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Recap
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Linear Regression: The Optimization View

Define a loss function `(yn, f (xn)) = (yn −w>xn)2 and solve the following loss minimization
problem

ŵ = arg min
w

N∑
n=1

(yn −w>xn)2

To avoid overfitting on training data, add a regularization R(w) = ||w ||2 on the weight vector and
solve the regularized loss minimization problem

ŵ = arg min
w

N∑
n=1

(yn −w>xn)2+λ||w ||2

Simple, convex loss functions in both cases. Closed-form solution for w can be found. Can also
solve for w more efficiently using gradient based methods.
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ŵ = arg min
w

N∑
n=1

(yn −w>xn)2+λ||w ||2

Simple, convex loss functions in both cases. Closed-form solution for w can be found. Can also
solve for w more efficiently using gradient based methods.

Machine Learning (CS771A) Learning via Probabilistic Modeling, Logistic and Softmax Regression 3



Linear Regression: The Optimization View

Define a loss function `(yn, f (xn)) = (yn −w>xn)2 and solve the following loss minimization
problem
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Linear Regression: Optimization View

A simple, quadratic in parameters, convex function

Pic source: Quora
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Linear Regression: The Probabilistic View

Under this viewpoint, we assume that the yn’s are drawn from a Gaussian yn ∼ N (w>xn, σ
2),

which gives us a likelihood function

p(yn|xn,w) = N (w>xn, σ
2) =

1
√
2πσ2

exp

{
−

(yn − w>xn)
2

2σ2

}

The total likelihood (assuming i.i.d. responses) or probability of data:

p(y |X,w) =
N∏

n=1

p(yn|xn,w) =

(
1

2πσ2

) N
2
exp

{
−

N∑
n=1

(yn − w>xn)
2

2σ2

}
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Linear Regression: Probabilistic View

Can solve for w using MLE, i.e., by maximizing the log likelihood. This is equivalent to minimizing
the negative log likelihood (NLL) w.r.t. w

NLL(w) = − log p(y |X,w) ∝ 1

2σ2

N∑
n=1

(yn −w>xn)2

Can also combine the likelihood with a prior over w , e.g., a multivariate Gaussian prior with zero
mean: p(w) = N (0, ρ2ID) ∝ exp(−w>w/2ρ2)

The prior allows encoding our prior beliefs on w , acts as a regularizer and, in this case, encourages
the final solution to shrink towards the prior’s mean

Can now solve for w using MAP estimation, i.e., maximizing the log posterior or minimizing the
negative of the log posterior w.r.t. w

NLL(w)− log p(w) ∝
N∑

n=1

(yn −w>xn)2 +
σ2

ρ2
w>w

Optimization and probabilistic views led to same objective functions (though the probabilistic view
also enables a full Bayesian treatment of the problem)
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Today’s Plan

A binary classification model from optimization and probabilistic views

By minimizing a loss function and regularized loss function

By doing MLE and MAP estimation

We will look at Logistic Regression as our example

Note: The “regression” in logistic regression is a misnomer

Will also look at its multiclass extension (“Softmax” Regression)
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Logistic Regression
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Logistic Regression: The Model

A model for doing probabilistic binary classification

Predicts label probabilities rather than a hard value of the label

p(yn = 1|xn,w) = µn

p(yn = 0|xn,w) = 1− µn

The model’s prediction is a probability defined using the sigmoid function

f (xn) = µn = σ(w>xn) =
1

1 + exp(−w>xn)
=

exp(w>xn)

1 + exp(w>xn)

The sigmoid first computes a real-valued “score” w>x =
∑D

d=1 wdxd and “squashes” it between
(0,1) to turn this score into a probability score

Model parameter is the unknown w . Need to learn it from training data.

Machine Learning (CS771A) Learning via Probabilistic Modeling, Logistic and Softmax Regression 9



Logistic Regression: The Model

A model for doing probabilistic binary classification

Predicts label probabilities rather than a hard value of the label

p(yn = 1|xn,w) = µn

p(yn = 0|xn,w) = 1− µn

The model’s prediction is a probability defined using the sigmoid function

f (xn) = µn = σ(w>xn) =
1

1 + exp(−w>xn)
=

exp(w>xn)

1 + exp(w>xn)

The sigmoid first computes a real-valued “score” w>x =
∑D

d=1 wdxd and “squashes” it between
(0,1) to turn this score into a probability score

Model parameter is the unknown w . Need to learn it from training data.

