistics

Works in a similar way as batch EM except we need an online way to update S

Can be done in one of the two manners (Liang and Klein, 2009)

Stepwise EM (based on recursively updating the sum of ESS)

Incremental EM (based on deleting old and adding new ESS of each data point)

Online EM as Stepwise EM

Initialize the sum of ESS S and compute Θ = f (S)

For t = 1 : T (or until convergence)

Set “learning rate” γt , pick a random example n and compute its sufficient statistics

sn =
∑
zn

p(zn|xn,Θ)φ(xn, zn)

S = (1− γt)S + γtsn

Recompute Θ = f (S)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 6



Online EM Algorithm in terms of Sufficient Statistics

Works in a similar way as batch EM except we need an online way to update S

Can be done in one of the two manners (Liang and Klein, 2009)

Stepwise EM (based on recursively updating the sum of ESS)

Incremental EM (based on deleting old and adding new ESS of each data point)

Online EM as Stepwise EM

Initialize the sum of ESS S and compute Θ = f (S)

For t = 1 : T (or until convergence)

Set “learning rate” γt , pick a random example n and compute its sufficient statistics

sn =
∑
zn

p(zn|xn,Θ)φ(xn, zn)

S = (1− γt)S + γtsn

Recompute Θ = f (S)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 6



Online EM Algorithm in terms of Sufficient Statistics

Works in a similar way as batch EM except we need an online way to update S

Can be done in one of the two manners (Liang and Klein, 2009)

Stepwise EM (based on recursively updating the sum of ESS)

Incremental EM (based on deleting old and adding new ESS of each data point)

Online EM as Stepwise EM

Initialize the sum of ESS S and compute Θ = f (S)

For t = 1 : T (or until convergence)

Set “learning rate” γt , pick a random example n and compute its sufficient statistics

sn =
∑
zn

p(zn|xn,Θ)φ(xn, zn)

S = (1− γt)S + γtsn

Recompute Θ = f (S)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 6



Online EM Algorithm in terms of Sufficient Statistics

Works in a similar way as batch EM except we need an online way to update S

Can be done in one of the two manners (Liang and Klein, 2009)

Stepwise EM (based on recursively updating the sum of ESS)

Incremental EM (based on deleting old and adding new ESS of each data point)

Online EM as Stepwise EM

Initialize the sum of ESS S and compute Θ = f (S)

For t = 1 : T (or until convergence)

Set “learning rate” γt , pick a random example n and compute its sufficient statistics

sn =
∑
zn

p(zn|xn,Θ)φ(xn, zn)

S = (1− γt)S + γtsn

Recompute Θ = f (S)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 6



Online EM Algorithm in terms of Sufficient Statistics

Works in a similar way as batch EM except we need an online way to update S

Can be done in one of the two manners (Liang and Klein, 2009)

Stepwise EM (based on recursively updating the sum of ESS)

Incremental EM (based on deleting old and adding new ESS of each data point)

Online EM as Stepwise EM

Initialize the sum of ESS S and compute Θ = f (S)

For t = 1 : T (or until convergence)

Set “learning rate” γt , pick a random example n and compute its sufficient statistics

sn =
∑
zn

p(zn|xn,Θ)φ(xn, zn)

S = (1− γt)S + γtsn

Recompute Θ = f (S)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 6



Online EM Algorithm in terms of Sufficient Statistics

Works in a similar way as batch EM except we need an online way to update S

Can be done in one of the two manners (Liang and Klein, 2009)

Stepwise EM (based on recursively updating the sum of ESS)

Incremental EM (based on deleting old and adding new ESS of each data point)

Online EM as Stepwise EM

Initialize the sum of ESS S and compute Θ = f (S)

For t = 1 : T (or until convergence)

Set “learning rate” γt , pick a random example n and compute its sufficient statistics

sn =
∑
zn

p(zn|xn,Θ)φ(xn, zn)

S = (1− γt)S + γtsn

Recompute Θ = f (S)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 6



Online EM Algorithm in terms of Sufficient Statistics

Works in a similar way as batch EM except we need an online way to update S

Can be done in one of the two manners (Liang and Klein, 2009)

Stepwise EM (based on recursively updating the sum of ESS)

Incremental EM (based on deleting old and adding new ESS of each data point)

Online EM as Stepwise EM

Initialize the sum of ESS S and compute Θ = f (S)

For t = 1 : T (or until convergence)

Set “learning rate” γt , pick a random example n and compute its sufficient statistics

sn =
∑
zn

p(zn|xn,Θ)φ(xn, zn)

S = (1− γt)S + γtsn

Recompute Θ = f (S)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 6



Online EM Algorithm in terms of Sufficient Statistics

Works in a similar way as batch EM except we need an online way to update S

Can be done in one of the two manners (Liang and Klein, 2009)

