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Perceptron and (Lack of) Margins

Perceptron learns a hyperplane (of many possible) that separates the classes

Standard Perceptron doesn’t guarantee any “margin” around the hyperplane

Note: Possible to “artificially” introduce a margin in the Perceptron

Simply change the Perceptron mistake condition to

yn(wT xn + b) ≤ γ

where γ > 0 is a pre-specified margin. For standard Perceptron, γ = 0

Support Vector Machine (SVM) offers a more principled way of doing this by learning the maximum
margin hyperplane
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Support Vector Machine (SVM)

Learns a hyperplane such that the positive and negative class training examples are as far away as
possible from it (ensures good generalization)

SVMs can also learn nonlinear decision boundaries using kernels (though the idea of kernels is not
specific to SVMs and is more generally applicable)

Reason behind the name “Support Vector Machine”? SVM finds the most important examples
(called “support vectors”) in the training data

These examples also “balance” the margin boundaries (hence called “support”). Also, even if we
throw away the remaining training data and re-learn the SVM classifier, we’ll get the same hyperplane
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Learning a Maximum Margin Hyperplane

Suppose there exists a hyperplane w>x + b = 0 such that

wT xn + b ≥ 1 for yn = +1

wT xn + b ≤ −1 for yn = −1

Equivalently, yn(wT xn + b) ≥ 1 ∀n (the margin condition)

Also note that min1≤n≤N |wT xn + b| = 1

Thus margin on each side: γ = min1≤n≤N
|wT xn+b|
||w|| = 1

||w||

Total margin = 2γ = 2
||w||

Want the hyperplane (w , b) to have the largest possible margin
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Large Margin = Good Generalization

Large margins intuitively mean good generalization

We saw that margin γ ∝ 1
||w ||

Large margin ⇒ small ||w || , i.e., small `2 norm of w

Small ||w || ⇒ regularized/simple solutions (wi ’s don’t become too large)

Recall our discussion of regularization..

Simple solutions ⇒ good generalization on test data

Want to see an even more formal justification? :-)

Wait until we cover Learning Theory!
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Hard-Margin SVM

Every training example has to fulfil the margin condition yn(wTxn + b) ≥ 1

Also want to maximize the margin γ ∝ 1
||w ||

Equivalent to minimizing ||w ||2 or ||w||
2

2

The objective for hard-margin SVM

min
w,b

f (w , b) =
||w ||2

2

subject to yn(wT xn + b) ≥ 1, n = 1, . . . ,N

Thus the hard-margin SVM minimizes a convex objective function which is a Quadratic Program
(QP) with N linear inequality constraints
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Soft-Margin SVM (More Commonly Used)

Allow some training examples to fall within the margin region, or be even misclassified (i.e., fall on
the wrong side). Preferable if training data is noisy

Each training example (xn, yn) given a “slack” ξn ≥ 0 (distance by which it “violates” the margin).
If ξn > 1 then xn is totally on the wrong side

Basically, we want a soft-margin condition: yn(wT xn + b) ≥ 1−ξn, ξn ≥ 0
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Soft-Margin SVM (More Commonly Used)

Goal: Maximize the margin, while also minimizing the sum of slacks (don’t want too many training
examples violating the margin condition)

The primal objective for soft-margin SVM can thus be written as

min
w,b,ξ

f (w , b, ξ) =
||w ||2

2
+C

N∑
n=1

ξn

subject to constraints yn(wT xn + b) ≥ 1−ξn, ξn ≥ 0 n = 1, . . . ,N

Thus the soft-margin SVM also minimizes a convex objective function which is a Quadratic
Program (QP) with 2N linear inequality constraints

Param. C controls the trade-off between large margin vs small training error
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Summary: Hard-Margin SVM vs Soft-Margin SVM

