Expectation-Maximization (Contd) and Introduction to Variational Inference

Piyush Rai

Topics in Probabilistic Modeling and Inference (CS698X)

Feb 11, 2019

Recap: The Expectation Maximization (EM) Algorithm

Used for doing parameter estimation in latent variable models

$$\Theta_{\textit{MLE}} = \arg\max_{\boldsymbol{\Theta}} \log p(\mathbf{X}|\boldsymbol{\Theta}) = \arg\max_{\boldsymbol{\Theta}} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\Theta})$$

Recap: The Expectation Maximization (EM) Algorithm

Used for doing parameter estimation in latent variable models

$$\Theta_{\textit{MLE}} = \arg\max_{\boldsymbol{\Theta}} \log p(\mathbf{X}|\boldsymbol{\Theta}) = \arg\max_{\boldsymbol{\Theta}} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\Theta})$$

The EM Algorithm

- Initialize Θ as $\Theta^{(0)}$, set t=1
- Step 1: Compute conditional posterior of latent vars given current params $\Theta^{(t-1)}$

$$p(\boldsymbol{z}_n^{(t)}|\boldsymbol{x}_n,\boldsymbol{\Theta}^{(t-1)}) = \frac{p(\boldsymbol{z}_n^{(t)}|\boldsymbol{\Theta}^{(t-1)})p(\boldsymbol{x}_n|\boldsymbol{z}_n^{(t)},\boldsymbol{\Theta}^{(t-1)})}{p(\boldsymbol{x}_n|\boldsymbol{\Theta}^{(t-1)})} \propto \operatorname{prior} \times \operatorname{likelihood}$$

 \circ Step 2: Now maximize the expected complete data log-likelihood w.r.t. Θ

$$\Theta^{(t)} = \arg\max_{\Theta} \mathcal{Q}(\Theta, \Theta^{(t-1)}) = \arg\max_{\Theta} \sum_{n=1}^{N} \mathbb{E}_{p(\mathbf{z}_{n}^{(t)}|\mathbf{x}_{n}, \Theta^{(t-1)})} [\log p(\mathbf{x}_{n}, \mathbf{z}_{n}^{(t)}|\Theta)]$$

• If not yet converged, set t = t + 1 and go to Step 1.

- Needn't compute $p(z_n|x_n)$ for every x_n in each EM iteration (computational/storage efficiency)
 - Recall that the expected CLL is often a sum over all data points

$$\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta) = \sum_{n=1}^{N} \mathbb{E}[\log p(\mathbf{x}_{n}|\mathbf{z}_{n}, \theta)] + \mathbb{E}[\log p(\mathbf{z}_{n}|\phi)]$$

- Needn't compute $p(z_n|x_n)$ for every x_n in each EM iteration (computational/storage efficiency)
 - Recall that the expected CLL is often a sum over all data points

$$\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta) = \sum_{n=1}^{N} \mathbb{E}[\log p(\mathbf{x}_n|\mathbf{z}_n, \theta)] + \mathbb{E}[\log p(\mathbf{z}_n|\phi)]$$

• Can compute this quantity recursively using small minibatches of data

$$\mathcal{Q}_t = (1 - \gamma_t)\mathcal{Q}_{t-1} + \gamma_t \left[\sum_{n=1}^{N_t} \mathbb{E}[\log p(\mathbf{x}_n|\mathbf{z}_n, heta)] + \mathbb{E}[\log p(\mathbf{z}_n|\phi)] \right]$$

.. where $\gamma_t = (1+t)^{-\kappa}$, $0.5 < \kappa < 1$ is a decaying learning rate

- Needn't compute $p(z_n|x_n)$ for every x_n in each EM iteration (computational/storage efficiency)
 - Recall that the expected CLL is often a sum over all data points

$$\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta) = \sum_{n=1}^{N} \mathbb{E}[\log p(\mathbf{x}_{n}|\mathbf{z}_{n}, \theta)] + \mathbb{E}[\log p(\mathbf{z}_{n}|\phi)]$$

• Can compute this quantity recursively using small minibatches of data

$$\mathcal{Q}_t = (1 - \gamma_t)\mathcal{Q}_{t-1} + \gamma_t \left[\sum_{n=1}^{N_t} \mathbb{E}[\log p(\mathbf{x}_n|\mathbf{z}_n, heta)] + \mathbb{E}[\log p(\mathbf{z}_n|\phi)] \right]$$

- .. where $\gamma_t = (1+t)^{-\kappa}$, $0.5 < \kappa < 1$ is a decaying learning rate
- Requires computing $p(z_n|x_n)$ only for data in current mini-batch (computational/storage efficiency)

- Needn't compute $p(z_n|x_n)$ for every x_n in each EM iteration (computational/storage efficiency)
 - Recall that the expected CLL is often a sum over all data points

$$\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta) = \sum_{n=1}^{N} \mathbb{E}[\log p(\mathbf{x}_n|\mathbf{z}_n, \theta)] + \mathbb{E}[\log p(\mathbf{z}_n|\phi)]$$

• Can compute this quantity recursively using small minibatches of data

$$\mathcal{Q}_t = (1 - \gamma_t)\mathcal{Q}_{t-1} + \gamma_t \left[\sum_{n=1}^{N_t} \mathbb{E}[\log p(\mathbf{x}_n|\mathbf{z}_n, \theta)] + \mathbb{E}[\log p(\mathbf{z}_n|\phi)] \right]$$

- .. where $\gamma_t = (1+t)^{-\kappa}$, $0.5 < \kappa < 1$ is a decaying learning rate
- Requires computing $p(z_n|x_n)$ only for data in current mini-batch (computational/storage efficiency)
- MLE on above Q_t can be shown to be equivalent to a simple recursive updates for Θ

$$\Theta^{(t)} = (1 - \gamma_t) \times \Theta^{(t-1)} + \gamma_t \times \arg\max_{\Theta} \ \underline{\mathcal{Q}(\Theta, \Theta^{t-1})}$$

computed using only the N_{+} examples

- First recall the **batch EM** algorithm for a K component Gaussian mixture model
 - Cluster id z_n s.t. $z_{nk} = 1$ if x_n belongs to cluster k, and zero otherwise

- First recall the **batch EM** algorithm for a K component Gaussian mixture model
 - Cluster id z_n s.t. $z_{nk} = 1$ if x_n belongs to cluster k, and zero otherwise
 - The conditional posterior of z_{nk} is $p(z_{nk}=1|\pmb{x}_n,\Theta)\propto \pi_k\mathcal{N}(\pmb{x}_n|\pmb{\mu}_k,\pmb{\Sigma}_k)$

- First recall the **batch EM** algorithm for a K component Gaussian mixture model
 - Cluster id z_n s.t. $z_{nk} = 1$ if x_n belongs to cluster k, and zero otherwise
 - The conditional posterior of z_{nk} is $p(z_{nk}=1|x_n,\Theta) \propto \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k)$
- ullet Denoting current iteration by t, and the expectation computed in E step: $\mathbb{E}[z_{nk}^{(t)}]=\gamma_{nk}^{(t)}$

- First recall the **batch EM** algorithm for a K component Gaussian mixture model
 - Cluster id z_n s.t. $z_{nk} = 1$ if x_n belongs to cluster k, and zero otherwise
 - ullet The conditional posterior of z_{nk} is $p(z_{nk}=1|x_n,\Theta)\propto \pi_k \mathcal{N}(x_n|oldsymbol{\mu}_k,oldsymbol{\Sigma}_k)$
- ullet Denoting current iteration by t, and the expectation computed in E step: $\mathbb{E}[z_{nk}^{(t)}]=\gamma_{nk}^{(t)}$
- The M step updates for params $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ are

- First recall the **batch EM** algorithm for a K component Gaussian mixture model
 - Cluster id z_n s.t. $z_{nk} = 1$ if x_n belongs to cluster k, and zero otherwise
 - ullet The conditional posterior of z_{nk} is $p(z_{nk}=1|x_n,\Theta)\propto \pi_k \mathcal{N}(x_n|\mu_k,oldsymbol{\Sigma}_k)$
- ullet Denoting current iteration by t, and the expectation computed in E step: $\mathbb{E}[z_{nk}^{(t)}]=\gamma_{nk}^{(t)}$
- The M step updates for params $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ are

$$\boldsymbol{\mu}_k^{(t)} = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk}^{(t)} \boldsymbol{x}_n$$

