
Online Learning via Stochastic Optimization,
Perceptron, and Intro to SVMs

Piyush Rai

Machine Learning (CS771A)

Aug 20, 2016

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 1

Stochastic Gradient Descent for Logistic Regression

Recall the gradient descent (GD) update rule for (unreg.) logistic regression

w (t+1) = w (t) − η

N∑
n=1

(µ(t)
n − yn)xn

where the predicted probability of yn being 1 is µ
(t)
n = 1

1+exp(−w (t)>xn)

Stochastic GD (SGD): Approx. the gradient using a randomly chosen (xn, yn)

w (t+1) = w (t) − ηt(µ
(t)
n − yn)xn

where ηt is the learning rate at update t (typically decreasing with t)

Let’s replace the predicted label prob. µ
(t)
n by the predicted binary label ŷ

(t)
n

w (t+1) = w (t) − ηt(ŷ
(t)
n − yn)xn

where

ŷ (t)
n =

{
1 if µ

(t)
n ≥ 0.5 or w (t)>xn ≥ 0

0 if µ
(t)
n < 0.5 or w (t)>xn < 0

Thus w (t) gets updated only when ŷ
(t)
n 6= yn (i.e., when w (t) mispredicts)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 2

Stochastic Gradient Descent for Logistic Regression

Recall the gradient descent (GD) update rule for (unreg.) logistic regression

w (t+1) = w (t) − η

N∑
n=1

(µ(t)
n − yn)xn

where the predicted probability of yn being 1 is µ
(t)
n = 1

1+exp(−w (t)>xn)

Stochastic GD (SGD): Approx. the gradient using a randomly chosen (xn, yn)

w (t+1) = w (t) − ηt(µ
(t)
n − yn)xn

where ηt is the learning rate at update t (typically decreasing with t)

Let’s replace the predicted label prob. µ
(t)
n by the predicted binary label ŷ

(t)
n

w (t+1) = w (t) − ηt(ŷ
(t)
n − yn)xn

where

ŷ (t)
n =

{
1 if µ

(t)
n ≥ 0.5 or w (t)>xn ≥ 0

0 if µ
(t)
n < 0.5 or w (t)>xn < 0

Thus w (t) gets updated only when ŷ
(t)
n 6= yn (i.e., when w (t) mispredicts)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 2

Stochastic Gradient Descent for Logistic Regression

Recall the gradient descent (GD) update rule for (unreg.) logistic regression

w (t+1) = w (t) − η

N∑
n=1

(µ(t)
n − yn)xn

where the predicted probability of yn being 1 is µ
(t)
n = 1

1+exp(−w (t)>xn)

Stochastic GD (SGD): Approx. the gradient using a randomly chosen (xn, yn)

w (t+1) = w (t) − ηt(µ
(t)
n − yn)xn

where ηt is the learning rate at update t (typically decreasing with t)

Let’s replace the predicted label prob. µ
(t)
n by the predicted binary label ŷ

(t)
n

w (t+1) = w (t) − ηt(ŷ
(t)
n − yn)xn

where

ŷ (t)
n =

{
1 if µ

(t)
n ≥ 0.5 or w (t)>xn ≥ 0

0 if µ
(t)
n < 0.5 or w (t)>xn < 0

Thus w (t) gets updated only when ŷ
(t)
n 6= yn (i.e., when w (t) mispredicts)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 2

Stochastic Gradient Descent for Logistic Regression

Recall the gradient descent (GD) update rule for (unreg.) logistic regression

w (t+1) = w (t) − η

N∑
n=1

(µ(t)
n − yn)xn

where the predicted probability of yn being 1 is µ
(t)
n = 1

1+exp(−w (t)>xn)

Stochastic GD (SGD): Approx. the gradient using a randomly chosen (xn, yn)

w (t+1) = w (t) − ηt(µ
(t)
n − yn)xn

where ηt is the learning rate at update t (typically decreasing with t)

Let’s replace the predicted label prob. µ
(t)
n by the predicted binary label ŷ

(t)
n

w (t+1) = w (t) − ηt(ŷ
(t)
n − yn)xn

where

ŷ (t)
n =

{
1 if µ

(t)
n ≥ 0.5 or w (t)>xn ≥ 0

0 if µ
(t)
n < 0.5 or w (t)>xn < 0

Thus w (t) gets updated only when ŷ
(t)
n 6= yn (i.e., when w (t) mispredicts)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 2

Stochastic Gradient Descent for Logistic Regression

Recall the gradient descent (GD) update rule for (unreg.) logistic regression

w (t+1) = w (t) − η

N∑
n=1

(µ(t)
n − yn)xn

where the predicted probability of yn being 1 is µ
(t)
n = 1

1+exp(−w (t)>xn)

Stochastic GD (SGD): Approx. the gradient using a randomly chosen (xn, yn)

w (t+1) = w (t) − ηt(µ
(t)
n − yn)xn

where ηt is the learning rate at update t (typically decreasing with t)

Let’s replace the predicted label prob. µ
(t)
n by the predicted binary label ŷ

(t)
n

w (t+1) = w (t) − ηt(ŷ
(t)
n − yn)xn

where

ŷ (t)
n =

{
1

if µ
(t)
n ≥ 0.5 or w (t)>xn ≥ 0

0 if µ
(t)
n < 0.5 or w (t)>xn < 0

Thus w (t) gets updated only when ŷ
(t)
n 6= yn (i.e., when w (t) mispredicts)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 2

Stochastic Gradient Descent for Logistic Regression

Recall the gradient descent (GD) update rule for (unreg.) logistic regression

w (t+1) = w (t) − η

N∑
n=1

(µ(t)
n − yn)xn

where the predicted probability of yn being 1 is µ
(t)
n = 1

1+exp(−w (t)>xn)

Stochastic GD (SGD): Approx. the gradient using a randomly chosen (xn, yn)

w (t+1) = w (t) − ηt(µ
(t)
n − yn)xn

where ηt is the learning rate at update t (typically decreasing with t)

Let’s replace the predicted label prob. µ
(t)
n by the predicted binary label ŷ

(t)
n

w (t+1) = w (t) − ηt(ŷ
(t)
n − yn)xn

where

ŷ (t)
n =

{
1 if µ

(t)
n ≥ 0.5

or w (t)>xn ≥ 0

0 if µ
(t)
n < 0.5 or w (t)>xn < 0

Thus w (t) gets updated only when ŷ
(t)
n 6= yn (i.e., when w (t) mispredicts)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 2

Stochastic Gradient Descent for Logistic Regression

Recall the gradient descent (GD) update rule for (unreg.) logistic regression

w (t+1) = w (t) − η

N∑
n=1

(µ(t)
n − yn)xn

where the predicted probability of yn being 1 is µ
(t)
n = 1

1+exp(−w (t)>xn)

Stochastic GD (SGD): Approx. the gradient using a randomly chosen (xn, yn)

w (t+1) = w (t) − ηt(µ
(t)
n − yn)xn

where ηt is the learning rate at update t (typically decreasing with t)

Let’s replace the predicted label prob. µ
(t)
n by the predicted binary label ŷ

(t)
n

w (t+1) = w (t) − ηt(ŷ
(t)
n − yn)xn

where

ŷ (t)
n =

{
1 if µ

(t)
n ≥ 0.5 or w (t)>xn ≥ 0

0 if µ
(t)
n < 0.5 or w (t)>xn < 0

Thus w (t) gets updated only when ŷ
(t)
n 6= yn (i.e., when w (t) mispredicts)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 2

Stochastic Gradient Descent for Logistic Regression

Recall the gradient descent (GD) update rule for (unreg.) logistic regression

w (t+1) = w (t) − η

N∑
n=1

(µ(t)
n − yn)xn

where the predicted probability of yn being 1 is µ
(t)
n = 1

1+exp(−w (t)>xn)

Stochastic GD (SGD): Approx. the gradient using a randomly chosen (xn, yn)

w (t+1) = w (t) − ηt(µ
(t)
n − yn)xn

where ηt is the learning rate at update t (typically decreasing with t)

Let’s replace the predicted label prob. µ
(t)
n by the predicted binary label ŷ

(t)
n

w (t+1) = w (t) − ηt(ŷ
(t)
n − yn)xn

where

ŷ (t)
n =

{
1 if µ

(t)
n ≥ 0.5 or w (t)>xn ≥ 0

0

if µ
(t)
n < 0.5 or w (t)>xn < 0

Thus w (t) gets updated only when ŷ
(t)
n 6= yn (i.e., when w (t) mispredicts)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 2