Objective for the hard-margin SVM (unknowns are w and b)

min
w,b

f (w , b) =
||w ||2

2

subject to constraints yn(wT xn + b) ≥ 1, n = 1, . . . ,N

Objective for the soft-margin SVM (unknowns are w , b, and {ξn}Nn=1)

min
w,b,ξ

f (w , b, ξ) =
||w ||2

2
+C

N∑
n=1

ξn

subject to yn(wT xn + b) ≥ 1−ξn, ξn ≥ 0 n = 1, . . . ,N

In either case, we have to solve constrained, convex optimization problem
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Brief Detour: Solving Constrained Optimization
Problems
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Constrained Optimization via Lagrangian

Consider optimizing the following objective, subject to some constraints

min
w

f (w)

s.t gn(w) ≤ 0, n = 1, . . . ,N

hm(w) = 0, m = 1, . . . ,M

Introduce Lagrange multipliers α = {αn}Nn=1, αn ≥ 0, and β = {βm}Mm=1, one for each constraint,
and construct the following Lagrangian

L(w ,α,β) = f (w) +
N∑

n=1

αngn(w) +
N∑

m=1

βnhn(w)

Consider LP(w) = maxα,β L(w ,α,β). Note that

LP(w) =∞ if w violates any of the constraints (g ’s or h’s)

LP(w) = f (w) if w satisfies all the constraints (g ’s and h’s)

Thus minw LP(w) = minw maxα≥0,βL(w ,α,β) solves the same problem as the original problem
and will have the same solution. For convex f , g , h, the order of min and max is interchangeable.

Karush-Kuhn-Tucker (KKT) Conditions: At the optimal solution, αngn(w) = 0 (note the maxα)
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Solving Hard-Margin SVM
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Solving Hard-Margin SVM

The hard-margin SVM optimization problem is:

min
w,b

f (w , b) =
||w ||2

2

subject to 1− yn(wT xn + b) ≤ 0, n = 1, . . . ,N

A constrained optimization problem. Can solve using Lagrange’s method

Introduce Lagrange Multipliers αn (n = {1, . . . ,N}), one for each constraint, and solve the
following Lagrangian:

min
w,b

max
α≥0

L(w , b,α) =
||w ||2

2
+

N∑
n=1

αn{1− yn(wT xn + b)}

Note: α = [α1, . . . , αN ] is the vector of Lagrange multipliers

We will solve this Lagrangian by solving a dual problem (eliminate w and b and solve for the “dual
variables” α)
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Solving Hard-Margin SVM

The original Lagrangian is

min
w,b

max
α≥0

L(w , b,α) =
w>w

2
+

N∑
n=1

αn{1− yn(wT xn + b)}

Take (partial) derivatives of L w.r.t. w , b and set them to zero

∂L
∂w

= 0⇒ w =
N∑

n=1

αnynxn
∂L
∂b

= 0⇒
N∑

n=1

αnyn = 0

Important: Note the form of the solution w - it is simply a weighted sum of all the training inputs
x1, . . . , xN (and αn is like the “importance” of xn)

Substituting w =
∑N

n=1 αnynxn in Lagrangian and also using
∑N

n=1 αnyn = 0

max
α≥0

LD (α) =
N∑

n=1

αn −
1

2

N∑
m,n=1

αmαnymyn(xT
mxn) s.t.

N∑
n=1

αnyn = 0
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Solving Hard-Margin SVM

Can write the objective more compactly in vector/matrix form as

max
α≥0

LD (α) = α
>1−

1

2
α
>Gα s.t.

N∑
n=1

αnyn = 0

where G is an N × N matrix with Gmn = ymynx>mxn, and 1 is a vector of 1s

Good news: This is maximizing a concave function (or minimizing a convex function - verify that
the Hessian is G, which is p.s.d.). Note that our original primal SVM objective was also convex

Important: Inputs x ’s only appear as inner products (helps to “kernelize”)

Can solve† the above objective function for α using various methods, e.g.,

Treating the objective as a Quadratic Program (QP) and running some off-the-shelf QP solver such as
quadprog (MATLAB), CVXOPT, CPLEX, etc.

Using (projected) gradient methods (projection needed because the α’s are constrained). Gradient
methods will usually be much faster than QP methods.