- First recall the **batch EM** algorithm for a K component Gaussian mixture model
 - Cluster id z_n s.t. $z_{nk} = 1$ if x_n belongs to cluster k, and zero otherwise
 - ullet The conditional posterior of z_{nk} is $p(z_{nk}=1|x_n,\Theta)\propto \pi_k \mathcal{N}(x_n|\mu_k,oldsymbol{\Sigma}_k)$
- ullet Denoting current iteration by t, and the expectation computed in E step: $\mathbb{E}[z_{nk}^{(t)}]=\gamma_{nk}^{(t)}$
- The M step updates for params $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ are

$$\boldsymbol{\mu}_k^{(t)} = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk}^{(t)} \boldsymbol{x}_n$$

$$\boldsymbol{\Sigma}_k^{(t)} = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk}^{(t)} (\boldsymbol{x}_n - \boldsymbol{\mu}_k^{(t)}) (\boldsymbol{x}_n - \boldsymbol{\mu}_k^{(t)})^{\top}$$

- First recall the **batch EM** algorithm for a K component Gaussian mixture model
 - Cluster id z_n s.t. $z_{nk} = 1$ if x_n belongs to cluster k, and zero otherwise
 - ullet The conditional posterior of z_{nk} is $p(z_{nk}=1|x_n,\Theta)\propto \pi_k \mathcal{N}(x_n|\mu_k,\mathbf{\Sigma}_k)$
- ullet Denoting current iteration by t, and the expectation computed in E step: $\mathbb{E}[z_{nk}^{(t)}]=\gamma_{nk}^{(t)}$
- The M step updates for params $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ are

$$\boldsymbol{\mu}_{k}^{(t)} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk}^{(t)} \boldsymbol{x}_{n}$$

$$\boldsymbol{\Sigma}_{k}^{(t)} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk}^{(t)} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}^{(t)}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}^{(t)})^{\top}$$

$$\boldsymbol{\pi}_{k}^{(t)} = \frac{\sum_{n=1}^{N} \gamma_{nk}^{(t)}}{N}$$

- First recall the **batch EM** algorithm for a K component Gaussian mixture model
 - Cluster id z_n s.t. $z_{nk} = 1$ if x_n belongs to cluster k, and zero otherwise
 - ullet The conditional posterior of z_{nk} is $p(z_{nk}=1|x_n,\Theta)\propto \pi_k \mathcal{N}(x_n|\mu_k,\mathbf{\Sigma}_k)$
- ullet Denoting current iteration by t, and the expectation computed in E step: $\mathbb{E}[z_{nk}^{(t)}]=\gamma_{nk}^{(t)}$
- The M step updates for params $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ are

$$\mu_k^{(t)} = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk}^{(t)} \mathbf{x}_n$$

$$\mathbf{\Sigma}_k^{(t)} = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk}^{(t)} (\mathbf{x}_n - \boldsymbol{\mu}_k^{(t)}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{(t)})^{\top}$$

$$\pi_k^{(t)} = \frac{\sum_{n=1}^N \gamma_{nk}^{(t)}}{N}$$

Each update depends on sum of expected sufficient statistics (ESS)

- First recall the **batch EM** algorithm for a K component Gaussian mixture model
 - Cluster id z_n s.t. $z_{nk} = 1$ if x_n belongs to cluster k, and zero otherwise
 - ullet The conditional posterior of z_{nk} is $p(z_{nk}=1|x_n,\Theta)\propto \pi_k \mathcal{N}(x_n|\mu_k,oldsymbol{\Sigma}_k)$
- ullet Denoting current iteration by t, and the expectation computed in E step: $\mathbb{E}[z_{nk}^{(t)}]=\gamma_{nk}^{(t)}$
- The M step updates for params $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ are

$$\boldsymbol{\mu}_{k}^{(t)} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk}^{(t)} \boldsymbol{x}_{n}$$

$$\boldsymbol{\Sigma}_{k}^{(t)} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk}^{(t)} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}^{(t)}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}^{(t)})^{\top}$$

$$\boldsymbol{\pi}_{k}^{(t)} = \frac{\sum_{n=1}^{N} \gamma_{nk}^{(t)}}{N}$$

- Each update depends on sum of expected sufficient statistics (ESS). For each data point x_n, z_n
 - ESS for μ_k is $\gamma_{nk}^{(t)} x_n$

- First recall the **batch EM** algorithm for a K component Gaussian mixture model
 - Cluster id z_n s.t. $z_{nk} = 1$ if x_n belongs to cluster k, and zero otherwise
 - ullet The conditional posterior of z_{nk} is $p(z_{nk}=1|x_n,\Theta)\propto \pi_k \mathcal{N}(x_n|\mu_k,oldsymbol{\Sigma}_k)$
- ullet Denoting current iteration by t, and the expectation computed in E step: $\mathbb{E}[z_{nk}^{(t)}]=\gamma_{nk}^{(t)}$
- The M step updates for params $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ are

$$\boldsymbol{\mu}_{k}^{(t)} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk}^{(t)} \boldsymbol{x}_{n}$$

$$\boldsymbol{\Sigma}_{k}^{(t)} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk}^{(t)} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}^{(t)}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}^{(t)})^{\top}$$

$$\boldsymbol{\pi}_{k}^{(t)} = \frac{\sum_{n=1}^{N} \gamma_{nk}^{(t)}}{N}$$

- Each update depends on sum of expected sufficient statistics (ESS). For each data point x_n, z_n
 - ESS for μ_k is $\gamma_{nk}^{(t)} x_n$; ESS for Σ_k is $\gamma_{nk}^{(t)} (x_n \mu_k^{(t)}) (x_n \mu_k^{(t)})^{\top}$

- First recall the **batch EM** algorithm for a K component Gaussian mixture model
 - Cluster id z_n s.t. $z_{nk} = 1$ if x_n belongs to cluster k, and zero otherwise
 - ullet The conditional posterior of z_{nk} is $p(z_{nk}=1|x_n,\Theta)\propto \pi_k \mathcal{N}(x_n|\mu_k,\mathbf{\Sigma}_k)$
- ullet Denoting current iteration by t, and the expectation computed in E step: $\mathbb{E}[z_{nk}^{(t)}]=\gamma_{nk}^{(t)}$
- The M step updates for params $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ are

$$\boldsymbol{\mu}_{k}^{(t)} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk}^{(t)} \boldsymbol{x}_{n}$$

$$\boldsymbol{\Sigma}_{k}^{(t)} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk}^{(t)} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}^{(t)}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}^{(t)})^{\top}$$

$$\boldsymbol{\pi}_{k}^{(t)} = \frac{\sum_{n=1}^{N} \gamma_{nk}^{(t)}}{N}$$

- Each update depends on sum of expected sufficient statistics (ESS). For each data point x_n, z_n
 - ESS for μ_k is $\gamma_{nk}^{(t)} \mathbf{x}_n$; ESS for $\mathbf{\Sigma}_k$ is $\gamma_{nk}^{(t)} (\mathbf{x}_n \boldsymbol{\mu}_k^{(t)}) (\mathbf{x}_n \boldsymbol{\mu}_k^{(t)})^{\top}$; ESS for π_k is $\gamma_{nk}^{(t)}$

• Denote the sum of ESS as $\mathbf{S} = \sum_{n=1}^{N} \mathbf{s}_n$ where each ESS $\mathbf{s}_n = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n)$

- Denote the sum of ESS as $\mathbf{S} = \sum_{n=1}^{N} \mathbf{s}_n$ where each ESS $\mathbf{s}_n = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n)$
- Here $\phi(\mathbf{x}_n, \mathbf{z}_n)$ is the SS associated with one observation \mathbf{x}_n and its latent variable \mathbf{z}_n

- Denote the sum of ESS as $\mathbf{S} = \sum_{n=1}^{N} \mathbf{s}_n$ where each ESS $\mathbf{s}_n = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n)$
- Here $\phi(\mathbf{x}_n, \mathbf{z}_n)$ is the SS associated with one observation \mathbf{x}_n and its latent variable \mathbf{z}_n
- M step updates of Θ are like computing a function of **S**, i.e., $\Theta = f(\mathbf{S})$

- Denote the sum of ESS as $\mathbf{S} = \sum_{n=1}^{N} \mathbf{s}_n$ where each ESS $\mathbf{s}_n = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n)$
- Here $\phi(\mathbf{x}_n, \mathbf{z}_n)$ is the SS associated with one observation \mathbf{x}_n and its latent variable \mathbf{z}_n
- ullet M step updates of Θ are like computing a function of **S**, i.e., $\Theta=f(\mathbf{S})$

- Denote the sum of ESS as $\mathbf{S} = \sum_{n=1}^{N} \mathbf{s}_n$ where each ESS $\mathbf{s}_n = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n)$
- Here $\phi(\mathbf{x}_n, \mathbf{z}_n)$ is the SS associated with one observation \mathbf{x}_n and its latent variable \mathbf{z}_n
- M step updates of Θ are like computing a function of **S**, i.e., $\Theta = f(\mathbf{S})$