Stochastic Gradient Descent for Logistic Regression

Recall the gradient descent (GD) update rule for (unreg.) logistic regression

w (t+1) = w (t) − η

N∑
n=1

(µ(t)
n − yn)xn

where the predicted probability of yn being 1 is µ
(t)
n = 1

1+exp(−w (t)>xn)

Stochastic GD (SGD): Approx. the gradient using a randomly chosen (xn, yn)

w (t+1) = w (t) − ηt(µ
(t)
n − yn)xn

where ηt is the learning rate at update t (typically decreasing with t)

Let’s replace the predicted label prob. µ
(t)
n by the predicted binary label ŷ

(t)
n

w (t+1) = w (t) − ηt(ŷ
(t)
n − yn)xn

where

ŷ (t)
n =

{
1 if µ

(t)
n ≥ 0.5 or w (t)>xn ≥ 0

0 if µ
(t)
n < 0.5

or w (t)>xn < 0

Thus w (t) gets updated only when ŷ
(t)
n 6= yn (i.e., when w (t) mispredicts)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 2

Stochastic Gradient Descent for Logistic Regression

Recall the gradient descent (GD) update rule for (unreg.) logistic regression

w (t+1) = w (t) − η

N∑
n=1

(µ(t)
n − yn)xn

where the predicted probability of yn being 1 is µ
(t)
n = 1

1+exp(−w (t)>xn)

Stochastic GD (SGD): Approx. the gradient using a randomly chosen (xn, yn)

w (t+1) = w (t) − ηt(µ
(t)
n − yn)xn

where ηt is the learning rate at update t (typically decreasing with t)

Let’s replace the predicted label prob. µ
(t)
n by the predicted binary label ŷ

(t)
n

w (t+1) = w (t) − ηt(ŷ
(t)
n − yn)xn

where

ŷ (t)
n =

{
1 if µ

(t)
n ≥ 0.5 or w (t)>xn ≥ 0

0 if µ
(t)
n < 0.5 or w (t)>xn < 0

Thus w (t) gets updated only when ŷ
(t)
n 6= yn (i.e., when w (t) mispredicts)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 2

Stochastic Gradient Descent for Logistic Regression

Recall the gradient descent (GD) update rule for (unreg.) logistic regression

w (t+1) = w (t) − η

N∑
n=1

(µ(t)
n − yn)xn

where the predicted probability of yn being 1 is µ
(t)
n = 1

1+exp(−w (t)>xn)

Stochastic GD (SGD): Approx. the gradient using a randomly chosen (xn, yn)

w (t+1) = w (t) − ηt(µ
(t)
n − yn)xn

where ηt is the learning rate at update t (typically decreasing with t)

Let’s replace the predicted label prob. µ
(t)
n by the predicted binary label ŷ

(t)
n

w (t+1) = w (t) − ηt(ŷ
(t)
n − yn)xn

where

ŷ (t)
n =

{
1 if µ

(t)
n ≥ 0.5 or w (t)>xn ≥ 0

0 if µ
(t)
n < 0.5 or w (t)>xn < 0

Thus w (t) gets updated only when ŷ
(t)
n 6= yn (i.e., when w (t) mispredicts)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 2

Mistake-Driven Learning

Consider the “mistake-driven” SGD update rule

w (t+1) = w (t) − ηt(ŷ
(t)
n − yn)xn

Let’s, from now on, assume the binary labels to be {-1,+1}, not {0,1}. Then

ŷ (t)
n − yn =

{
−2yn if ŷ

(t)
n 6= yn

0 if ŷ
(t)
n = yn

Thus whenever the model mispredicts (i.e., ŷ
(t)
n 6= yn), we update w (t) as

w (t+1) = w (t) + 2ηtynxn

For ηt = 0.5, this is akin to the Perceptron (a hyperplane based learning algo)

w (t+1) = w (t) + ynxn

Note: There are other ways of deriving the Perceptron rule (will see shortly)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 3

Mistake-Driven Learning

Consider the “mistake-driven” SGD update rule

w (t+1) = w (t) − ηt(ŷ
(t)
n − yn)xn

Let’s, from now on, assume the binary labels to be {-1,+1}, not {0,1}. Then

ŷ (t)
n − yn =

{
−2yn if ŷ

(t)
n 6= yn

0 if ŷ
(t)
n = yn

Thus whenever the model mispredicts (i.e., ŷ
(t)
n 6= yn), we update w (t) as

w (t+1) = w (t) + 2ηtynxn

For ηt = 0.5, this is akin to the Perceptron (a hyperplane based learning algo)

w (t+1) = w (t) + ynxn

Note: There are other ways of deriving the Perceptron rule (will see shortly)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 3

Mistake-Driven Learning

Consider the “mistake-driven” SGD update rule

w (t+1) = w (t) − ηt(ŷ
(t)
n − yn)xn

Let’s, from now on, assume the binary labels to be {-1,+1}, not {0,1}. Then

ŷ (t)
n − yn =

{
−2yn if ŷ

(t)
n 6= yn

0 if ŷ
(t)
n = yn

Thus whenever the model mispredicts (i.e., ŷ
(t)
n 6= yn), we update w (t) as

w (t+1) = w (t) + 2ηtynxn

For ηt = 0.5, this is akin to the Perceptron (a hyperplane based learning algo)

w (t+1) = w (t) + ynxn

Note: There are other ways of deriving the Perceptron rule (will see shortly)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 3

Mistake-Driven Learning

Consider the “mistake-driven” SGD update rule

w (t+1) = w (t) − ηt(ŷ
(t)
n − yn)xn

Let’s, from now on, assume the binary labels to be {-1,+1}, not {0,1}. Then

ŷ (t)
n − yn =

{
−2yn if ŷ

(t)
n 6= yn

0 if ŷ
(t)
n = yn

Thus whenever the model mispredicts (i.e., ŷ
(t)
n 6= yn), we update w (t) as

w (t+1) = w (t) + 2ηtynxn

For ηt = 0.5, this is akin to the Perceptron (a hyperplane based learning algo)

w (t+1) = w (t) + ynxn

Note: There are other ways of deriving the Perceptron rule (will see shortly)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 3

Mistake-Driven Learning

Consider the “mistake-driven” SGD update rule

w (t+1) = w (t) − ηt(ŷ
(t)
n − yn)xn

Let’s, from now on, assume the binary labels to be {-1,+1}, not {0,1}. Then

ŷ (t)
n − yn =

{
−2yn if ŷ

(t)
n 6= yn

0 if ŷ
(t)
n = yn

Thus whenever the model mispredicts (i.e., ŷ
(t)
n 6= yn), we update w (t) as

w (t+1) = w (t) + 2ηtynxn

For ηt = 0.5, this is akin to the Perceptron (a hyperplane based learning algo)

w (t+1) = w (t) + ynxn

Note: There are other ways of deriving the Perceptron rule (will see shortly)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 3

The Perceptron Algorithm

One of the earliest algorithms for binary classification (Rosenblatt, 1958)

Learns a linear hyperplane to separate the two classes

A very simple, mistake-driven Online Learning algorithm. Learns using one example at a time. Also
highly scalable for large training data sets (like SGD based logistic regression and other SGD based
learning algorithms)

Guaranteed to find a separating hyperplane if the data is linearly separable

If data not linearly separable

First make it linearly separable (more when we discuss Kernel Methods)

.. or use multi-layer Perceptrons (more when we discuss Deep Learning)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 4

The Perceptron Algorithm

One of the earliest algorithms for binary classification (Rosenblatt, 1958)

Learns a linear hyperplane to separate the two classes

A very simple, mistake-driven Online Learning algorithm. Learns using one example at a time. Also
highly scalable for large training data sets (like SGD based logistic regression and other SGD based
learning algorithms)

Guaranteed to find a separating hyperplane if the data is linearly separable

If data not linearly separable

First make it linearly separable (more when we discuss Kernel Methods)

.. or use multi-layer Perceptrons (more when we discuss Deep Learning)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 4

The Perceptron Algorithm

One of the earliest algorithms for binary classification (Rosenblatt, 1958)

Learns a linear hyperplane to separate the two classes

A very simple, mistake-driven Online Learning algorithm. Learns using one example at a time. Also
highly scalable for large training data sets (like SGD based logistic regression and other SGD based
learning algorithms)

Guaranteed to find a separating hyperplane if the data is linearly separable

If data not linearly separable

First make it linearly separable (more when we discuss Kernel Methods)

.. or use multi-layer Perceptrons (more when we discuss Deep Learning)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 4

The Perceptron Algorithm

One of the earliest algorithms for binary classification (Rosenblatt, 1958)