Stepwise EM (based on recursively updating the sum of ESS)

Incremental EM (based on deleting old and adding new ESS of each data point)

Online EM as Stepwise EM

Initialize the sum of ESS S and compute Θ = f (S)

For t = 1 : T (or until convergence)

Set “learning rate” γt , pick a random example n and compute its sufficient statistics

sn =
∑
zn

p(zn|xn,Θ)φ(xn, zn)

S = (1− γt)S + γtsn

Recompute Θ = f (S)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 6



Online EM Algorithm in terms of Sufficient Statistics

Works in a similar way as batch EM except we need an online way to update S

Can be done in one of the two manners (Liang and Klein, 2009)

Stepwise EM (based on recursively updating the sum of ESS)

Incremental EM (based on deleting old and adding new ESS of each data point)

Online EM as Stepwise EM

Initialize the sum of ESS S and compute Θ = f (S)

For t = 1 : T (or until convergence)

Set “learning rate” γt , pick a random example n and compute its sufficient statistics

sn =
∑
zn

p(zn|xn,Θ)φ(xn, zn)

S = (1− γt)S + γtsn

Recompute Θ = f (S)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 6



Online EM Algorithm in terms of Sufficient Statistics

Works in a similar way as batch EM except we need an online way to update S

Can be done in one of the two manners (Liang and Klein, 2009)

Stepwise EM (based on recursively updating the sum of ESS)

Incremental EM (based on deleting old and adding new ESS of each data point)

Online EM as Stepwise EM

Initialize the sum of ESS S and compute Θ = f (S)

For t = 1 : T (or until convergence)

Set “learning rate” γt , pick a random example n and compute its sufficient statistics

sn =
∑
zn

p(zn|xn,Θ)φ(xn, zn)

S = (1− γt)S + γtsn

Recompute Θ = f (S)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 6



Online EM Algorithm in terms of Sufficient Statistics

Works in a similar way as batch EM except we need an online way to update S

Can be done in one of the two manners (Liang and Klein, 2009)

Stepwise EM (based on recursively updating the sum of ESS)

Incremental EM (based on deleting old and adding new ESS of each data point)

Online EM as Stepwise EM

Initialize the sum of ESS S and compute Θ = f (S)

For t = 1 : T (or until convergence)

Set “learning rate” γt , pick a random example n and compute its sufficient statistics

sn =
∑
zn

p(zn|xn,Θ)φ(xn, zn)

S = (1− γt)S + γtsn

Recompute Θ = f (S)

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 6



Online EM Algorithm in terms of Sufficient Statistics

The other Online EM approach “Incremental EM” needs no learning rate (unlike “Stepwise EM”)

Online EM as Incremental EM

Initialize each ESS sn, n = 1, . . . ,N, S =
∑N

n=1 sn, and compute Θ = f (S)

For t = 1 : T (or until convergence)

Pick a random example n and update its exp. sufficient statistics

snewn =
∑
zn

p(zn|xn,Θ)φ(xn, zn)

S = S + snewn − sn
sn = snewn

Recompute Θ = f (S)

However, incremental EM requires keeping a track of sum of ESS S as well as each sn
In practice, stepwise EM outperforms batch EM as well as incremental EM on many problems (can
refer to Liang and Klein, 2009 for some examples of models where these algos were tried)
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EM vs Gradient-based Methods

Can also estimate params use gradient-based optimization (or backprop in general) instead of EM

Reason: We can usually explicitly sum over or integrate out the latent variables Z, e.g.,

L(Θ) = log p(X|Θ) = log
∑

Z

p(X,Z|Θ)

Now we can optimize L(Θ) using first/second order optimization to find the optimal Θ

EM is usually preferred over this approach because

The M step has often simple closed-form updates for the parameters Θ

Often constraints (e.g., PSD matrices) are automatically satisfied due to the form of updates

In some cases†, EM usually converges faster (and often like second-order methods like Newton’s)

Example: Mixture of Gaussians with when the data is reasonably well-clustered

EM applies even when the explicit summing over is expensive or integrating out isn’t tractable

EM also provides the conditional posterior over the latent variables Z (from E step)

† Optimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996),
Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017)
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Variational Bayes (VB)
a.k.a. Variational Inference (VI)

(Note: “variational” here refers to optimization of functions of distributions)

Origins of VB/VI were in Statistical Physics (mainly “mean-field” methods; early 80s)

Some of the early applications of VB/VI were for neural networks (late 80s)

Became very popular in ML community in late 90s (and continues to remain so)

Primary reason: Faster than MCMC methods

An aside: Statistics researchers were somewhat skeptical of VB/VI (but that is changing now) and
continued their allegiance towards MCMC methods for approximate posterior inference