Batch EM in terms of ESS

• Initialize **S** and compute parameters $\Theta = f(S)$

- Denote the sum of ESS as $\mathbf{S} = \sum_{n=1}^{N} \mathbf{s}_n$ where each ESS $\mathbf{s}_n = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n)$
- Here $\phi(\mathbf{x}_n, \mathbf{z}_n)$ is the SS associated with one observation \mathbf{x}_n and its latent variable \mathbf{z}_n
- M step updates of Θ are like computing a function of **S**, i.e., $\Theta = f(\mathbf{S})$

- Initialize **S** and compute parameters $\Theta = f(S)$
- For t = 1 : T (or until convergence)

- Denote the sum of ESS as $\mathbf{S} = \sum_{n=1}^{N} \mathbf{s}_n$ where each ESS $\mathbf{s}_n = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n)$
- Here $\phi(\mathbf{x}_n, \mathbf{z}_n)$ is the SS associated with one observation \mathbf{x}_n and its latent variable \mathbf{z}_n
- M step updates of Θ are like computing a function of **S**, i.e., $\Theta = f(\mathbf{S})$

- Initialize **S** and compute parameters $\Theta = f(S)$
- For t = 1 : T (or until convergence)
 - $S^{new} = 0$ (fresh sum of ESS; will be computed in this iteration)

- Denote the sum of ESS as $\mathbf{S} = \sum_{n=1}^{N} \mathbf{s}_n$ where each ESS $\mathbf{s}_n = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n)$
- Here $\phi(\mathbf{x}_n, \mathbf{z}_n)$ is the SS associated with one observation \mathbf{x}_n and its latent variable \mathbf{z}_n
- M step updates of Θ are like computing a function of **S**, i.e., $\Theta = f(\mathbf{S})$

- Initialize **S** and compute parameters $\Theta = f(S)$
- For t = 1 : T (or until convergence)
 - $S^{new} = 0$ (fresh sum of ESS; will be computed in this iteration)
 - For n = 1: N

- Denote the sum of ESS as $\mathbf{S} = \sum_{n=1}^{N} \mathbf{s}_n$ where each ESS $\mathbf{s}_n = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n)$
- Here $\phi(\mathbf{x}_n, \mathbf{z}_n)$ is the SS associated with one observation \mathbf{x}_n and its latent variable \mathbf{z}_n
- M step updates of Θ are like computing a function of **S**, i.e., $\Theta = f(\mathbf{S})$

- Initialize **S** and compute parameters $\Theta = f(S)$
- For t = 1 : T (or until convergence)
 - $S^{new} = 0$ (fresh sum of ESS; will be computed in this iteration)
 - For n = 1 : N

$$s_n = \sum_{z_n} p(z_n|x_n,\Theta)\phi(x_n,z_n) = \mathbb{E}[\phi(x_n,z_n)]$$

- Denote the sum of ESS as $\mathbf{S} = \sum_{n=1}^{N} \mathbf{s}_n$ where each ESS $\mathbf{s}_n = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n)$
- Here $\phi(\mathbf{x}_n, \mathbf{z}_n)$ is the SS associated with one observation \mathbf{x}_n and its latent variable \mathbf{z}_n
- M step updates of Θ are like computing a function of **S**, i.e., $\Theta = f(\mathbf{S})$

- Initialize **S** and compute parameters $\Theta = f(S)$
- For t = 1 : T (or until convergence)
 - $S^{new} = 0$ (fresh sum of ESS; will be computed in this iteration)
 - For n = 1 : N

$$egin{array}{lll} oldsymbol{s}_n & = & \sum_{oldsymbol{z}_n} p(oldsymbol{z}_n | oldsymbol{x}_n, oldsymbol{\Theta}) \phi(oldsymbol{x}_n, oldsymbol{z}_n) = \mathbb{E}[\phi(oldsymbol{x}_n, oldsymbol{z}_n)] \ oldsymbol{S}^{new} & = & oldsymbol{S}^{new} + oldsymbol{s}_n \end{array}$$

- Denote the sum of ESS as $\mathbf{S} = \sum_{n=1}^{N} \mathbf{s}_n$ where each ESS $\mathbf{s}_n = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n)$
- Here $\phi(\mathbf{x}_n, \mathbf{z}_n)$ is the SS associated with one observation \mathbf{x}_n and its latent variable \mathbf{z}_n
- M step updates of Θ are like computing a function of **S**, i.e., $\Theta = f(\mathbf{S})$

Batch EM in terms of ESS

- Initialize **S** and compute parameters $\Theta = f(S)$
- For t = 1 : T (or until convergence)
 - $S^{new} = 0$ (fresh sum of ESS; will be computed in this iteration)
 - For n = 1 : N

$$\mathbf{s}_n = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n) = \mathbb{E}[\phi(\mathbf{x}_n, \mathbf{z}_n)]$$

 $\mathbf{S}^{new} = \mathbf{S}^{new} + \mathbf{s}_n$

S = S^{new}

- Denote the sum of ESS as $\mathbf{S} = \sum_{n=1}^{N} \mathbf{s}_n$ where each ESS $\mathbf{s}_n = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n)$
- Here $\phi(\mathbf{x}_n, \mathbf{z}_n)$ is the SS associated with one observation \mathbf{x}_n and its latent variable \mathbf{z}_n
- M step updates of Θ are like computing a function of **S**, i.e., $\Theta = f(\mathbf{S})$

- Initialize **S** and compute parameters $\Theta = f(S)$
- For t = 1 : T (or until convergence)
 - $S^{new} = 0$ (fresh sum of ESS; will be computed in this iteration)
 - For n = 1 : N

$$\mathbf{s}_n = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n) = \mathbb{E}[\phi(\mathbf{x}_n, \mathbf{z}_n)]$$
 $\mathbf{S}^{new} = \mathbf{S}^{new} + \mathbf{s}_n$

- S = S^{new}
- Recompute parameters $\Theta = f(S)$

- Denote the sum of ESS as $\mathbf{S} = \sum_{n=1}^{N} \mathbf{s}_n$ where each ESS $\mathbf{s}_n = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n)$
- Here $\phi(\mathbf{x}_n, \mathbf{z}_n)$ is the SS associated with one observation \mathbf{x}_n and its latent variable \mathbf{z}_n
- M step updates of Θ are like computing a function of S, i.e., $\Theta = f(S)$

- Initialize **S** and compute parameters $\Theta = f(S)$
- For t = 1 : T (or until convergence)
 - $S^{new} = 0$ (fresh sum of ESS: will be computed in this iteration)
 - \circ For n=1:N

$$egin{array}{lll} oldsymbol{s}_n & = & \sum_{oldsymbol{z}_n} p(oldsymbol{z}_n | oldsymbol{x}_n, oldsymbol{\Theta}) \phi(oldsymbol{x}_n, oldsymbol{z}_n) = \mathbb{E}[\phi(oldsymbol{x}_n, oldsymbol{z}_n)] \ oldsymbol{\mathsf{S}}^{\mathsf{new}} & = & oldsymbol{\mathsf{S}}^{\mathsf{new}} + oldsymbol{\mathsf{s}}_n \end{array}$$

- S = S^{new}
- Recompute parameters $\Theta = f(S)$
- Note: In general, there may be more than one sum of ESS (one for each parameter update)

Works in a similar way as batch EM except we need an online way to update S

- Works in a similar way as batch EM except we need an online way to update S
- Can be done in one of the two manners (Liang and Klein, 2009)

- Works in a similar way as batch EM except we need an online way to update S
- Can be done in one of the two manners (Liang and Klein, 2009)
 - Stepwise EM (based on recursively updating the sum of ESS)

- Works in a similar way as batch EM except we need an online way to update S
- Can be done in one of the two manners (Liang and Klein, 2009)
 - Stepwise EM (based on recursively updating the sum of ESS)
 - Incremental EM (based on deleting old and adding new ESS of each data point)

- Works in a similar way as batch EM except we need an online way to update S
- Can be done in one of the two manners (Liang and Klein, 2009)
 - Stepwise EM (based on recursively updating the sum of ESS)
 - Incremental EM (based on deleting old and adding new ESS of each data point)

Online EM as Stepwise EM

- Works in a similar way as batch EM except we need an online way to update S
- Can be done in one of the two manners (Liang and Klein, 2009)
 - Stepwise EM (based on recursively updating the sum of ESS)
 - Incremental EM (based on deleting old and adding new ESS of each data point)

Online EM as Stepwise EM

 \circ Initialize the sum of ESS **S** and compute $\Theta = f(S)$

- Works in a similar way as batch EM except we need an online way to update S
- Can be done in one of the two manners (Liang and Klein, 2009)
 - Stepwise EM (based on recursively updating the sum of ESS)
 - Incremental EM (based on deleting old and adding new ESS of each data point)

- Initialize the sum of ESS **S** and compute $\Theta = f(S)$
- For t = 1 : T (or until convergence)