Learns a linear hyperplane to separate the two classes

A very simple, mistake-driven Online Learning algorithm. Learns using one example at a time. Also
highly scalable for large training data sets (like SGD based logistic regression and other SGD based
learning algorithms)

Guaranteed to find a separating hyperplane if the data is linearly separable

If data not linearly separable

First make it linearly separable (more when we discuss Kernel Methods)

.. or use multi-layer Perceptrons (more when we discuss Deep Learning)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 4

The Perceptron Algorithm

One of the earliest algorithms for binary classification (Rosenblatt, 1958)

Learns a linear hyperplane to separate the two classes

A very simple, mistake-driven Online Learning algorithm. Learns using one example at a time. Also
highly scalable for large training data sets (like SGD based logistic regression and other SGD based
learning algorithms)

Guaranteed to find a separating hyperplane if the data is linearly separable

If data not linearly separable

First make it linearly separable (more when we discuss Kernel Methods)

.. or use multi-layer Perceptrons (more when we discuss Deep Learning)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 4

Hyperplanes and Margins

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 5

Hyperplanes

Separates a D-dimensional space into two half-spaces (positive and negative)

Defined by normal vector w ∈ RD (pointing towards positive half-space)

w is orthogonal to any vector x lying on the hyperplane

w>x = 0 (equation of the hyperplane)

Assumption: The hyperplane passes through origin. If not, add a bias b ∈ R

w>x + b = 0

b > 0 means moving it parallely along w (b < 0 means in opposite direction)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 6

Hyperplanes

Separates a D-dimensional space into two half-spaces (positive and negative)

Defined by normal vector w ∈ RD (pointing towards positive half-space)

w is orthogonal to any vector x lying on the hyperplane

w>x = 0 (equation of the hyperplane)

Assumption: The hyperplane passes through origin. If not, add a bias b ∈ R

w>x + b = 0

b > 0 means moving it parallely along w (b < 0 means in opposite direction)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 6

Hyperplanes

Separates a D-dimensional space into two half-spaces (positive and negative)

Defined by normal vector w ∈ RD (pointing towards positive half-space)

w is orthogonal to any vector x lying on the hyperplane

w>x = 0 (equation of the hyperplane)

Assumption: The hyperplane passes through origin. If not, add a bias b ∈ R

w>x + b = 0

b > 0 means moving it parallely along w (b < 0 means in opposite direction)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 6

Hyperplanes

Separates a D-dimensional space into two half-spaces (positive and negative)

Defined by normal vector w ∈ RD (pointing towards positive half-space)

w is orthogonal to any vector x lying on the hyperplane

w>x = 0 (equation of the hyperplane)

Assumption: The hyperplane passes through origin. If not, add a bias b ∈ R

w>x + b = 0

b > 0 means moving it parallely along w (b < 0 means in opposite direction)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 6

Hyperplane based Linear Classification

Represents the decision boundary by a hyperplane w ∈ RD

For binary classification, w is assumed to point towards the positive class

Classification rule: y = sign(wTx + b)

wT x + b > 0⇒ y = +1
wT x + b < 0⇒ y = −1

Note: y(wTx + b) < 0 mean a mistake on training example (x , y)

Note: Some algorithms that we have already seen (e.g., “distance from means”, logistic
regression, etc.) can also be viewed as learning hyperplanes

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 7

Hyperplane based Linear Classification

Represents the decision boundary by a hyperplane w ∈ RD

For binary classification, w is assumed to point towards the positive class

Classification rule: y = sign(wTx + b)

wT x + b > 0⇒ y = +1
wT x + b < 0⇒ y = −1

Note: y(wTx + b) < 0 mean a mistake on training example (x , y)

Note: Some algorithms that we have already seen (e.g., “distance from means”, logistic
regression, etc.) can also be viewed as learning hyperplanes

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 7

Hyperplane based Linear Classification

Represents the decision boundary by a hyperplane w ∈ RD

For binary classification, w is assumed to point towards the positive class

Classification rule: y = sign(wTx + b)

wT x + b > 0⇒ y = +1
wT x + b < 0⇒ y = −1

Note: y(wTx + b) < 0 mean a mistake on training example (x , y)

Note: Some algorithms that we have already seen (e.g., “distance from means”, logistic
regression, etc.) can also be viewed as learning hyperplanes

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 7

Hyperplane based Linear Classification

Represents the decision boundary by a hyperplane w ∈ RD

For binary classification, w is assumed to point towards the positive class

Classification rule: y = sign(wTx + b)

wT x + b > 0⇒ y = +1
wT x + b < 0⇒ y = −1

Note: y(wTx + b) < 0 mean a mistake on training example (x , y)

Note: Some algorithms that we have already seen (e.g., “distance from means”, logistic
regression, etc.) can also be viewed as learning hyperplanes

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 7

Hyperplane based Linear Classification

Represents the decision boundary by a hyperplane w ∈ RD

For binary classification, w is assumed to point towards the positive class

Classification rule: y = sign(wTx + b)

wT x + b > 0⇒ y = +1
wT x + b < 0⇒ y = −1

Note: y(wTx + b) < 0 mean a mistake on training example (x , y)

Note: Some algorithms that we have already seen (e.g., “distance from means”, logistic
regression, etc.) can also be viewed as learning hyperplanes

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 7

Notion of Margins

Geometric margin γn of an example xn is its signed distance from hyperplane

γn =
wTxn + b

||w ||

Geometric margin may be +ve/-ve based on which side of the plane xn is

Margin of a set {x1, . . . , xN} w.r.t. w is the min. abs. geometric margin

γ = min
1≤n≤N

|γn| = min
1≤n≤N

|(wTxn + b)|
||w ||

Functional margin of w on a training example (xn, yn): yn(wTxn + b)

Positive if w predicts yn correctly

Negative if w predicts yn incorrectly

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 8

Notion of Margins

Geometric margin γn of an example xn is its signed distance from hyperplane

γn =
wTxn + b

||w ||

Geometric margin may be +ve/-ve based on which side of the plane xn is

Margin of a set {x1, . . . , xN} w.r.t. w is the min. abs. geometric margin

γ = min
1≤n≤N

|γn| = min
1≤n≤N

|(wTxn + b)|
||w ||

Functional margin of w on a training example (xn, yn): yn(wTxn + b)

Positive if w predicts yn correctly

Negative if w predicts yn incorrectly

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 8

Notion of Margins

Geometric margin γn of an example xn is its signed distance from hyperplane

γn =
wTxn + b

||w ||

Geometric margin may be +ve/-ve based on which side of the plane xn is

Margin of a set {x1, . . . , xN} w.r.t. w is the min. abs. geometric margin

γ = min
1≤n≤N

|γn| = min
1≤n≤N

|(wTxn + b)|
||w ||

Functional margin of w on a training example (xn, yn): yn(wTxn + b)

Positive if w predicts yn correctly

Negative if w predicts yn incorrectly

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 8

Notion of Margins

Geometric margin γn of an example xn is its signed distance from hyperplane

γn =
wTxn + b

||w ||

Geometric margin may be +ve/-ve based on which side of the plane xn is

Margin of a set {x1, . . . , xN} w.r.t. w is the min. abs. geometric margin

γ = min
1≤n≤N

|γn| = min
1≤n≤N

|(wTxn + b)|
||w ||

Functional margin of w on a training example (xn, yn): yn(wTxn + b)

Positive if w predicts yn correctly

Negative if w predicts yn incorrectly

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 8

A Loss Function for Hyperplane based Classification

For a hyperplane based model, let’s consider the following loss function

`(w , b) =
N∑

n=1

`n(w , b) =
N∑

n=1

max{0,−yn(wT xn + b)}

Seems natural: if yn(wTxn + b) ≥ 0, then the loss on (xn, yn) will be 0; otherwise the model will
incur some positive loss when yn(wTxn + b) < 0

Let’s perform stochastic optimization on this loss. Stochastic (sub-)gradients are

∂`n(w , b)

∂w
= −ynxn

∂`n(w , b)

∂b
= −yn

(when w makes a mistake, and are zero otherwise)

Upon every mistake, update rule for w and b (assuming learning rate = 1)

w = w + ynxn

b = b + yn

These updates define the Perceptron algorithm

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 9

A Loss Function for Hyperplane based Classification

For a hyperplane based model, let’s consider the following loss function

`(w , b) =
N∑

n=1

`n(w , b) =
N∑

n=1

max{0,−yn(wT xn + b)}

Seems natural: if yn(wTxn + b) ≥ 0, then the loss on (xn, yn) will be 0; otherwise the model will
incur some positive loss when yn(wTxn + b) < 0