Machine Learning (CS771A) Learning via Probabilistic Modeling, Logistic and Softmax Regression 9



Logistic Regression: The Model

A model for doing probabilistic binary classification

Predicts label probabilities rather than a hard value of the label

p(yn = 1|xn,w) = µn

p(yn = 0|xn,w) = 1− µn

The model’s prediction is a probability defined using the sigmoid function

f (xn) = µn = σ(w>xn) =
1

1 + exp(−w>xn)
=

exp(w>xn)

1 + exp(w>xn)

The sigmoid first computes a real-valued “score” w>x =
∑D

d=1 wdxd and “squashes” it between
(0,1) to turn this score into a probability score

Model parameter is the unknown w . Need to learn it from training data.

Machine Learning (CS771A) Learning via Probabilistic Modeling, Logistic and Softmax Regression 9



Logistic Regression: The Model

A model for doing probabilistic binary classification

Predicts label probabilities rather than a hard value of the label

p(yn = 1|xn,w) = µn

p(yn = 0|xn,w) = 1− µn

The model’s prediction is a probability defined using the sigmoid function

f (xn) = µn = σ(w>xn) =
1

1 + exp(−w>xn)
=

exp(w>xn)

1 + exp(w>xn)

The sigmoid first computes a real-valued “score” w>x =
∑D

d=1 wdxd and “squashes” it between
(0,1) to turn this score into a probability score

Model parameter is the unknown w . Need to learn it from training data.

Machine Learning (CS771A) Learning via Probabilistic Modeling, Logistic and Softmax Regression 9



Logistic Regression: An Interpretion

Recall that the logistic regression model defines

p(y = 1|x,w) = µ = σ(w>x) =
1

1 + exp(−w>x)
=

exp(w>x)
1 + exp(w>x)

p(y = 0|x,w) = 1− µ = 1− σ(w>x) =
1

1 + exp(w>x)

The log-odds of this model

log
p(y = 1|x,w)

p(y = 0|x,w)
= log exp(w>x) = w>x

Thus if w>x > 0 then the positive class is more probable

A linear classification model. Separates the two classes via a hyperplane (similar to other linear
classification models such as Perceptron and SVM)
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Loss Function Optimization View
for Logistic Regression
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Logistic Regression: The Loss Function

What loss function to use? One option is to use the squared loss

`(yn, f (xn)) = (yn − f (xn))2 = (yn − µn)2 = (yn − σ(w>xn))2

This is non-convex and not easy to optimize

Consider the following loss function

`(yn, f (xn)) =

{
− log(µn) yn = 1

− log(1− µn) yn = 0

This loss function makes intuitive sense

If yn = 1 but µn is close to 0 (model makes error) then loss will be high

If yn = 0 but µn is close to 1 (model makes error) then loss will be high

The above loss function can be combined and written more compactly as

`(yn, f (xn)) = −yn log(µn)− (1− yn) log(1− µn)

This is a function of the unknown parameter w since µn = σ(w>xn)
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Logistic Regression: The Loss Function

The loss function over the entire training data

L(w) =
N∑

n=1

`(yn, f (xn)) =
N∑

n=1

[−yn log(µn)− (1− yn) log(1− µn)]

This is also known as the cross-entropy loss

Sum of the cross-entropies b/w true label yn and predicted label prob. µn

Plugging in µn = exp(w>xn)
1+exp(w>xn)

and chugging, we get (verify yourself)

L(w) = −
N∑

n=1

(ynw
>xn − log(1 + exp(w>xn)))

We can add a regularizer (e.g., squared `2 norm of w) to prevent overfitting

L(w) = −
N∑

n=1

(ynw
>xn − log(1 + exp(w>xn))) + λ||w ||2
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Probabilstic Modeling View (MLE/MAP)
for Logistic Regression

Machine Learning (CS771A) Learning via Probabilistic Modeling, Logistic and Softmax Regression 14



Logistic Regression: MLE Formulation

Recall, each label yn is binary with prob. µn. Assume Bernoulli likelihood:

p(y |X,w) =
N∏

n=1

p(yn|xn,w) =
N∏

n=1

µ
yn
n (1− µn)