- Works in a similar way as batch EM except we need an online way to update S
- Can be done in one of the two manners (Liang and Klein, 2009)
 - Stepwise EM (based on recursively updating the sum of ESS)
 - Incremental EM (based on deleting old and adding new ESS of each data point)

- Initialize the sum of ESS **S** and compute $\Theta = f(S)$
- For t = 1 : T (or until convergence)
 - \circ Set "learning rate" γ_t , pick a random example n and compute its sufficient statistics

- Works in a similar way as batch EM except we need an online way to update S
- Can be done in one of the two manners (Liang and Klein, 2009)
 - Stepwise EM (based on recursively updating the sum of ESS)
 - Incremental EM (based on deleting old and adding new ESS of each data point)

- Initialize the sum of ESS **S** and compute $\Theta = f(S)$
- For t = 1 : T (or until convergence)
 - \circ Set "learning rate" γ_t , pick a random example n and compute its sufficient statistics

$$s_n = \sum_{z_n} p(z_n|x_n,\Theta)\phi(x_n,z_n)$$

- Works in a similar way as batch EM except we need an online way to update S
- Can be done in one of the two manners (Liang and Klein, 2009)
 - Stepwise EM (based on recursively updating the sum of ESS)
 - Incremental EM (based on deleting old and adding new ESS of each data point)

- Initialize the sum of ESS **S** and compute $\Theta = f(S)$
- For t = 1 : T (or until convergence)
 - \circ Set "learning rate" γ_t , pick a random example n and compute its sufficient statistics

$$s_n = \sum_{z_n} p(z_n|x_n,\Theta)\phi(x_n,z_n)$$

$$S = (1 - \gamma_t)S + \gamma_t s_n$$

- Works in a similar way as batch EM except we need an online way to update S
- Can be done in one of the two manners (Liang and Klein, 2009)
 - Stepwise EM (based on recursively updating the sum of ESS)
 - Incremental EM (based on deleting old and adding new ESS of each data point)

Online EM as Stepwise EM

- Initialize the sum of ESS **S** and compute $\Theta = f(S)$
- For t = 1 : T (or until convergence)
 - \circ Set "learning rate" γ_t , pick a random example n and compute its sufficient statistics

$$s_n = \sum_{z_n} p(z_n|x_n,\Theta)\phi(x_n,z_n)$$

$$S = (1 - \gamma_t)S + \gamma_t s_n$$

• Recompute $\Theta = f(\mathbf{S})$

• The other Online EM approach "Incremental EM" needs no learning rate (unlike "Stepwise EM")

• The other Online EM approach "Incremental EM" needs no learning rate (unlike "Stepwise EM")

• The other Online EM approach "Incremental EM" needs no learning rate (unlike "Stepwise EM")

Online EM as Incremental EM

• Initialize each ESS s_n , $n=1,\ldots,N$, $\mathbf{S}=\sum_{n=1}^N s_n$, and compute $\Theta=f(\mathbf{S})$

• The other Online EM approach "Incremental EM" needs no learning rate (unlike "Stepwise EM")

- Initialize each ESS s_n , $n=1,\ldots,N$, $\mathbf{S}=\sum_{n=1}^N s_n$, and compute $\Theta=f(\mathbf{S})$
- For t = 1: T (or until convergence)

• The other Online EM approach "Incremental EM" needs no learning rate (unlike "Stepwise EM")

- Initialize each ESS s_n , $n=1,\ldots,N$, $\mathbf{S}=\sum_{n=1}^N s_n$, and compute $\Theta=f(\mathbf{S})$
- For t = 1 : T (or until convergence)
 - \circ Pick a random example n and update its exp. sufficient statistics

• The other Online EM approach "Incremental EM" needs no learning rate (unlike "Stepwise EM")

- Initialize each ESS s_n , n = 1, ..., N, $S = \sum_{n=1}^{N} s_n$, and compute $\Theta = f(S)$
- For t = 1 : T (or until convergence)
 - Pick a random example *n* and update its exp. sufficient statistics

$$s_n^{new} = \sum_{z_n} p(z_n|x_n,\Theta)\phi(x_n,z_n)$$

• The other Online EM approach "Incremental EM" needs no learning rate (unlike "Stepwise EM")

- Initialize each ESS s_n , n = 1, ..., N, $S = \sum_{n=1}^{N} s_n$, and compute $\Theta = f(S)$
- For t = 1 : T (or until convergence)
 - Pick a random example *n* and update its exp. sufficient statistics

$$\mathbf{s}_n^{new} = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n)$$

$$\mathbf{S} = \mathbf{S} + \mathbf{s}_n^{new} - \mathbf{s}_n$$

• The other Online EM approach "Incremental EM" needs no learning rate (unlike "Stepwise EM")

- Initialize each ESS s_n , n = 1, ..., N, $S = \sum_{n=1}^{N} s_n$, and compute $\Theta = f(S)$
- For t = 1 : T (or until convergence)
 - \circ Pick a random example n and update its exp. sufficient statistics

$$\mathbf{s}_n^{new} = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n)$$

$$\mathbf{S} = \mathbf{S} + \mathbf{s}_n^{new} - \mathbf{s}_n$$

$$\mathbf{s}_n = \mathbf{s}_n^{new}$$

• The other Online EM approach "Incremental EM" needs no learning rate (unlike "Stepwise EM")

Online EM as Incremental EM

- Initialize each ESS s_n , n = 1, ..., N, $S = \sum_{n=1}^{N} s_n$, and compute $\Theta = f(S)$
- For t = 1 : T (or until convergence)
 - \circ Pick a random example n and update its exp. sufficient statistics

$$\mathbf{s}_n^{new} = \sum_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_n, \Theta) \phi(\mathbf{x}_n, \mathbf{z}_n)$$

$$\mathbf{S} = \mathbf{S} + \mathbf{s}_n^{new} - \mathbf{s}_n$$

$$\mathbf{s}_n = \mathbf{s}_n^{new}$$

• Recompute $\Theta = f(S)$

• The other Online EM approach "Incremental EM" needs no learning rate (unlike "Stepwise EM")

- Initialize each ESS s_n , n = 1, ..., N, $S = \sum_{n=1}^{N} s_n$, and compute $\Theta = f(S)$
- For t = 1 : T (or until convergence)
 - \circ Pick a random example n and update its exp. sufficient statistics

$$egin{array}{lcl} oldsymbol{s}_n^{new} & = & \sum_{oldsymbol{z}_n} p(oldsymbol{z}_n | oldsymbol{x}_n, oldsymbol{\Theta}) \phi(oldsymbol{x}_n, oldsymbol{z}_n) \ & & & \\ oldsymbol{S} & = & oldsymbol{S} + oldsymbol{s}_n^{new} - oldsymbol{s}_n \ & & & \\ oldsymbol{s}_n & = & oldsymbol{s}_n^{new} \end{array}$$

- Recompute $\Theta = f(S)$
- However, incremental EM requires keeping a track of sum of ESS **S** as well as each s_n

• The other Online EM approach "Incremental EM" needs no learning rate (unlike "Stepwise EM")

- Initialize each ESS s_n , $n=1,\ldots,N$, $\mathbf{S}=\sum_{n=1}^N s_n$, and compute $\Theta=f(\mathbf{S})$
- For t = 1 : T (or until convergence)
 - \circ Pick a random example n and update its exp. sufficient statistics

$$egin{array}{lcl} oldsymbol{s}_n^{new} & = & \displaystyle\sum_{oldsymbol{z}_n} p(oldsymbol{z}_n | oldsymbol{x}_n, oldsymbol{\Theta}) \phi(oldsymbol{x}_n, oldsymbol{z}_n) \ oldsymbol{S} & = & \displaystyle\mathbf{S} + oldsymbol{s}_n^{new} - oldsymbol{s}_n \ oldsymbol{s}_n & = & oldsymbol{s}_n^{new} \end{array}$$

- Recompute $\Theta = f(S)$
- However, incremental EM requires keeping a track of sum of ESS **S** as well as each s_n
- In practice, stepwise EM outperforms batch EM as well as incremental EM on many problems (can refer to Liang and Klein, 2009 for some examples of models where these algos were tried)

• Can also estimate params use gradient-based optimization (or backprop in general) instead of EM

[†] Optimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996), Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017)

- Can also estimate params use gradient-based optimization (or backprop in general) instead of EM
 - Reason: We can usually explicitly sum over or integrate out the latent variables Z, e.g.,

$$\mathcal{L}(\Theta) = \log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta)$$

[†] Optimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996). Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017)

- Can also estimate params use gradient-based optimization (or backprop in general) instead of EM
 - Reason: We can usually explicitly sum over or integrate out the latent variables Z, e.g.,

$$\mathcal{L}(\Theta) = \log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta)$$

ullet Now we can optimize $\mathcal{L}(\Theta)$ using first/second order optimization to find the optimal Θ