Let’s perform stochastic optimization on this loss. Stochastic (sub-)gradients are

∂`n(w , b)

∂w
= −ynxn

∂`n(w , b)

∂b
= −yn

(when w makes a mistake, and are zero otherwise)

Upon every mistake, update rule for w and b (assuming learning rate = 1)

w = w + ynxn

b = b + yn

These updates define the Perceptron algorithm

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 9

A Loss Function for Hyperplane based Classification

For a hyperplane based model, let’s consider the following loss function

`(w , b) =
N∑

n=1

`n(w , b) =
N∑

n=1

max{0,−yn(wT xn + b)}

Seems natural: if yn(wTxn + b) ≥ 0, then the loss on (xn, yn) will be 0; otherwise the model will
incur some positive loss when yn(wTxn + b) < 0

Let’s perform stochastic optimization on this loss. Stochastic (sub-)gradients are

∂`n(w , b)

∂w
= −ynxn

∂`n(w , b)

∂b
= −yn

(when w makes a mistake, and are zero otherwise)

Upon every mistake, update rule for w and b (assuming learning rate = 1)

w = w + ynxn

b = b + yn

These updates define the Perceptron algorithm

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 9

A Loss Function for Hyperplane based Classification

For a hyperplane based model, let’s consider the following loss function

`(w , b) =
N∑

n=1

`n(w , b) =
N∑

n=1

max{0,−yn(wT xn + b)}

Seems natural: if yn(wTxn + b) ≥ 0, then the loss on (xn, yn) will be 0; otherwise the model will
incur some positive loss when yn(wTxn + b) < 0

Let’s perform stochastic optimization on this loss. Stochastic (sub-)gradients are

∂`n(w , b)

∂w
= −ynxn

∂`n(w , b)

∂b
= −yn

(when w makes a mistake, and are zero otherwise)

Upon every mistake, update rule for w and b (assuming learning rate = 1)

w = w + ynxn

b = b + yn

These updates define the Perceptron algorithm

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 9

The Perceptron Algorithm

Given: Training data D = {(x1, y1), . . . , (xN , yN)}
Initialize: w old = [0, . . . , 0], bold = 0

Repeat until convergence:
For a random (xn, yn) ∈ D

if sign(wT xn + b) 6= yn or yn(wT xn + b) ≤ 0 (i.e., mistake is made)

wnew = wold + ynxn

bnew = bold + yn

Stopping condition: stop when either

All training examples are classified correctly

May overfit, so less common in practice

A fixed number of iterations completed, or some convergence criteria met

Completed one pass over the data (each example seen once)

E.g., examples arriving in a streaming fashion and can’t be stored in memory

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 10

The Perceptron Algorithm

Given: Training data D = {(x1, y1), . . . , (xN , yN)}
Initialize: w old = [0, . . . , 0], bold = 0

Repeat until convergence:
For a random (xn, yn) ∈ D

if sign(wT xn + b) 6= yn or yn(wT xn + b) ≤ 0 (i.e., mistake is made)

wnew = wold + ynxn

bnew = bold + yn

Stopping condition: stop when either

All training examples are classified correctly

May overfit, so less common in practice

A fixed number of iterations completed, or some convergence criteria met

Completed one pass over the data (each example seen once)

E.g., examples arriving in a streaming fashion and can’t be stored in memory

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 10

The Perceptron Algorithm

Given: Training data D = {(x1, y1), . . . , (xN , yN)}
Initialize: w old = [0, . . . , 0], bold = 0

Repeat until convergence:
For a random (xn, yn) ∈ D

if sign(wT xn + b) 6= yn or yn(wT xn + b) ≤ 0 (i.e., mistake is made)

wnew = wold + ynxn

bnew = bold + yn

Stopping condition: stop when either

All training examples are classified correctly

May overfit, so less common in practice

A fixed number of iterations completed, or some convergence criteria met

Completed one pass over the data (each example seen once)

E.g., examples arriving in a streaming fashion and can’t be stored in memory

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 10

The Perceptron Algorithm

Given: Training data D = {(x1, y1), . . . , (xN , yN)}
Initialize: w old = [0, . . . , 0], bold = 0

Repeat until convergence:
For a random (xn, yn) ∈ D

if sign(wT xn + b) 6= yn or yn(wT xn + b) ≤ 0 (i.e., mistake is made)

wnew = wold + ynxn

bnew = bold + yn

Stopping condition: stop when either

All training examples are classified correctly

May overfit, so less common in practice

A fixed number of iterations completed, or some convergence criteria met

Completed one pass over the data (each example seen once)

E.g., examples arriving in a streaming fashion and can’t be stored in memory

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 10

The Perceptron Algorithm

Given: Training data D = {(x1, y1), . . . , (xN , yN)}
Initialize: w old = [0, . . . , 0], bold = 0

Repeat until convergence:
For a random (xn, yn) ∈ D

if sign(wT xn + b) 6= yn or yn(wT xn + b) ≤ 0 (i.e., mistake is made)

wnew = wold + ynxn

bnew = bold + yn

Stopping condition: stop when either

All training examples are classified correctly

May overfit, so less common in practice

A fixed number of iterations completed, or some convergence criteria met

Completed one pass over the data (each example seen once)

E.g., examples arriving in a streaming fashion and can’t be stored in memory

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 10

The Perceptron Algorithm

Given: Training data D = {(x1, y1), . . . , (xN , yN)}
Initialize: w old = [0, . . . , 0], bold = 0

Repeat until convergence:
For a random (xn, yn) ∈ D

if sign(wT xn + b) 6= yn or yn(wT xn + b) ≤ 0 (i.e., mistake is made)

wnew = wold + ynxn

bnew = bold + yn

Stopping condition: stop when either

All training examples are classified correctly

May overfit, so less common in practice

A fixed number of iterations completed, or some convergence criteria met

Completed one pass over the data (each example seen once)

E.g., examples arriving in a streaming fashion and can’t be stored in memory

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 10

Why Perceptron Updates Work?

Let’s look at a misclassified positive example (yn = +1)

Perceptron (wrongly) predicts that wT
oldxn + bold < 0

Updates would be

w new = w old + ynxn = w old + xn (since yn = +1)
bnew = bold + yn = bold + 1

wT
newxn + bnew = (w old + xn)Txn + bold + 1

= (wT
oldxn + bold) + xT

n xn + 1

Thus wT
newxn + bnew is less negative than wT

oldxn + bold

So we are making ourselves more correct on this example!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 11

Why Perceptron Updates Work?

Let’s look at a misclassified positive example (yn = +1)

Perceptron (wrongly) predicts that wT
oldxn + bold < 0

Updates would be

w new = w old + ynxn = w old + xn (since yn = +1)

bnew = bold + yn = bold + 1

wT
newxn + bnew = (w old + xn)Txn + bold + 1

= (wT
oldxn + bold) + xT

n xn + 1

Thus wT
newxn + bnew is less negative than wT

oldxn + bold

So we are making ourselves more correct on this example!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 11

Why Perceptron Updates Work?

Let’s look at a misclassified positive example (yn = +1)

Perceptron (wrongly) predicts that wT
oldxn + bold < 0

Updates would be

w new = w old + ynxn = w old + xn (since yn = +1)
bnew = bold + yn = bold + 1

wT
newxn + bnew = (w old + xn)Txn + bold + 1

= (wT
oldxn + bold) + xT

n xn + 1

Thus wT
newxn + bnew is less negative than wT

oldxn + bold

So we are making ourselves more correct on this example!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 11

Why Perceptron Updates Work?

Let’s look at a misclassified positive example (yn = +1)

Perceptron (wrongly) predicts that wT
oldxn + bold < 0

Updates would be

w new = w old + ynxn = w old + xn (since yn = +1)
bnew = bold + yn = bold + 1

wT
newxn + bnew = (w old + xn)Txn + bold + 1

= (wT
oldxn + bold) + xT

n xn + 1

Thus wT
newxn + bnew is less negative than wT

oldxn + bold

So we are making ourselves more correct on this example!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 11

Why Perceptron Updates Work?

Let’s look at a misclassified positive example (yn = +1)

Perceptron (wrongly) predicts that wT
oldxn + bold < 0

Updates would be

w new = w old + ynxn = w old + xn (since yn = +1)
bnew = bold + yn = bold + 1

wT
newxn + bnew = (w old + xn)Txn + bold + 1

= (wT
oldxn + bold) + xT

n xn + 1

Thus wT
newxn + bnew is less negative than wT

oldxn + bold

So we are making ourselves more correct on this example!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 11

Why Perceptron Updates Work?