† If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
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Hard-Margin SVM: The Solution

Once we have the αn’s, w and b can be computed as:

w =
∑N

n=1 αnynxn

b = − 1
2

(
minn:yn=+1 wTxn + maxn:yn=−1 wTxn

)

A nice property: Most αn’s in the solution will be zero (sparse solution)

Reason: Karush-Kuhn-Tucker (KKT) conditions

For the optimal αn’s

αn{1− yn(wT xn + b)} = 0

αn is non-zero only if xn lies on one of the two margin boundaries,
i.e., for which yn(wT xn + b) = 1

These examples are called support vectors

Recall the support vectors “support” the margin boundaries
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Solving Soft-Margin SVM
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Solving Soft-Margin SVM

Recall the soft-margin SVM optimization problem:

min
w,b,ξ

f (w , b, ξ) =
||w ||2

2
+C

N∑
n=1

ξn

subject to 1 ≤ yn(wT xn + b)+ξn, −ξn ≤ 0 n = 1, . . . ,N

Note: ξ = [ξ1, . . . , ξN ] is the vector of slack variables

Introduce Lagrange Multipliers αn, βn (n = {1, . . . ,N}), for constraints, and solve the Lagrangian:

min
w,b,ξ

max
α≥0,β≥0

L(w , b, ξ, α, β) =
||w ||2

2
+ +C

N∑
n=1

ξn +
N∑

n=1

αn{1− yn(wT xn + b)−ξn}−
N∑

n=1

βnξn

Note: The terms in red above were not present in the hard-margin SVM

Two sets of dual variables α = [α1, . . . , αN ] and β = [β1, . . . , βN ]. We’ll eliminate the primal
variables w , b, ξ to get dual problem containing the dual variables (just like in the hard margin case)
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variables w , b, ξ to get dual problem containing the dual variables (just like in the hard margin case)
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Solving Soft-Margin SVM

The Lagrangian problem to solve

min
w,b,ξ

max
α≥0,β≥0

L(w , b, ξ, α, β) =
w>w

2
+ +C

N∑
n=1

ξn +
N∑

n=1

αn{1− yn(wT xn + b)−ξn}−
N∑

n=1

βnξn

Take (partial) derivatives of L w.r.t. w , b, ξn and set them to zero

∂L
∂w

= 0⇒ w =
N∑

n=1

αnynxn ,
∂L
∂b

= 0⇒
N∑

n=1

αnyn = 0,
∂L
∂ξn

= 0⇒ C − αn − βn = 0

Note: Solution of w again has the same form as in the hard-margin case (weighted sum of all
inputs with αn being the importance of input xn)

Note: Using C −αn − βn = 0 and βn ≥ 0⇒ αn ≤ C (recall that, for the hard-margin case, α ≥ 0)

Substituting these in the Lagrangian L gives the Dual problem

max
α≤C,β≥0

LD (α,β) =
N∑

n=1

αn −
1

2

N∑
m,n=1

αmαnymyn(xT
mxn) s.t.

N∑
n=1

αnyn = 0
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Solving Soft-Margin SVM

Interestingly, the dual variables β don’t appear in the objective!

Just like the hard-margin case, we can write the dual more compactly as

max
α≤C

LD (α) = α
>1−

1

2
α
>Gα s.t.

N∑
n=1

αnyn = 0

where G is an N × N matrix with Gmn = ymynx>mxn, and 1 is a vector of 1s

Like hard-margin case, solving the dual requires concave maximization (or convex minimization)

Can be solved† the same way as hard-margin SVM (except that α ≤ C )

Can solve for α using QP solvers or (projected) gradient methods

Given α, the solution for w , b has the same form as hard-margin case

Note: α is again sparse. Nonzero αn’s correspond to the support vectors

† If interested in more details of the solver, see: “Support Vector Machine Solvers” by Bottou and Lin
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Support Vectors in Soft-Margin SVM

The hard-margin SVM solution had only one type of support vectors

.. ones that lie on the margin boundaries wT x + b = −1 and wT x + b = +1

The soft-margin SVM solution has three types of support vectors

1 Lying on the margin boundaries wT x + b = −1 and wT x + b = +1 (ξn = 0)

2 Lying within the margin region (0 < ξn < 1) but still on the correct side

3 Lying on the wrong side of the hyperplane (ξn ≥ 1)
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SVMs via Dual Formulation: Some Comments

Recall the final dual objectives for hard-margin and soft-margin SVM

Hard-Margin SVM: max
α≥0

LD (α) = α
>1−

1

2
α
>Gα s.t.