[†] Optimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996) Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017)

- Can also estimate params use gradient-based optimization (or backprop in general) instead of EM
 - Reason: We can usually explicitly sum over or integrate out the latent variables Z, e.g.,

$$\mathcal{L}(\Theta) = \log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta)$$

- ullet Now we can optimize $\mathcal{L}(\Theta)$ using first/second order optimization to find the optimal Θ
- EM is usually preferred over this approach because

[†] Optimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996). Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017)

- Can also estimate params use gradient-based optimization (or backprop in general) instead of EM
 - Reason: We can usually explicitly sum over or integrate out the latent variables Z, e.g.,

$$\mathcal{L}(\Theta) = \log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta)$$

- ullet Now we can optimize $\mathcal{L}(\Theta)$ using first/second order optimization to find the optimal Θ
- EM is usually preferred over this approach because
 - ullet The M step has often simple closed-form updates for the parameters Θ

[†] Optimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996), Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017)

- Can also estimate params use gradient-based optimization (or backprop in general) instead of EM
 - Reason: We can usually explicitly sum over or integrate out the latent variables Z, e.g.,

$$\mathcal{L}(\Theta) = \log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta)$$

- ullet Now we can optimize $\mathcal{L}(\Theta)$ using first/second order optimization to find the optimal Θ
- EM is usually preferred over this approach because
 - ullet The M step has often simple closed-form updates for the parameters Θ
 - Often constraints (e.g., PSD matrices) are automatically satisfied due to the form of updates

[†] Optimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996). Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017)

- Can also estimate params use gradient-based optimization (or backprop in general) instead of EM
 - Reason: We can usually explicitly sum over or integrate out the latent variables Z, e.g.,

$$\mathcal{L}(\Theta) = \log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta)$$

- ullet Now we can optimize $\mathcal{L}(\Theta)$ using first/second order optimization to find the optimal Θ
- EM is usually preferred over this approach because
 - ullet The M step has often simple closed-form updates for the parameters Θ
 - Often constraints (e.g., PSD matrices) are automatically satisfied due to the form of updates
 - In some cases[†], EM usually converges faster (and often like second-order methods like Newton's)

[†] Optimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996). Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017)

- Can also estimate params use gradient-based optimization (or backprop in general) instead of EM
 - Reason: We can usually explicitly sum over or integrate out the latent variables Z, e.g.,

$$\mathcal{L}(\Theta) = \log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta)$$

- ullet Now we can optimize $\mathcal{L}(\Theta)$ using first/second order optimization to find the optimal Θ
- EM is usually preferred over this approach because
 - ullet The M step has often simple closed-form updates for the parameters Θ
 - Often constraints (e.g., PSD matrices) are automatically satisfied due to the form of updates
 - In some cases[†], EM usually converges faster (and often like second-order methods like Newton's)
 - Example: Mixture of Gaussians with when the data is reasonably well-clustered

[†] Optimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996). Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017)

- Can also estimate params use gradient-based optimization (or backprop in general) instead of EM
 - Reason: We can usually explicitly sum over or integrate out the latent variables Z, e.g.,

$$\mathcal{L}(\Theta) = \log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta)$$

- ullet Now we can optimize $\mathcal{L}(\Theta)$ using first/second order optimization to find the optimal Θ
- EM is usually preferred over this approach because
 - ullet The M step has often simple closed-form updates for the parameters Θ
 - Often constraints (e.g., PSD matrices) are automatically satisfied due to the form of updates
 - In some cases[†], EM usually converges faster (and often like second-order methods like Newton's)
 - Example: Mixture of Gaussians with when the data is reasonably well-clustered
 - EM applies even when the explicit summing over is expensive or integrating out isn't tractable

[†] Optimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996), Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017)

- Can also estimate params use gradient-based optimization (or backprop in general) instead of EM
 - Reason: We can usually explicitly sum over or integrate out the latent variables Z, e.g.,

$$\mathcal{L}(\Theta) = \log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta)$$

- ullet Now we can optimize $\mathcal{L}(\Theta)$ using first/second order optimization to find the optimal Θ
- EM is usually preferred over this approach because
 - ullet The M step has often simple closed-form updates for the parameters Θ
 - Often constraints (e.g., PSD matrices) are automatically satisfied due to the form of updates
 - In some cases[†], EM usually converges faster (and often like second-order methods like Newton's)
 - Example: Mixture of Gaussians with when the data is reasonably well-clustered
 - EM applies even when the explicit summing over is expensive or integrating out isn't tractable
 - EM also provides the conditional posterior over the latent variables Z (from E step)

[†] Optimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996), Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017)

(Note: "variational" here refers to optimization of functions of distributions)

Origins of VB/VI were in Statistical Physics (mainly "mean-field" methods; early 80s)

- Origins of VB/VI were in Statistical Physics (mainly "mean-field" methods; early 80s)
- Some of the early applications of VB/VI were for neural networks (late 80s)

- Origins of VB/VI were in Statistical Physics (mainly "mean-field" methods; early 80s)
- Some of the early applications of VB/VI were for neural networks (late 80s)
- Became very popular in ML community in late 90s (and continues to remain so)

- Origins of VB/VI were in Statistical Physics (mainly "mean-field" methods; early 80s)
- Some of the early applications of VB/VI were for neural networks (late 80s)
- Became very popular in ML community in late 90s (and continues to remain so)
 - Primary reason: Faster than MCMC methods

- Origins of VB/VI were in Statistical Physics (mainly "mean-field" methods; early 80s)
- Some of the early applications of VB/VI were for neural networks (late 80s)
- Became very popular in ML community in late 90s (and continues to remain so)
 - Primary reason: Faster than MCMC methods
- An aside: Statistics researchers were somewhat skeptical of VB/VI (but that is changing now) and continued their allegiance towards MCMC methods for approximate posterior inference

• Consider a model with data X and unknowns Z. Goal: Compute the posterior p(Z|X)

- Consider a model with data X and unknowns Z. Goal: Compute the posterior p(Z|X)
- Suppose $p(\mathbf{Z}|\mathbf{X})$ is intractable. VB/VI approximates it using a distribution $q(\mathbf{Z}|\phi)$ or $q_{\phi}(\mathbf{Z})$

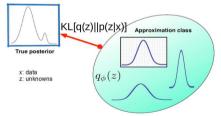
- Consider a model with data X and unknowns Z. Goal: Compute the posterior p(Z|X)
- Suppose $p(\mathbf{Z}|\mathbf{X})$ is intractable. VB/VI approximates it using a distribution $q(\mathbf{Z}|\phi)$ or $q_{\phi}(\mathbf{Z})$
- ullet VB/VI finds the $q(\mathbf{Z}|\phi)$ that is "closest" to $p(\mathbf{Z}|\mathbf{X})$ by finding the "optimal" value of ϕ

$$\phi^* = rg \min_{\phi} \mathsf{KL}[q_{\phi}(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X})]$$

- Consider a model with data X and unknowns Z. Goal: Compute the posterior p(Z|X)
- Suppose $p(\mathbf{Z}|\mathbf{X})$ is intractable. VB/VI approximates it using a distribution $q(\mathbf{Z}|\phi)$ or $q_{\phi}(\mathbf{Z})$
- ullet VB/VI finds the $q(\mathbf{Z}|\phi)$ that is "closest" to $p(\mathbf{Z}|\mathbf{X})$ by finding the "optimal" value of ϕ

$$\phi^* = \operatorname*{arg\ min}_{\phi} \mathsf{KL}[q_{\phi}(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X})]$$

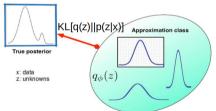
ullet This amounts of finding the best distribution from a class of distributions parametrized by ϕ



- Consider a model with data X and unknowns Z. Goal: Compute the posterior p(Z|X)
- Suppose $p(\mathbf{Z}|\mathbf{X})$ is intractable. VB/VI approximates it using a distribution $q(\mathbf{Z}|\phi)$ or $q_{\phi}(\mathbf{Z})$
- ullet VB/VI finds the $q(\mathbf{Z}|\phi)$ that is "closest" to $p(\mathbf{Z}|\mathbf{X})$ by finding the "optimal" value of ϕ

$$\phi^* = rg \min_{\phi} \mathsf{KL}[q_{\phi}(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X})]$$

) This amounts of finding the best distribution from a class of distributions parametrized by ϕ

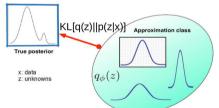


• VB/VI refers to the free parameters ϕ as variational parameters (w.r.t. which we optimize)