Let’s look at a misclassified positive example (yn = +1)

Perceptron (wrongly) predicts that wT
oldxn + bold < 0

Updates would be

w new = w old + ynxn = w old + xn (since yn = +1)
bnew = bold + yn = bold + 1

wT
newxn + bnew = (w old + xn)Txn + bold + 1

= (wT
oldxn + bold) + xT

n xn + 1

Thus wT
newxn + bnew is less negative than wT

oldxn + bold

So we are making ourselves more correct on this example!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 11

Why Perceptron Updates Work?

Let’s look at a misclassified positive example (yn = +1)

Perceptron (wrongly) predicts that wT
oldxn + bold < 0

Updates would be

w new = w old + ynxn = w old + xn (since yn = +1)
bnew = bold + yn = bold + 1

wT
newxn + bnew = (w old + xn)Txn + bold + 1

= (wT
oldxn + bold) + xT

n xn + 1

Thus wT
newxn + bnew is less negative than wT

oldxn + bold

So we are making ourselves more correct on this example!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 11

Why Perceptron Updates Work (Pictorially)?

wnew = w old + x

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 12

Why Perceptron Updates Work (Pictorially)?

wnew = w old + x

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 12

Why Perceptron Updates Work (Pictorially)?

wnew = w old + x

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 12

Why Perceptron Updates Work?

Now let’s look at a misclassified negative example (yn = −1)

Perceptron (wrongly) predicts that wT
oldxn + bold > 0

Updates would be

w new = w old + ynxn = w old − xn (since yn = −1)
bnew = bold + yn = bold − 1

wT
newxn + bnew = (w old − xn)Txn + bold − 1

= (wT
oldxn + bold)− xT

n xn − 1

Thus wT
newxn + bnew is less positive than wT

oldxn + bold

So we are making ourselves more correct on this example!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 13

Why Perceptron Updates Work?

Now let’s look at a misclassified negative example (yn = −1)

Perceptron (wrongly) predicts that wT
oldxn + bold > 0

Updates would be

w new = w old + ynxn = w old − xn (since yn = −1)

bnew = bold + yn = bold − 1

wT
newxn + bnew = (w old − xn)Txn + bold − 1

= (wT
oldxn + bold)− xT

n xn − 1

Thus wT
newxn + bnew is less positive than wT

oldxn + bold

So we are making ourselves more correct on this example!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 13

Why Perceptron Updates Work?

Now let’s look at a misclassified negative example (yn = −1)

Perceptron (wrongly) predicts that wT
oldxn + bold > 0

Updates would be

w new = w old + ynxn = w old − xn (since yn = −1)
bnew = bold + yn = bold − 1

wT
newxn + bnew = (w old − xn)Txn + bold − 1

= (wT
oldxn + bold)− xT

n xn − 1

Thus wT
newxn + bnew is less positive than wT

oldxn + bold

So we are making ourselves more correct on this example!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 13

Why Perceptron Updates Work?

Now let’s look at a misclassified negative example (yn = −1)

Perceptron (wrongly) predicts that wT
oldxn + bold > 0

Updates would be

w new = w old + ynxn = w old − xn (since yn = −1)
bnew = bold + yn = bold − 1

wT
newxn + bnew = (w old − xn)Txn + bold − 1

= (wT
oldxn + bold)− xT

n xn − 1

Thus wT
newxn + bnew is less positive than wT

oldxn + bold

So we are making ourselves more correct on this example!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 13

Why Perceptron Updates Work?

Now let’s look at a misclassified negative example (yn = −1)

Perceptron (wrongly) predicts that wT
oldxn + bold > 0

Updates would be

w new = w old + ynxn = w old − xn (since yn = −1)
bnew = bold + yn = bold − 1

wT
newxn + bnew = (w old − xn)Txn + bold − 1

= (wT
oldxn + bold)− xT

n xn − 1

Thus wT
newxn + bnew is less positive than wT

oldxn + bold

So we are making ourselves more correct on this example!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 13

Why Perceptron Updates Work?

Now let’s look at a misclassified negative example (yn = −1)

Perceptron (wrongly) predicts that wT
oldxn + bold > 0

Updates would be

w new = w old + ynxn = w old − xn (since yn = −1)
bnew = bold + yn = bold − 1

wT
newxn + bnew = (w old − xn)Txn + bold − 1

= (wT
oldxn + bold)− xT

n xn − 1

Thus wT
newxn + bnew is less positive than wT

oldxn + bold

So we are making ourselves more correct on this example!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 13

Why Perceptron Updates Work?

Now let’s look at a misclassified negative example (yn = −1)

Perceptron (wrongly) predicts that wT
oldxn + bold > 0

Updates would be

w new = w old + ynxn = w old − xn (since yn = −1)
bnew = bold + yn = bold − 1

wT
newxn + bnew = (w old − xn)Txn + bold − 1

= (wT
oldxn + bold)− xT

n xn − 1

Thus wT
newxn + bnew is less positive than wT

oldxn + bold

So we are making ourselves more correct on this example!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 13

Why Perceptron Updates Work (Pictorially)?

wnew = w old − x

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 14

Why Perceptron Updates Work (Pictorially)?

wnew = w old − x

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 14

Why Perceptron Updates Work (Pictorially)?

wnew = w old − x

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 14

Convergence of Perceptron

Theorem (Block & Novikoff): If the training data is linearly separable with margin γ by a unit norm
hyperplane w∗ (||w∗|| = 1) with b = 0, then perceptron converges after R2/γ2 mistakes during training
(assuming ||x || < R for all x).

Proof:

Margin of w∗ on any arbitrary example (xn, yn):
ynwT
∗ xn

||w∗|| = ynwT
∗ xn ≥ γ

Consider the (k + 1)thmistake: ynwT
k xn ≤ 0, and update w k+1 = w k + ynxn

wT
k+1w∗ = wT

k w∗ + ynwT
∗ xn ≥ wT

k w∗ + γ (why is this nice?)

Repeating iteratively k times, we get wT
k+1w∗ > kγ (1)

||w k+1||2 = ||w k ||2 + 2ynwT
k xn + ||x ||2 ≤ ||w k ||2 + R2 (since ynwT

k xn ≤ 0)

Repeating iteratively k times, we get ||w k+1||2 ≤ kR2 (2)

Using (1), (2), and ||w∗|| = 1 , we get kγ < wT
k+1w∗ ≤ ||w k+1|| ≤ R

√
k

k ≤ R2/γ2

Nice Thing: Convergence rate does not depend on the number of training examples N or the data
dimensionality D. Depends only on the margin!!!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 15

Convergence of Perceptron

Theorem (Block & Novikoff): If the training data is linearly separable with margin γ by a unit norm
hyperplane w∗ (||w∗|| = 1) with b = 0, then perceptron converges after R2/γ2 mistakes during training
(assuming ||x || < R for all x).
Proof:

Margin of w∗ on any arbitrary example (xn, yn):
ynwT
∗ xn

||w∗|| = ynwT
∗ xn ≥ γ

Consider the (k + 1)thmistake: ynwT
k xn ≤ 0, and update w k+1 = w k + ynxn

wT
k+1w∗ = wT

k w∗ + ynwT
∗ xn ≥ wT

k w∗ + γ (why is this nice?)

Repeating iteratively k times, we get wT
k+1w∗ > kγ (1)

||w k+1||2 = ||w k ||2 + 2ynwT
k xn + ||x ||2 ≤ ||w k ||2 + R2 (since ynwT

k xn ≤ 0)

Repeating iteratively k times, we get ||w k+1||2 ≤ kR2 (2)

Using (1), (2), and ||w∗|| = 1 , we get kγ < wT
k+1w∗ ≤ ||w k+1|| ≤ R

√
k

k ≤ R2/γ2

Nice Thing: Convergence rate does not depend on the number of training examples N or the data
dimensionality D. Depends only on the margin!!!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 15

Convergence of Perceptron

Theorem (Block & Novikoff): If the training data is linearly separable with margin γ by a unit norm
hyperplane w∗ (||w∗|| = 1) with b = 0, then perceptron converges after R2/γ2 mistakes during training
(assuming ||x || < R for all x).
Proof:

Margin of w∗ on any arbitrary example (xn, yn):
ynwT
∗ xn

||w∗|| = ynwT
∗ xn ≥ γ

Consider the (k + 1)thmistake: ynwT
k xn ≤ 0, and update w k+1 = w k + ynxn

wT
k+1w∗ = wT

k w∗ + ynwT
∗ xn ≥ wT

k w∗ + γ (why is this nice?)