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 9



Variational Bayes (VB)
a.k.a. Variational Inference (VI)

(Note: “variational” here refers to optimization of functions of distributions)

Origins of VB/VI were in Statistical Physics (mainly “mean-field” methods; early 80s)

Some of the early applications of VB/VI were for neural networks (late 80s)

Became very popular in ML community in late 90s (and continues to remain so)

Primary reason: Faster than MCMC methods

An aside: Statistics researchers were somewhat skeptical of VB/VI (but that is changing now) and
continued their allegiance towards MCMC methods for approximate posterior inference

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 9



Variational Bayes (VB)
a.k.a. Variational Inference (VI)

(Note: “variational” here refers to optimization of functions of distributions)

Origins of VB/VI were in Statistical Physics (mainly “mean-field” methods; early 80s)

Some of the early applications of VB/VI were for neural networks (late 80s)

Became very popular in ML community in late 90s (and continues to remain so)

Primary reason: Faster than MCMC methods

An aside: Statistics researchers were somewhat skeptical of VB/VI (but that is changing now) and
continued their allegiance towards MCMC methods for approximate posterior inference

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 9



Variational Bayes (VB)
a.k.a. Variational Inference (VI)

(Note: “variational” here refers to optimization of functions of distributions)

Origins of VB/VI were in Statistical Physics (mainly “mean-field” methods; early 80s)

Some of the early applications of VB/VI were for neural networks (late 80s)

Became very popular in ML community in late 90s (and continues to remain so)

Primary reason: Faster than MCMC methods

An aside: Statistics researchers were somewhat skeptical of VB/VI (but that is changing now) and
continued their allegiance towards MCMC methods for approximate posterior inference

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 9



Variational Bayes (VB)
a.k.a. Variational Inference (VI)

(Note: “variational” here refers to optimization of functions of distributions)

Origins of VB/VI were in Statistical Physics (mainly “mean-field” methods; early 80s)

Some of the early applications of VB/VI were for neural networks (late 80s)

Became very popular in ML community in late 90s (and continues to remain so)

Primary reason: Faster than MCMC methods

An aside: Statistics researchers were somewhat skeptical of VB/VI (but that is changing now) and
continued their allegiance towards MCMC methods for approximate posterior inference

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 9



Variational Bayes (VB)
a.k.a. Variational Inference (VI)

(Note: “variational” here refers to optimization of functions of distributions)

Origins of VB/VI were in Statistical Physics (mainly “mean-field” methods; early 80s)

Some of the early applications of VB/VI were for neural networks (late 80s)

Became very popular in ML community in late 90s (and continues to remain so)

Primary reason: Faster than MCMC methods

An aside: Statistics researchers were somewhat skeptical of VB/VI (but that is changing now) and
continued their allegiance towards MCMC methods for approximate posterior inference

Prob. Modeling & Inference - CS698X (Piyush Rai, IITK) Expectation-Maximization (Contd) and Introduction to Variational Inference 9



Variational Bayes (VB) or Variational Inference (VI)

Consider a model with data X and unknowns Z. Goal: Compute the posterior p(Z|X)

Suppose p(Z|X) is intractable. VB/VI approximates it using a distribution q(Z|φ) or qφ(Z)

VB/VI finds the q(Z|φ) that is “closest” to p(Z|X) by finding the “optimal” value of φ

φ∗ = arg min
φ

KL[qφ(Z)||p(Z|X)]

This amounts of finding the best distribution from a class of distributions parametrized by φ

VB/VI refers to the free parameters φ as variational parameters (w.r.t. which we optimize)

But wait! If p(Z|X) itself is intractable, can we (easily) solve the above KL minimization problem?
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Variational Bayes (VB) or Variational Inference (VI)

The following holds for any q: log p(X|m) = L(q) + KL(q||p) where

L(q) =

∫
q(Z) log

[
p(X,Z)

q(Z)

]
dZ

KL(q||p) = −
∫

q(Z) log

[
p(Z|X)

q(Z)

]
dZ

Above is similar to what we had in EM, but now no Θ (param) vs Z (latent var) distinction

We would like to infer the posterior for all the unknowns (denoted collectively as Z)

Since log p(X) is a constant w.r.t. Z, the following must hold

arg min
q

KL(q||p) = arg max
q
L(q)

Since KL(q||p) ≥ 0, log p(X) ≥ L(q)

L(q) is also known as the Evidence Lower Bound (ELBO)

Reason for the name “ELBO”: log p(X) or log p(X|m) is the log-evidence of model m
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q(Z)

]
dZ

Above is similar to what we had in EM, but now no Θ (param) vs Z (latent var) distinction

We would like to infer the posterior for all the unknowns (denoted collectively as Z)