- Consider a model with data X and unknowns Z. Goal: Compute the posterior p(Z|X)
- Suppose $p(\mathbf{Z}|\mathbf{X})$ is intractable. VB/VI approximates it using a distribution $q(\mathbf{Z}|\phi)$ or $q_{\phi}(\mathbf{Z})$
- ullet VB/VI finds the $q(\mathbf{Z}|\phi)$ that is "closest" to $p(\mathbf{Z}|\mathbf{X})$ by finding the "optimal" value of ϕ

$$\phi^* = rg\min_{\phi} \mathsf{KL}[q_{\phi}(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X})]$$

lacktriangle This amounts of finding the best distribution from a class of distributions parametrized by ϕ



- VB/VI refers to the free parameters ϕ as variational parameters (w.r.t. which we optimize)
- But wait! If $p(\mathbf{Z}|\mathbf{X})$ itself is intractable, can we (easily) solve the above KL minimization problem?

ullet The following holds for any q: $\log p(\mathbf{X}|m) = \mathcal{L}(q) + \mathsf{KL}(q||p)$ where

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[\frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right] d\mathbf{Z}$$

$$KL(q||p) = -\int q(\mathbf{Z}) \log \left[\frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right] d\mathbf{Z}$$

ullet The following holds for any q: $\log p(\mathbf{X}|m) = \mathcal{L}(q) + \mathsf{KL}(q||p)$ where

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[\frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right] d\mathbf{Z}$$

$$KL(q||p) = -\int q(\mathbf{Z}) \log \left[\frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right] d\mathbf{Z}$$

• Above is similar to what we had in EM, but now no Θ (param) vs **Z** (latent var) distinction

ullet The following holds for any q: $\log p(\mathbf{X}|m) = \mathcal{L}(q) + \mathsf{KL}(q||p)$ where

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[\frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right] d\mathbf{Z}$$

$$KL(q||p) = -\int q(\mathbf{Z}) \log \left[\frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right] d\mathbf{Z}$$

- Above is similar to what we had in EM, but now no Θ (param) vs **Z** (latent var) distinction
- We would like to infer the posterior for all the unknowns (denoted collectively as Z)

• The following holds for any q: $\log p(\mathbf{X}|m) = \mathcal{L}(q) + \mathsf{KL}(q||p)$ where

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[\frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right] d\mathbf{Z}$$

$$KL(q||p) = -\int q(\mathbf{Z}) \log \left[\frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right] d\mathbf{Z}$$

- Above is similar to what we had in EM, but now no Θ (param) vs **Z** (latent var) distinction
- We would like to infer the posterior for all the unknowns (denoted collectively as Z)
- Since $\log p(\mathbf{X})$ is a constant w.r.t. **Z**, the following must hold

$$\arg\min_{q} \mathsf{KL}(q||p) = \arg\max_{q} \mathcal{L}(q)$$

• The following holds for any q: $\log p(\mathbf{X}|m) = \mathcal{L}(q) + \mathsf{KL}(q||p)$ where

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[\frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right] d\mathbf{Z}$$

$$KL(q||p) = -\int q(\mathbf{Z}) \log \left[\frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right] d\mathbf{Z}$$

- Above is similar to what we had in EM, but now no Θ (param) vs **Z** (latent var) distinction
- We would like to infer the posterior for all the unknowns (denoted collectively as Z)
- Since $\log p(\mathbf{X})$ is a constant w.r.t. **Z**, the following must hold

$$\arg\min_{q} \mathsf{KL}(q||p) = \arg\max_{q} \mathcal{L}(q)$$

• Since $\mathsf{KL}(q||p) \geq 0$, $\log p(\mathbf{X}) \geq \mathcal{L}(q)$

• The following holds for any q: $\log p(\mathbf{X}|m) = \mathcal{L}(q) + \mathsf{KL}(q||p)$ where

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[\frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right] d\mathbf{Z}$$

$$KL(q||p) = -\int q(\mathbf{Z}) \log \left[\frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right] d\mathbf{Z}$$

- Above is similar to what we had in EM, but now no Θ (param) vs **Z** (latent var) distinction
- We would like to infer the posterior for all the unknowns (denoted collectively as Z)
- Since $\log p(\mathbf{X})$ is a constant w.r.t. **Z**, the following must hold

$$\arg\min_{q} \mathsf{KL}(q||p) = \arg\max_{q} \mathcal{L}(q)$$

- Since $\mathsf{KL}(q||p) \geq 0$, $\log p(\mathbf{X}) \geq \mathcal{L}(q)$
- $\mathcal{L}(q)$ is also known as the **Evidence Lower Bound (ELBO)**

• The following holds for any q: $\log p(\mathbf{X}|m) = \mathcal{L}(q) + \mathsf{KL}(q||p)$ where

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[\frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right] d\mathbf{Z}$$

$$KL(q||p) = -\int q(\mathbf{Z}) \log \left[\frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right] d\mathbf{Z}$$

- \bullet Above is similar to what we had in EM, but now no Θ (param) vs **Z** (latent var) distinction
- We would like to infer the posterior for all the unknowns (denoted collectively as Z)
- Since $\log p(\mathbf{X})$ is a constant w.r.t. \mathbf{Z} , the following must hold

$$\arg\min_{q} \mathsf{KL}(q||p) = \arg\max_{q} \mathcal{L}(q)$$

- Since $\mathsf{KL}(q||p) \geq 0$, $\log p(\mathbf{X}) \geq \mathcal{L}(q)$
- $\mathcal{L}(q)$ is also known as the **Evidence Lower Bound (ELBO)**
 - Reason for the name "ELBO": $\log p(\mathbf{X})$ or $\log p(\mathbf{X}|m)$ is the log-evidence of model m

• Notation: $q(\mathbf{Z})$, $q(\mathbf{Z}|\phi)$, $q_{\phi}(\mathbf{Z})$, all will refer to the same thing

- Notation: $q(\mathbf{Z})$, $q(\mathbf{Z}|\phi)$, $q_{\phi}(\mathbf{Z})$, all will refer to the same thing
- VB/VI finds an approximating distribution $q(\mathbf{Z})$ that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[rac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}
ight] d\mathbf{Z}$$

- Notation: $q(\mathbf{Z})$, $q(\mathbf{Z}|\phi)$, $q_{\phi}(\mathbf{Z})$, all will refer to the same thing
- VB/VI finds an approximating distribution $q(\mathbf{Z})$ that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[rac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}
ight] d\mathbf{Z}$$

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$$

- Notation: $q(\mathbf{Z})$, $q(\mathbf{Z}|\phi)$, $q_{\phi}(\mathbf{Z})$, all will refer to the same thing
- VB/VI finds an approximating distribution $q(\mathbf{Z})$ that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[rac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}
ight] d\mathbf{Z}$$

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] = \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z}))$$

- Notation: $q(\mathbf{Z})$, $q(\mathbf{Z}|\phi)$, $q_{\phi}(\mathbf{Z})$, all will refer to the same thing
- VB/VI finds an approximating distribution $q(\mathbf{Z})$ that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[rac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}
ight] d\mathbf{Z}$$

• Since $q(\mathbf{Z})$ depends on ϕ , the ELBO is essentially a function of ϕ

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] = \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z}))$$

ullet Makes sense: Maximizing $\mathcal{L}(q)$ will give a q that explains data well and is close to the prior

- Notation: $q(\mathbf{Z})$, $q(\mathbf{Z}|\phi)$, $q_{\phi}(\mathbf{Z})$, all will refer to the same thing
- VB/VI finds an approximating distribution $q(\mathbf{Z})$ that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[rac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}
ight] d\mathbf{Z}$$

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] = \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z}))$$

- ullet Makes sense: Maximizing $\mathcal{L}(q)$ will give a q that explains data well and is close to the prior
- Maximizing $\mathcal{L}(q)$ w.r.t. q can still be hard in general (note the expectation w.r.t. q)

- Notation: $q(\mathbf{Z})$, $q(\mathbf{Z}|\phi)$, $q_{\phi}(\mathbf{Z})$, all will refer to the same thing
- VB/VI finds an approximating distribution $q(\mathbf{Z})$ that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[rac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}
ight] d\mathbf{Z}$$

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] = \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z}))$$

- ullet Makes sense: Maximizing $\mathcal{L}(q)$ will give a q that explains data well and is close to the prior
- Maximizing $\mathcal{L}(q)$ w.r.t. q can still be hard in general (note the expectation w.r.t. q)
- Some of the ways to make this problem easier

- Notation: $q(\mathbf{Z})$, $q(\mathbf{Z}|\phi)$, $q_{\phi}(\mathbf{Z})$, all will refer to the same thing
- VB/VI finds an approximating distribution $q(\mathbf{Z})$ that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[rac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}
ight] d\mathbf{Z}$$

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] = \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z}))$$