Repeating iteratively k times, we get wT
k+1w∗ > kγ (1)

||w k+1||2 = ||w k ||2 + 2ynwT
k xn + ||x ||2 ≤ ||w k ||2 + R2 (since ynwT

k xn ≤ 0)

Repeating iteratively k times, we get ||w k+1||2 ≤ kR2 (2)

Using (1), (2), and ||w∗|| = 1 , we get kγ < wT
k+1w∗ ≤ ||w k+1|| ≤ R

√
k

k ≤ R2/γ2

Nice Thing: Convergence rate does not depend on the number of training examples N or the data
dimensionality D. Depends only on the margin!!!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 15

Convergence of Perceptron

Theorem (Block & Novikoff): If the training data is linearly separable with margin γ by a unit norm
hyperplane w∗ (||w∗|| = 1) with b = 0, then perceptron converges after R2/γ2 mistakes during training
(assuming ||x || < R for all x).
Proof:

Margin of w∗ on any arbitrary example (xn, yn):
ynwT
∗ xn

||w∗|| = ynwT
∗ xn ≥ γ

Consider the (k + 1)thmistake: ynwT
k xn ≤ 0, and update w k+1 = w k + ynxn

wT
k+1w∗ = wT

k w∗ + ynwT
∗ xn ≥ wT

k w∗ + γ

(why is this nice?)

Repeating iteratively k times, we get wT
k+1w∗ > kγ (1)

||w k+1||2 = ||w k ||2 + 2ynwT
k xn + ||x ||2 ≤ ||w k ||2 + R2 (since ynwT

k xn ≤ 0)

Repeating iteratively k times, we get ||w k+1||2 ≤ kR2 (2)

Using (1), (2), and ||w∗|| = 1 , we get kγ < wT
k+1w∗ ≤ ||w k+1|| ≤ R

√
k

k ≤ R2/γ2

Nice Thing: Convergence rate does not depend on the number of training examples N or the data
dimensionality D. Depends only on the margin!!!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 15

Convergence of Perceptron

Theorem (Block & Novikoff): If the training data is linearly separable with margin γ by a unit norm
hyperplane w∗ (||w∗|| = 1) with b = 0, then perceptron converges after R2/γ2 mistakes during training
(assuming ||x || < R for all x).
Proof:

Margin of w∗ on any arbitrary example (xn, yn):
ynwT
∗ xn

||w∗|| = ynwT
∗ xn ≥ γ

Consider the (k + 1)thmistake: ynwT
k xn ≤ 0, and update w k+1 = w k + ynxn

wT
k+1w∗ = wT

k w∗ + ynwT
∗ xn ≥ wT

k w∗ + γ (why is this nice?)

Repeating iteratively k times, we get wT
k+1w∗ > kγ (1)

||w k+1||2 = ||w k ||2 + 2ynwT
k xn + ||x ||2 ≤ ||w k ||2 + R2 (since ynwT

k xn ≤ 0)

Repeating iteratively k times, we get ||w k+1||2 ≤ kR2 (2)

Using (1), (2), and ||w∗|| = 1 , we get kγ < wT
k+1w∗ ≤ ||w k+1|| ≤ R

√
k

k ≤ R2/γ2

Nice Thing: Convergence rate does not depend on the number of training examples N or the data
dimensionality D. Depends only on the margin!!!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 15

Convergence of Perceptron

Theorem (Block & Novikoff): If the training data is linearly separable with margin γ by a unit norm
hyperplane w∗ (||w∗|| = 1) with b = 0, then perceptron converges after R2/γ2 mistakes during training
(assuming ||x || < R for all x).
Proof:

Margin of w∗ on any arbitrary example (xn, yn):
ynwT
∗ xn

||w∗|| = ynwT
∗ xn ≥ γ

Consider the (k + 1)thmistake: ynwT
k xn ≤ 0, and update w k+1 = w k + ynxn

wT
k+1w∗ = wT

k w∗ + ynwT
∗ xn ≥ wT

k w∗ + γ (why is this nice?)

Repeating iteratively k times, we get wT
k+1w∗ > kγ (1)

||w k+1||2 = ||w k ||2 + 2ynwT
k xn + ||x ||2 ≤ ||w k ||2 + R2 (since ynwT

k xn ≤ 0)

Repeating iteratively k times, we get ||w k+1||2 ≤ kR2 (2)

Using (1), (2), and ||w∗|| = 1 , we get kγ < wT
k+1w∗ ≤ ||w k+1|| ≤ R

√
k

k ≤ R2/γ2

Nice Thing: Convergence rate does not depend on the number of training examples N or the data
dimensionality D. Depends only on the margin!!!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 15

Convergence of Perceptron

Theorem (Block & Novikoff): If the training data is linearly separable with margin γ by a unit norm
hyperplane w∗ (||w∗|| = 1) with b = 0, then perceptron converges after R2/γ2 mistakes during training
(assuming ||x || < R for all x).
Proof:

Margin of w∗ on any arbitrary example (xn, yn):
ynwT
∗ xn

||w∗|| = ynwT
∗ xn ≥ γ

Consider the (k + 1)thmistake: ynwT
k xn ≤ 0, and update w k+1 = w k + ynxn

wT
k+1w∗ = wT

k w∗ + ynwT
∗ xn ≥ wT

k w∗ + γ (why is this nice?)

Repeating iteratively k times, we get wT
k+1w∗ > kγ (1)

||w k+1||2

= ||w k ||2 + 2ynwT
k xn + ||x ||2 ≤ ||w k ||2 + R2 (since ynwT

k xn ≤ 0)

Repeating iteratively k times, we get ||w k+1||2 ≤ kR2 (2)

Using (1), (2), and ||w∗|| = 1 , we get kγ < wT
k+1w∗ ≤ ||w k+1|| ≤ R

√
k

k ≤ R2/γ2

Nice Thing: Convergence rate does not depend on the number of training examples N or the data
dimensionality D. Depends only on the margin!!!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 15

Convergence of Perceptron

Theorem (Block & Novikoff): If the training data is linearly separable with margin γ by a unit norm
hyperplane w∗ (||w∗|| = 1) with b = 0, then perceptron converges after R2/γ2 mistakes during training
(assuming ||x || < R for all x).
Proof:

Margin of w∗ on any arbitrary example (xn, yn):
ynwT
∗ xn

||w∗|| = ynwT
∗ xn ≥ γ

Consider the (k + 1)thmistake: ynwT
k xn ≤ 0, and update w k+1 = w k + ynxn

wT
k+1w∗ = wT

k w∗ + ynwT
∗ xn ≥ wT

k w∗ + γ (why is this nice?)

Repeating iteratively k times, we get wT
k+1w∗ > kγ (1)

||w k+1||2 = ||w k ||2 + 2ynwT
k xn + ||x ||2

≤ ||w k ||2 + R2 (since ynwT
k xn ≤ 0)

Repeating iteratively k times, we get ||w k+1||2 ≤ kR2 (2)

Using (1), (2), and ||w∗|| = 1 , we get kγ < wT
k+1w∗ ≤ ||w k+1|| ≤ R

√
k

k ≤ R2/γ2

Nice Thing: Convergence rate does not depend on the number of training examples N or the data
dimensionality D. Depends only on the margin!!!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 15

Convergence of Perceptron

Theorem (Block & Novikoff): If the training data is linearly separable with margin γ by a unit norm
hyperplane w∗ (||w∗|| = 1) with b = 0, then perceptron converges after R2/γ2 mistakes during training
(assuming ||x || < R for all x).
Proof:

Margin of w∗ on any arbitrary example (xn, yn):
ynwT
∗ xn

||w∗|| = ynwT
∗ xn ≥ γ

Consider the (k + 1)thmistake: ynwT
k xn ≤ 0, and update w k+1 = w k + ynxn

wT
k+1w∗ = wT

k w∗ + ynwT
∗ xn ≥ wT

k w∗ + γ (why is this nice?)