N∑
n=1

αnyn = 0

Soft-Margin SVM: max
α≤C

LD (α) = α
>1−

1

2
α
>Gα s.t.

N∑
n=1

αnyn = 0

The dual formulation is nice due to two primary reasons:

Allows conveniently handling the margin based constraint (via Lagrangians). The dual problem has
only one constraint that is non-trivial (

∑N
n=1 αnyn = 0). The original Primal formulation of SVM had

many more (depends on N).

Important: Allows learning nonlinear separators by replacing inner products (e.g., Gmn = ymynx>mxn)
by kernelized similarities (kernelized SVMs)

However, the dual formulation can be expensive if N is large. Have to solve for N variables
α = [α1, . . . , αN ], and also need to store an N × N matrix G

A lot of work† has gone into speeding up optimization in these settings

†See: “Support Vector Machine Solvers” by Bottou and Lin
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SVM Dual Formulation: A Geometric View

Convex Hull Interpretation†: Solving the SVM dual is equivalent to finding the shortest line
connecting the convex hulls of both classes (the SVM’s hyperplane will be the perpendicular
bisector of this line)

†See: “Duality and Geometry in SVM Classifiers” by Bennett and Bredensteiner

Machine Learning (CS771A) Learning Maximum-Margin Hyperplanes: Support Vector Machines 23



Loss Function Minimization View of SVM

Recall, we want for each training example: yn(wTxn + b) ≥ 1− ξn

Can think of our loss as basically the sum of the slacks ξn ≥ 0, which is

`(w , b) =
N∑

n=1

`n(w , b) =
N∑

n=1

ξn =
N∑

n=1

max{0, 1− yn(wT xn + b)}

This is called “Hinge Loss”. Can also learn SVMs by minimizing this loss via stochastic
sub-gradient descent (can also add a regularizer on w , e.g., `2)

Recall that, Perceptron also minimizes a sort of similar loss function

`(w , b) =
N∑

n=1

`n(w , b) =
N∑

n=1

max{0,−yn(wT xn + b)}

Perceptron, SVM, Logistic Reg., all minimize convex approximations of the 0-1 loss (optimizing
which is NP-hard; moreover it’s non-convex/non-smooth)
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Can think of our loss as basically the sum of the slacks ξn ≥ 0, which is

`(w , b) =
N∑

n=1

`n(w , b) =
N∑

n=1

ξn =
N∑

n=1

max{0, 1− yn(wT xn + b)}

This is called “Hinge Loss”. Can also learn SVMs by minimizing this loss via stochastic
sub-gradient descent (can also add a regularizer on w , e.g., `2)

Recall that, Perceptron also minimizes a sort of similar loss function

`(w , b) =
N∑

n=1

`n(w , b) =
N∑

n=1

max{0,−yn(wT xn + b)}

Perceptron, SVM, Logistic Reg., all minimize convex approximations of the 0-1 loss (optimizing
which is NP-hard; moreover it’s non-convex/non-smooth)
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SVM: Some Notes

A hugely (perhaps the most!) popular classification algorithm

Reasonably mature, highly optimized SVM softwares freely available (perhaps the reason why it is
more popular than various other competing algorithms)

Some popular ones: libSVM, LIBLINEAR, SVMStruct, Vowpal Wabbit, etc.

Lots of work on scaling up SVMs† (both large N and large D)

Extensions beyond binary classification (e.g., multiclass, structured outputs)

Can even be used for regression problems (Support Vector Regression)

Nonlinear extensions possible via kernels

†See: “Support Vector Machine Solvers” by Bottou and Lin
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