- ullet Makes sense: Maximizing $\mathcal{L}(q)$ will give a q that explains data well and is close to the prior
- Maximizing $\mathcal{L}(q)$ w.r.t. q can still be hard in general (note the expectation w.r.t. q)
- Some of the ways to make this problem easier
 - ① Restricting the form of our approximation q(Z), e.g., mean-field VB (today's discussion)

- Notation: $q(\mathbf{Z})$, $q(\mathbf{Z}|\phi)$, $q_{\phi}(\mathbf{Z})$, all will refer to the same thing
- VB/VI finds an approximating distribution $q(\mathbf{Z})$ that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[rac{
ho(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}
ight] d\mathbf{Z}$$

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] = \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z}))$$

- Makes sense: Maximizing $\mathcal{L}(q)$ will give a q that explains data well and is close to the prior
- Maximizing $\mathcal{L}(q)$ w.r.t. q can still be hard in general (note the expectation w.r.t. q)
- Some of the ways to make this problem easier
 - ① Restricting the form of our approximation $q(\mathbf{Z})$, e.g., mean-field VB (today's discussion)
 - ② Using Monte-Carlo approximation of the expectation/gradient of the ELBO (later)

- Notation: $q(\mathbf{Z})$, $q(\mathbf{Z}|\phi)$, $q_{\phi}(\mathbf{Z})$, all will refer to the same thing
- VB/VI finds an approximating distribution $q(\mathbf{Z})$ that maximizes the ELBO

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[rac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}
ight] d\mathbf{Z}$$

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})] = \mathbb{E}_q[\log p(\mathbf{X}|\mathbf{Z})] - \mathsf{KL}(q(\mathbf{Z})||p(\mathbf{Z}))$$

- Makes sense: Maximizing $\mathcal{L}(q)$ will give a q that explains data well and is close to the prior
- Maximizing $\mathcal{L}(q)$ w.r.t. q can still be hard in general (note the expectation w.r.t. q)
- Some of the ways to make this problem easier
 - ① Restricting the form of our approximation $q(\mathbf{Z})$, e.g., mean-field VB (today's discussion)
 - ② Using Monte-Carlo approximation of the expectation/gradient of the ELBO (later)
- For locally conjugate models VB/VI is particularly easy to derive

One of the simplest ways of doing VB

- One of the simplest ways of doing VB
- In mean-field VB, we define a partition of the latent variables **Z** into M groups $\mathbf{Z}_1, \ldots, \mathbf{Z}_M$

- One of the simplest ways of doing VB
- In mean-field VB, we define a partition of the latent variables **Z** into M groups $\mathbf{Z}_1, \dots, \mathbf{Z}_M$
- Assume our approximation q(Z) factorizes over these groups

$$q(\mathsf{Z}|\phi) = \prod_{i=1}^{M} q(\mathsf{Z}_i|\phi_i)$$

- One of the simplest ways of doing VB
- In mean-field VB, we define a partition of the latent variables **Z** into M groups $\mathbf{Z}_1, \ldots, \mathbf{Z}_M$
- Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathsf{Z}|\phi) = \prod_{i=1}^{M} q(\mathsf{Z}_i|\phi_i)$$

ullet As a short-hand, sometimes we write $q=\prod_{i=1}^M q_i$ where $q_i=q(\mathbf{Z}_i|\phi_i)$

- One of the simplest ways of doing VB
- In mean-field VB, we define a partition of the latent variables **Z** into M groups $\mathbf{Z}_1, \dots, \mathbf{Z}_M$
- Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^{M} q(\mathbf{Z}_i|\phi_i)$$

- ullet As a short-hand, sometimes we write $q=\prod_{i=1}^M q_i$ where $q_i=q(\mathbf{Z}_i|\phi_i)$
- ullet In mean-field VB, learning the optimal q reduces to learning the optimal q_1,\ldots,q_M

- One of the simplest ways of doing VB
- In mean-field VB, we define a partition of the latent variables **Z** into M groups $\mathbf{Z}_1, \dots, \mathbf{Z}_M$
- Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathsf{Z}|\phi) = \prod_{i=1}^M q(\mathsf{Z}_i|\phi_i)$$

- ullet As a short-hand, sometimes we write $q=\prod_{i=1}^M q_i$ where $q_i=q(\mathbf{Z}_i|\phi_i)$
- ullet In mean-field VB, learning the optimal q reduces to learning the optimal q_1,\ldots,q_M
- The groups are usually chosen based on the model's structure, e.g., in Bayesian linear regression

$$q(\mathbf{Z}|\phi) = q(\mathbf{w}, \lambda, \beta|\phi) = q(\mathbf{w}|\phi_w)q(\lambda|\phi_\lambda)q(\beta|\phi_\beta)$$

- One of the simplest ways of doing VB
- In mean-field VB, we define a partition of the latent variables **Z** into M groups $\mathbf{Z}_1, \ldots, \mathbf{Z}_M$
- Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^{M} q(\mathbf{Z}_i|\phi_i)$$

- ullet As a short-hand, sometimes we write $q=\prod_{i=1}^M q_i$ where $q_i=q(\mathbf{Z}_i|\phi_i)$
- ullet In mean-field VB, learning the optimal q reduces to learning the optimal q_1,\ldots,q_M
- The groups are usually chosen based on the model's structure, e.g., in Bayesian linear regression

$$q(\mathbf{Z}|\phi) = q(\mathbf{w}, \lambda, \beta|\phi) = q(\mathbf{w}|\phi_{w})q(\lambda|\phi_{\lambda})q(\beta|\phi_{\beta})$$

Note: Mean-field is quite a strong assumption (can destroy structure among latent variables)

• With $q = \prod_{i=1}^{M} q_i$, what's each optimal q_i equal to when we do $\arg \max_q \mathcal{L}(q)$?

- With $q = \prod_{i=1}^{M} q_i$, what's each optimal q_i equal to when we do $\arg \max_q \mathcal{L}(q)$?
- Note that under this mean-field assumption, the ELBO simplifies to

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[rac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}
ight] d\mathbf{Z}$$

- With $q = \prod_{i=1}^{M} q_i$, what's each optimal q_i equal to when we do $\arg \max_q \mathcal{L}(q)$?
- Note that under this mean-field assumption, the ELBO simplifies to

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[rac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}
ight] d\mathbf{Z} = \int \prod_i q_i \left[\log p(\mathbf{X}, \mathbf{Z}) - \sum_i \log q_i
ight] d\mathbf{Z}$$

- With $q = \prod_{i=1}^{M} q_i$, what's each optimal q_i equal to when we do $\arg \max_q \mathcal{L}(q)$?
- Note that under this mean-field assumption, the ELBO simplifies to

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[rac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}
ight] d\mathbf{Z} = \int \prod_i q_i \left[\log p(\mathbf{X}, \mathbf{Z}) - \sum_i \log q_i
ight] d\mathbf{Z}$$

ullet Suppose we wish to find the optimal q_j given all other q_i (i
eq j)

- With $q = \prod_{i=1}^{M} q_i$, what's each optimal q_i equal to when we do $\arg \max_q \mathcal{L}(q)$?
- Note that under this mean-field assumption, the ELBO simplifies to

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[rac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}
ight] d\mathbf{Z} = \int \prod_i q_i \left[\log p(\mathbf{X}, \mathbf{Z}) - \sum_i \log q_i
ight] d\mathbf{Z}$$

ullet Suppose we wish to find the optimal q_j given all other q_i (i
eq j). Let's re-express $\mathcal{L}(q)$ as

$$\mathcal{L}(q) = \int q_j \left| \int \log p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_i d\mathbf{Z}_i \right| d\mathbf{Z}_j - \int q_j \log q_j d\mathbf{Z}_j + \text{consts w.r.t. } q_j$$

- With $q = \prod_{i=1}^{M} q_i$, what's each optimal q_i equal to when we do $\arg \max_q \mathcal{L}(q)$?
- Note that under this mean-field assumption, the ELBO simplifies to

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[rac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}
ight] d\mathbf{Z} = \int \prod_i q_i \left[\log p(\mathbf{X}, \mathbf{Z}) - \sum_i \log q_i
ight] d\mathbf{Z}$$

ullet Suppose we wish to find the optimal q_j given all other q_i (i
eq j). Let's re-express $\mathcal{L}(q)$ as

$$\mathcal{L}(q) = \int q_j \left[\int \log p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_i d\mathbf{Z}_i \right] d\mathbf{Z}_j - \int q_j \log q_j d\mathbf{Z}_j + \text{consts w.r.t. } q_j$$

$$= \int q_j \log \tilde{p}(\mathbf{X}, \mathbf{Z}_j) d\mathbf{Z}_j - \int q_j \log q_j d\mathbf{Z}_j$$