Repeating iteratively k times, we get wT
k+1w∗ > kγ (1)

||w k+1||2 = ||w k ||2 + 2ynwT
k xn + ||x ||2 ≤ ||w k ||2 + R2 (since ynwT

k xn ≤ 0)

Repeating iteratively k times, we get ||w k+1||2 ≤ kR2 (2)

Using (1), (2), and ||w∗|| = 1 , we get kγ < wT
k+1w∗ ≤ ||w k+1|| ≤ R

√
k

k ≤ R2/γ2

Nice Thing: Convergence rate does not depend on the number of training examples N or the data
dimensionality D. Depends only on the margin!!!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 15

Convergence of Perceptron

Theorem (Block & Novikoff): If the training data is linearly separable with margin γ by a unit norm
hyperplane w∗ (||w∗|| = 1) with b = 0, then perceptron converges after R2/γ2 mistakes during training
(assuming ||x || < R for all x).
Proof:

Margin of w∗ on any arbitrary example (xn, yn):
ynwT
∗ xn

||w∗|| = ynwT
∗ xn ≥ γ

Consider the (k + 1)thmistake: ynwT
k xn ≤ 0, and update w k+1 = w k + ynxn

wT
k+1w∗ = wT

k w∗ + ynwT
∗ xn ≥ wT

k w∗ + γ (why is this nice?)

Repeating iteratively k times, we get wT
k+1w∗ > kγ (1)

||w k+1||2 = ||w k ||2 + 2ynwT
k xn + ||x ||2 ≤ ||w k ||2 + R2 (since ynwT

k xn ≤ 0)

Repeating iteratively k times, we get ||w k+1||2 ≤ kR2 (2)

Using (1), (2), and ||w∗|| = 1 , we get kγ < wT
k+1w∗ ≤ ||w k+1|| ≤ R

√
k

k ≤ R2/γ2

Nice Thing: Convergence rate does not depend on the number of training examples N or the data
dimensionality D. Depends only on the margin!!!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 15

Convergence of Perceptron

Theorem (Block & Novikoff): If the training data is linearly separable with margin γ by a unit norm
hyperplane w∗ (||w∗|| = 1) with b = 0, then perceptron converges after R2/γ2 mistakes during training
(assuming ||x || < R for all x).
Proof:

Margin of w∗ on any arbitrary example (xn, yn):
ynwT
∗ xn

||w∗|| = ynwT
∗ xn ≥ γ

Consider the (k + 1)thmistake: ynwT
k xn ≤ 0, and update w k+1 = w k + ynxn

wT
k+1w∗ = wT

k w∗ + ynwT
∗ xn ≥ wT

k w∗ + γ (why is this nice?)

Repeating iteratively k times, we get wT
k+1w∗ > kγ (1)

||w k+1||2 = ||w k ||2 + 2ynwT
k xn + ||x ||2 ≤ ||w k ||2 + R2 (since ynwT

k xn ≤ 0)

Repeating iteratively k times, we get ||w k+1||2 ≤ kR2 (2)

Using (1), (2), and ||w∗|| = 1 , we get kγ < wT
k+1w∗ ≤ ||w k+1|| ≤ R

√
k

k ≤ R2/γ2

Nice Thing: Convergence rate does not depend on the number of training examples N or the data
dimensionality D. Depends only on the margin!!!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 15

Convergence of Perceptron

Theorem (Block & Novikoff): If the training data is linearly separable with margin γ by a unit norm
hyperplane w∗ (||w∗|| = 1) with b = 0, then perceptron converges after R2/γ2 mistakes during training
(assuming ||x || < R for all x).
Proof:

Margin of w∗ on any arbitrary example (xn, yn):
ynwT
∗ xn

||w∗|| = ynwT
∗ xn ≥ γ

Consider the (k + 1)thmistake: ynwT
k xn ≤ 0, and update w k+1 = w k + ynxn

wT
k+1w∗ = wT

k w∗ + ynwT
∗ xn ≥ wT

k w∗ + γ (why is this nice?)

Repeating iteratively k times, we get wT
k+1w∗ > kγ (1)

||w k+1||2 = ||w k ||2 + 2ynwT
k xn + ||x ||2 ≤ ||w k ||2 + R2 (since ynwT

k xn ≤ 0)

Repeating iteratively k times, we get ||w k+1||2 ≤ kR2 (2)

Using (1), (2), and ||w∗|| = 1 , we get kγ < wT
k+1w∗ ≤ ||w k+1|| ≤ R

√
k

k ≤ R2/γ2

Nice Thing: Convergence rate does not depend on the number of training examples N or the data
dimensionality D. Depends only on the margin!!!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 15

Convergence of Perceptron

Theorem (Block & Novikoff): If the training data is linearly separable with margin γ by a unit norm
hyperplane w∗ (||w∗|| = 1) with b = 0, then perceptron converges after R2/γ2 mistakes during training
(assuming ||x || < R for all x).
Proof:

Margin of w∗ on any arbitrary example (xn, yn):
ynwT
∗ xn

||w∗|| = ynwT
∗ xn ≥ γ

Consider the (k + 1)thmistake: ynwT
k xn ≤ 0, and update w k+1 = w k + ynxn

wT
k+1w∗ = wT

k w∗ + ynwT
∗ xn ≥ wT

k w∗ + γ (why is this nice?)

Repeating iteratively k times, we get wT
k+1w∗ > kγ (1)

||w k+1||2 = ||w k ||2 + 2ynwT
k xn + ||x ||2 ≤ ||w k ||2 + R2 (since ynwT

k xn ≤ 0)

Repeating iteratively k times, we get ||w k+1||2 ≤ kR2 (2)

Using (1), (2), and ||w∗|| = 1 , we get kγ < wT
k+1w∗ ≤ ||w k+1|| ≤ R

√
k

k ≤ R2/γ2

Nice Thing: Convergence rate does not depend on the number of training examples N or the data
dimensionality D. Depends only on the margin!!!

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 15

The Best Hyperplane Separator?

Perceptron finds one of the many possible hyperplanes separating the data

.. if one exists

Of the many possible choices, which one is the best?

Intuitively, we want the hyperplane having the maximum margin

Large margin leads to good generalization on the test data

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 16

The Best Hyperplane Separator?

Perceptron finds one of the many possible hyperplanes separating the data

.. if one exists

Of the many possible choices, which one is the best?

Intuitively, we want the hyperplane having the maximum margin

Large margin leads to good generalization on the test data

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 16

The Best Hyperplane Separator?

Perceptron finds one of the many possible hyperplanes separating the data

.. if one exists

Of the many possible choices, which one is the best?

Intuitively, we want the hyperplane having the maximum margin

Large margin leads to good generalization on the test data

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 16

The Best Hyperplane Separator?

Perceptron finds one of the many possible hyperplanes separating the data

.. if one exists

Of the many possible choices, which one is the best?

Intuitively, we want the hyperplane having the maximum margin

Large margin leads to good generalization on the test data

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 16

Support Vector Machine (SVM)

Probably the most popular/influential classification algorithm

Backed by solid theoretical groundings (Vapnik and Cortes, 1995)

A hyperplane based classifier (like the Perceptron)

Additionally uses the Maximum Margin Principle

Finds the hyperplane with maximum separation margin on the training data

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 17

Support Vector Machine (SVM)

Probably the most popular/influential classification algorithm

Backed by solid theoretical groundings (Vapnik and Cortes, 1995)

A hyperplane based classifier (like the Perceptron)

Additionally uses the Maximum Margin Principle

Finds the hyperplane with maximum separation margin on the training data

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 17

Support Vector Machine (SVM)

Probably the most popular/influential classification algorithm

Backed by solid theoretical groundings (Vapnik and Cortes, 1995)

A hyperplane based classifier (like the Perceptron)

Additionally uses the Maximum Margin Principle

Finds the hyperplane with maximum separation margin on the training data

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 17

Support Vector Machine

A hyperplane based linear classifier defined by w and b

Prediction rule: y = sign(wTx + b)

Given: Training data {(x1, y1), . . . , (xN , yN)}

Goal: Learn w and b that achieve the maximum margin

For now, assume the entire training data is correctly classified by (w , b)

Zero loss on the training examples (non-zero loss case later)

Assume the hyperplane is such that

wT xn + b ≥ 1 for yn = +1

wT xn + b ≤ −1 for yn = −1

Equivalently, yn(wT xn + b) ≥ 1
⇒ min1≤n≤N |wT xn + b| = 1

The hyperplane’s margin:

γ = min1≤n≤N
|wT xn+b|
||w|| = 1

||w||

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 18

Support Vector Machine

A hyperplane based linear classifier defined by w and b

Prediction rule: y = sign(wTx + b)

Given: Training data {(x1, y1), . . . , (xN , yN)}

Goal: Learn w and b that achieve the maximum margin

For now, assume the entire training data is correctly classified by (w , b)

Zero loss on the training examples (non-zero loss case later)

Assume the hyperplane is such that

wT xn + b ≥ 1 for yn = +1

wT xn + b ≤ −1 for yn = −1

Equivalently, yn(wT xn + b) ≥ 1
⇒ min1≤n≤N |wT xn + b| = 1

The hyperplane’s margin:

γ = min1≤n≤N
|wT xn+b|
||w|| = 1

||w||

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 18

Support Vector Machine

A hyperplane based linear classifier defined by w and b

Prediction rule: y = sign(wTx + b)

Given: Training data {(x1, y1), . . . , (xN , yN)}

Goal: Learn w and b that achieve the maximum margin

For now, assume the entire training data is correctly classified by (w , b)

Zero loss on the training examples (non-zero loss case later)

Assume the hyperplane is such that

wT xn + b ≥ 1 for yn = +1

wT xn + b ≤ −1 for yn = −1

Equivalently, yn(wT xn + b) ≥ 1
⇒ min1≤n≤N |wT xn + b| = 1

The hyperplane’s margin:

γ = min1≤n≤N
|wT xn+b|
||w|| = 1

||w||

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 18

Support Vector Machine

A hyperplane based linear classifier defined by w and b

Prediction rule: y = sign(wTx + b)

Given: Training data {(x1, y1), . . . , (xN , yN)}

Goal: Learn w and b that achieve the maximum margin

For now, assume the entire training data is correctly classified by (w , b)

Zero loss on the training examples (non-zero loss case later)

Assume the hyperplane is such that

wT xn + b ≥ 1 for yn = +1

wT xn + b ≤ −1 for yn = −1

Equivalently, yn(wT xn + b) ≥ 1
⇒ min1≤n≤N |wT xn + b| = 1

The hyperplane’s margin:

γ = min1≤n≤N
|wT xn+b|
||w|| = 1

||w||

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 18

Support Vector Machine

A hyperplane based linear classifier defined by w and b

Prediction rule: y = sign(wTx + b)

Given: Training data {(x1, y1), . . . , (xN , yN)}

Goal: Learn w and b that achieve the maximum margin

For now, assume the entire training data is correctly classified by (w , b)

Zero loss on the training examples (non-zero loss case later)

Assume the hyperplane is such that

wT xn + b ≥ 1 for yn = +1

wT xn + b ≤ −1 for yn = −1

Equivalently, yn(wT xn + b) ≥ 1
⇒ min1≤n≤N |wT xn + b| = 1

The hyperplane’s margin:

γ = min1≤n≤N
|wT xn+b|
||w|| = 1

||w||

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 18

Support Vector Machine

A hyperplane based linear classifier defined by w and b

Prediction rule: y = sign(wTx + b)

Given: Training data {(x1, y1), . . . , (xN , yN)}

Goal: Learn w and b that achieve the maximum margin

For now, assume the entire training data is correctly classified by (w , b)

Zero loss on the training examples (non-zero loss case later)

Assume the hyperplane is such that

wT xn + b ≥ 1 for yn = +1

wT xn + b ≤ −1 for yn = −1

Equivalently, yn(wT xn + b) ≥ 1
⇒ min1≤n≤N |wT xn + b| = 1

The hyperplane’s margin:

γ = min1≤n≤N
|wT xn+b|
||w|| = 1

||w||

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 18

Support Vector Machine

A hyperplane based linear classifier defined by w and b

Prediction rule: y = sign(wTx + b)

Given: Training data {(x1, y1), . . . , (xN , yN)}

Goal: Learn w and b that achieve the maximum margin

For now, assume the entire training data is correctly classified by (w , b)

Zero loss on the training examples (non-zero loss case later)

Assume the hyperplane is such that

wT xn + b ≥ 1 for yn = +1

wT xn + b ≤ −1 for yn = −1

Equivalently, yn(wT xn + b) ≥ 1
⇒ min1≤n≤N |wT xn + b| = 1

The hyperplane’s margin:

γ = min1≤n≤N
|wT xn+b|
||w|| = 1

||w||

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 18

Support Vector Machine

A hyperplane based linear classifier defined by w and b

Prediction rule: y = sign(wTx + b)

Given: Training data {(x1, y1), . . . , (xN , yN)}

Goal: Learn w and b that achieve the maximum margin

For now, assume the entire training data is correctly classified by (w , b)

Zero loss on the training examples (non-zero loss case later)

Assume the hyperplane is such that

wT xn + b ≥ 1 for yn = +1

wT xn + b ≤ −1 for yn = −1

Equivalently, yn(wT xn + b) ≥ 1

⇒ min1≤n≤N |wT xn + b| = 1

The hyperplane’s margin:

γ = min1≤n≤N
|wT xn+b|
||w|| = 1

||w||

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 18

Support Vector Machine

A hyperplane based linear classifier defined by w and b

Prediction rule: y = sign(wTx + b)

Given: Training data {(x1, y1), . . . , (xN , yN)}

Goal: Learn w and b that achieve the maximum margin

For now, assume the entire training data is correctly classified by (w , b)

Zero loss on the training examples (non-zero loss case later)

Assume the hyperplane is such that

wT xn + b ≥ 1 for yn = +1

wT xn + b ≤ −1 for yn = −1

Equivalently, yn(wT xn + b) ≥ 1
⇒ min1≤n≤N |wT xn + b| = 1

The hyperplane’s margin:

γ = min1≤n≤N
|wT xn+b|
||w||

= 1
||w||

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 18

Support Vector Machine

A hyperplane based linear classifier defined by w and b

Prediction rule: y = sign(wTx + b)

Given: Training data {(x1, y1), . . . , (xN , yN)}

Goal: Learn w and b that achieve the maximum margin

For now, assume the entire training data is correctly classified by (w , b)

Zero loss on the training examples (non-zero loss case later)

Assume the hyperplane is such that

wT xn + b ≥ 1 for yn = +1

wT xn + b ≤ −1 for yn = −1

Equivalently, yn(wT xn + b) ≥ 1
⇒ min1≤n≤N |wT xn + b| = 1

The hyperplane’s margin:

γ = min1≤n≤N
|wT xn+b|
||w|| = 1

||w||

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 18

Support Vector Machine: The Optimization Problem

We want to maximize the margin γ = 1
||w ||

Maximizing the margin γ = minimizing ||w || (the norm)

Our optimization problem would be:

Minimize f (w , b) =
||w ||2

2

subject to yn(wTxn + b) ≥ 1, n = 1, . . . ,N

This is a Quadratic Program (QP) with N linear inequality constraints

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 19

Support Vector Machine: The Optimization Problem

We want to maximize the margin γ = 1
||w ||

Maximizing the margin γ = minimizing ||w || (the norm)

Our optimization problem would be:

Minimize f (w , b) =
||w ||2

2

subject to yn(wTxn + b) ≥ 1, n = 1, . . . ,N

This is a Quadratic Program (QP) with N linear inequality constraints

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 19

Support Vector Machine: The Optimization Problem

We want to maximize the margin γ = 1
||w ||

Maximizing the margin γ = minimizing ||w || (the norm)

Our optimization problem would be:

Minimize f (w , b) =
||w ||2

2

subject to yn(wTxn + b) ≥ 1, n = 1, . . . ,N

This is a Quadratic Program (QP) with N linear inequality constraints

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 19

Support Vector Machine: The Optimization Problem

We want to maximize the margin γ = 1
||w ||

Maximizing the margin γ = minimizing ||w || (the norm)

Our optimization problem would be:

Minimize f (w , b) =
||w ||2

2

subject to yn(wTxn + b) ≥ 1, n = 1, . . . ,N

This is a Quadratic Program (QP) with N linear inequality constraints

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 19

Large Margin = Good Generalization

Large margins intuitively mean good generalization

We can give a slightly more formal justification to this

Recall: Margin γ = 1
||w ||

Large margin ⇒ small ||w ||

Small ||w || ⇒ regularized/simple solutions (wi ’s don’t become too large)

Simple solutions ⇒ good generalization on test data

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 20

Large Margin = Good Generalization

Large margins intuitively mean good generalization

We can give a slightly more formal justification to this

Recall: Margin γ = 1
||w ||

Large margin ⇒ small ||w ||

Small ||w || ⇒ regularized/simple solutions (wi ’s don’t become too large)

Simple solutions ⇒ good generalization on test data

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 20

Large Margin = Good Generalization

Large margins intuitively mean good generalization

We can give a slightly more formal justification to this

Recall: Margin γ = 1
||w ||

Large margin ⇒ small ||w ||

Small ||w || ⇒ regularized/simple solutions (wi ’s don’t become too large)

Simple solutions ⇒ good generalization on test data

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 20

Next class..

Solving the SVM optimization problem

Introduction to kernel methods (nonlinear SVMs)

Machine Learning (CS771A) Online Learning via Stochastic Optimization, Perceptron, and Intro to SVMs 21