Since log p(X) is a constant w.r.t. Z, the following must hold

arg min
q

KL(q||p) = arg max
q
L(q)

Since KL(q||p) ≥ 0, log p(X) ≥ L(q)

L(q) is also known as the Evidence Lower Bound (ELBO)

Reason for the name “ELBO”: log p(X) or log p(X|m) is the log-evidence of model m
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VB/VI = Maximizing the ELBO

Notation: q(Z), q(Z|φ), qφ(Z), all will refer to the same thing

VB/VI finds an approximating distribution q(Z) that maximizes the ELBO

L(q) =

∫
q(Z) log

[
p(X,Z)

q(Z)

]
dZ

Since q(Z) depends on φ, the ELBO is essentially a function of φ

L(q) = L(φ) = Eq[log p(X,Z)]− Eq[log q(Z)] = Eq[log p(X|Z)]−KL(q(Z)||p(Z))

Makes sense: Maximizing L(q) will give a q that explains data well and is close to the prior

Maximizing L(q) w.r.t. q can still be hard in general (note the expectation w.r.t. q)

Some of the ways to make this problem easier

1 Restricting the form of our approximation q(Z), e.g., mean-field VB (today’s discussion)

2 Using Monte-Carlo approximation of the expectation/gradient of the ELBO (later)

For locally conjugate models VB/VI is particularly easy to derive
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Mean-Field VB

One of the simplest ways of doing VB

In mean-field VB, we define a partition of the latent variables Z into M groups Z1, . . . ,ZM

Assume our approximation q(Z) factorizes over these groups

q(Z|φ) =
M∏
i=1

q(Zi |φi )

As a short-hand, sometimes we write q =
∏M

i=1 qi where qi = q(Zi |φi )

In mean-field VB, learning the optimal q reduces to learning the optimal q1, . . . , qM

The groups are usually chosen based on the model’s structure, e.g., in Bayesian linear regression

q(Z|φ) = q(w , λ, β|φ) = q(w |φw )q(λ|φλ)q(β|φβ)

Note: Mean-field is quite a strong assumption (can destroy structure among latent variables)
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Deriving Mean-Field VB Updates

With q =
∏M

i=1 qj , what’s each optimal qi equal to when we do arg maxq L(q)?

Note that under this mean-field assumption, the ELBO simplifies to

L(q) =

∫
q(Z) log

[
p(X,Z)

q(Z)

]
dZ =

∫ ∏
i

qi

[
log p(X,Z)−

∑
i

log qi

]
dZ

Suppose we wish to find the optimal qj given all other qi (i 6= j). Let’s re-express L(q) as

L(q) =

∫
qj

∫ log p(X,Z)
∏
i 6=j

qidZi

 dZj −
∫

qj log qjdZj + consts w.r.t. qj

=

∫
qj log p̃(X,Zj)dZj −

∫
qj log qjdZj

where log p̃(X,Zj) = Ei 6=j [log p(X,Z)] + const

Note that L(q) = −KL(qj ||p̃) + const. Which qj will maximize it?

qj = p̃(X,Zj)
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Deriving Mean-Field VB Updates

Since log q∗j (Zj) = log p̃(X,Zj) = Ei 6=j [ln p(X,Z)] + const, we have

q∗j (Zj) =
exp(Ei 6=j [ln p(X,Z)])∫

exp(Ei 6=j [ln p(X,Z)])dZj
∀j

Note: Only need to compute the numerator. Denominator can usually be recognized by inspection

For locally-conjugate models, q∗j (Zj) will have the same form as the prior p(Zj)

Important: For estimating qj , the required expectation depends on other {qi}i 6=j

Thus we need to cycle through updating each qj in turn (similar to co-ordinate ascent, alternating
optimization, Gibbs sampling, etc.)

Guaranteed to converge (to a local optima)

We are basically solving a sequence of concave maximization problems

Reason: L(q) =
∫
qj ln p̃(X,Zj)Zj −

∫
qj ln qjdZj + const is concave w.r.t. each qj
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The Mean-Field VB Algorithm

Also known as Co-ordinate Ascent Variational Inference (CAVI) Algorithm

Input: Model p(X,Z), Data X

Output: A variational distribution q(Z) =
∏M

j=1 qj(Zj)

Initialize: Variational distributions qj(Zj), j = 1, . . . ,M

While the ELBO has not converged

For each j = 1, . . . ,M, set

qj(Zj) ∝ exp(Ei 6=j [log p(X,Z)])

Compute ELBO L(q) = Eq[log p(X,Z)]− Eq[log q(Z)]
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Next Class

Continue the discussion on mean-field VI

Some examples of mean-field VI

Mean-field VI for models with exponential family distributions

Some properties of VI

More general forms of VI (modern VI methods)
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