- With $q = \prod_{i=1}^{M} q_i$, what's each optimal q_i equal to when we do $\arg \max_q \mathcal{L}(q)$?
- Note that under this mean-field assumption, the ELBO simplifies to

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[rac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}
ight] d\mathbf{Z} = \int \prod_i q_i \left[\log p(\mathbf{X}, \mathbf{Z}) - \sum_i \log q_i
ight] d\mathbf{Z}$$

• Suppose we wish to find the optimal q_j given all other q_i $(i \neq j)$. Let's re-express $\mathcal{L}(q)$ as

$$\mathcal{L}(q) = \int q_j \left[\int \log p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_i d\mathbf{Z}_i \right] d\mathbf{Z}_j - \int q_j \log q_j d\mathbf{Z}_j + \text{consts w.r.t. } q_j$$

$$= \int q_j \log \tilde{p}(\mathbf{X}, \mathbf{Z}_j) d\mathbf{Z}_j - \int q_j \log q_j d\mathbf{Z}_j$$

where $\log \tilde{p}(\mathbf{X}, \mathbf{Z}_j) = \mathbb{E}_{i \neq j}[\log p(\mathbf{X}, \mathbf{Z})] + \text{const}$

- With $q = \prod_{i=1}^{M} q_i$, what's each optimal q_i equal to when we do $\arg \max_q \mathcal{L}(q)$?
- Note that under this mean-field assumption, the ELBO simplifies to

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[rac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})}
ight] d\mathbf{Z} = \int \prod_i q_i \left[\log p(\mathbf{X}, \mathbf{Z}) - \sum_i \log q_i
ight] d\mathbf{Z}$$

• Suppose we wish to find the optimal q_j given all other q_i $(i \neq j)$. Let's re-express $\mathcal{L}(q)$ as

$$\mathcal{L}(q) = \int q_j \left[\int \log p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_i d\mathbf{Z}_i \right] d\mathbf{Z}_j - \int q_j \log q_j d\mathbf{Z}_j + \text{consts w.r.t. } q_j$$

$$= \int q_j \log \tilde{p}(\mathbf{X}, \mathbf{Z}_j) d\mathbf{Z}_j - \int q_j \log q_j d\mathbf{Z}_j$$

where $\log \tilde{p}(\mathbf{X}, \mathbf{Z}_j) = \mathbb{E}_{i \neq j}[\log p(\mathbf{X}, \mathbf{Z})] + \text{const}$

• Note that $\mathcal{L}(q) = -KL(q_j||\tilde{p}) + \text{const.}$ Which q_j will maximize it?

$$q_j = \tilde{p}(\mathbf{X}, \mathbf{Z}_j)$$

• Since
$$\log q_i^*(\mathbf{Z}_j) = \log \tilde{p}(\mathbf{X}, \mathbf{Z}_j) = \mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})] + \text{const}$$
, we have

$$q_j^*(\mathbf{Z}_j) = rac{\exp(\mathbb{E}_{i
eq j}[\ln p(\mathbf{X}, \mathbf{Z})])}{\int \exp(\mathbb{E}_{i
eq j}[\ln p(\mathbf{X}, \mathbf{Z})]) d\mathbf{Z}_j} \qquad orall j$$

• Since $\log q_i^*(\mathbf{Z}_j) = \log \tilde{p}(\mathbf{X}, \mathbf{Z}_j) = \mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})] + \text{const}$, we have

$$q_j^*(\mathbf{Z}_j) = \frac{\exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})])}{\int \exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})]) d\mathbf{Z}_j} \qquad \forall j$$

Note: Only need to compute the numerator. Denominator can usually be recognized by inspection

$$q_j^*(\mathbf{Z}_j) = \frac{\exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})])}{\int \exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})])d\mathbf{Z}_j} \qquad \forall j$$

- Note: Only need to compute the numerator. Denominator can usually be recognized by inspection
- ullet For locally-conjugate models, $q_i^*(\mathbf{Z}_j)$ will have the same form as the prior $p(\mathbf{Z}_j)$

$$q_j^*(\mathbf{Z}_j) = \frac{\exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})])}{\int \exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})])d\mathbf{Z}_j} \qquad \forall j$$

- Note: Only need to compute the numerator. Denominator can usually be recognized by inspection
- For locally-conjugate models, $q_i^*(\mathbf{Z}_j)$ will have the same form as the prior $p(\mathbf{Z}_j)$
- ullet Important: For estimating q_j , the required expectation depends on other $\{q_i\}_{i \neq j}$

$$q_j^*(\mathbf{Z}_j) = \frac{\exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})])}{\int \exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})])d\mathbf{Z}_j} \qquad \forall j$$

- Note: Only need to compute the numerator. Denominator can usually be recognized by inspection
- ullet For locally-conjugate models, $q_i^*(\mathbf{Z}_j)$ will have the same form as the prior $p(\mathbf{Z}_j)$
- ullet Important: For estimating q_j , the required expectation depends on other $\{q_i\}_{i \neq j}$
- Thus we need to cycle through updating each q_j in turn (similar to co-ordinate ascent, alternating optimization, Gibbs sampling, etc.)

$$q_j^*(\mathbf{Z}_j) = \frac{\exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})])}{\int \exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})])d\mathbf{Z}_j} \qquad \forall j$$

- Note: Only need to compute the numerator. Denominator can usually be recognized by inspection
- For locally-conjugate models, $q_i^*(\mathbf{Z}_j)$ will have the same form as the prior $p(\mathbf{Z}_j)$
- Important: For estimating q_j , the required expectation depends on other $\{q_i\}_{i\neq j}$
- Thus we need to cycle through updating each q_j in turn (similar to co-ordinate ascent, alternating optimization, Gibbs sampling, etc.)
- Guaranteed to converge (to a local optima)

$$q_j^*(\mathbf{Z}_j) = rac{\exp(\mathbb{E}_{i
eq j}[\ln p(\mathbf{X}, \mathbf{Z})])}{\int \exp(\mathbb{E}_{i
eq j}[\ln p(\mathbf{X}, \mathbf{Z})]) d\mathbf{Z}_j} \hspace{1cm} orall_j$$

- Note: Only need to compute the numerator. Denominator can usually be recognized by inspection
- ullet For locally-conjugate models, $q_i^*(\mathbf{Z}_j)$ will have the same form as the prior $p(\mathbf{Z}_j)$
- Important: For estimating q_j , the required expectation depends on other $\{q_i\}_{i\neq j}$
- Thus we need to cycle through updating each q_j in turn (similar to co-ordinate ascent, alternating optimization, Gibbs sampling, etc.)
- Guaranteed to converge (to a local optima)
 - We are basically solving a sequence of concave maximization problems

$$q_j^*(\mathbf{Z}_j) = rac{\exp(\mathbb{E}_{i
eq j}[\ln p(\mathbf{X}, \mathbf{Z})])}{\int \exp(\mathbb{E}_{i
eq j}[\ln p(\mathbf{X}, \mathbf{Z})]) d\mathbf{Z}_j} \hspace{1cm} orall_j$$

- Note: Only need to compute the numerator. Denominator can usually be recognized by inspection
- For locally-conjugate models, $q_i^*(\mathbf{Z}_j)$ will have the same form as the prior $p(\mathbf{Z}_j)$
- Important: For estimating q_j , the required expectation depends on other $\{q_i\}_{i\neq j}$
- Thus we need to cycle through updating each q_j in turn (similar to co-ordinate ascent, alternating optimization, Gibbs sampling, etc.)
- Guaranteed to converge (to a local optima)
 - We are basically solving a sequence of concave maximization problems
 - Reason: $\mathcal{L}(q) = \int q_j \ln \tilde{p}(\mathbf{X}, \mathbf{Z}_j) \mathbf{Z}_j \int q_j \ln q_j d\mathbf{Z}_j + \text{const is concave w.r.t. each } q_j$

The Mean-Field VB Algorithm

- Also known as Co-ordinate Ascent Variational Inference (CAVI) Algorithm
- Input: Model p(X, Z), Data X
- Output: A variational distribution $q(\mathbf{Z}) = \prod_{j=1}^{M} q_j(\mathbf{Z}_j)$
- Initialize: Variational distributions $q_j(\mathbf{Z}_j)$, $j=1,\ldots,M$
- While the ELBO has not converged
 - ullet For each $j=1,\ldots,M$, set

$$q_j(\mathbf{Z}_j) \propto \exp(\mathbb{E}_{i
eq j}[\log p(\mathbf{X}, \mathbf{Z})])$$

 $\quad \text{Ompute ELBO } \mathcal{L}(q) = \mathbb{E}_q[\log p(\mathbf{X},\mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$

Next Class

- Continue the discussion on mean-field VI
- Some examples of mean-field VI
- Mean-field VI for models with exponential family distributions
- Some properties of VI
- More general forms of VI (modern VI methods)