1−yn

where µn = exp(w>xn)
1+exp(w>xn)

Doing MLE would require maximizing the log likelihood w.r.t. w

log p(Y|X,w) =
N∑

n=1

(yn log µn + (1− yn) log(1− µn))

This is equivalent to minimizing the NLL. Plugging in µn = exp(w>xn)
1+exp(w>xn)

we get

NLL(w) = −
N∑

n=1

(ynw
>xn − log(1 + exp(w>xn)))

Not surprisingly, the NLL expression is the same as the loss function
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Logisic Regression: MAP Formulation

MLE estimate of w can lead to overfitting. Solution: use a prior on w

Just like the linear regression case, let’s put a Gausian prior on w

p(w) = N (0, λ−1ID) ∝ exp(−λw>w)

MAP objective: MLE objective + log p(w)

Can maximize the MAP objective (log-posterior) w.r.t. w or minimize the negative of log posterior
which will be

NLL(w)− log p(w)

Ignoring the constants, we get the following objective for MAP estimation

−
N∑

n=1

(ynw>xn − log(1 + exp(w>xn))) + λw>w

Thus MAP estimation is equivalent to regularized logistic regression
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Estimating the Weight Vector w

Loss function/NLL for logistic regression (ignoring the regularizer term)

L(w) = −
N∑

n=1

(ynw
>xn − log(1 + exp(w>xn)))

The loss function is convex in w (thus has a unique minimum)

The gradient/derivative of L(w) w.r.t. w (let’s ignore the regularizer)

g =
∂L(w)

∂w
=

∂

∂w
[−

N∑
n=1

(ynw
>xn − log(1 + exp(w>xn)))]

= −
N∑

n=1

(
ynxn −

exp(w>xn)

(1 + exp(w>xn))
xn

)

= −
N∑

n=1

(yn − µn)xn = X>(µ− y)

Can’t get a closed form solution for w by setting the derivative to zero

Need to use iterative methods (e.g., gradient descent) to solve for w
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Gradient Descent for Logistic Regression

We can use gradient descent (GD) to solve for w as follows:

Initialize w (1) ∈ RD randomly.

Iterate the following until convergence

w (t+1)︸ ︷︷ ︸
new value

= w (t)︸︷︷︸
previous value

− η

N∑
n=1

(µ(t)
n − yn)xn︸ ︷︷ ︸

gradient at previous value

where η is the learning rate and µ(t) = σ(w (t)>xn) is the predicted label probability for xn using
w = w (t) from the previous iteration

Note that the updates give larger weights to those examples on which the current model makes

larger mistakes, as measured by (µ
(t)
n − yn)

Note: Computing the gradient in every iteration requires all the data. Thus GD can be expensive
if N is very large. A cheaper alternative is to do GD using only a small randomly chosen minibatch
of data. It is known as Stochastic Gradient Descent (SGD). Runs faster and converges faster.
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More on Gradient Descent..

GD can converge slowly and is also sensitive to the step size

Figure: Left: small step sizes. Right: large step sizes

Several ways to remedy this1. E.g.,

Choose the optimal step size ηt (different in each iteration) by line-search

Add a momentum term to the updates

w (t+1) = w (t) − ηtg
(t) + αt(w (t) − w (t−1))

Use second-order methods (e.g., Newton’s method) to exploit the curvature of the loss function
L(w): Requires computing the Hessian matrix

1
Also see: “A comparison of numerical optimizers for logistic regression” by Tom Minka
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Newton’s method for Logistic Regression

Newton’s method (a second order method) updates are as follows:

w (t+1) = w (t) − H(t)−1
g(t)

where H(t) is the D × D Hessian matrix at iteration t

Hessian: double derivative of the objective function (the loss function)

H =
∂2L(w)

∂w∂w>
=

∂

∂w

[
∂L(w)

∂w

]>
=
∂g>

∂w

Since gradient g = −
∑N

n=1(yn − µn)xn , H = ∂g>
∂w = − ∂

∂w
∑N

n=1(yn − µn)x>n =
∑N

n=1
∂µn
∂w x>n

Since ∂µn

∂w = ∂
∂w

(
exp(w>xn)

1+exp(w>xn)

)
= µn(1− µn)xn, we have

H =
N∑

n=1

µn(1− µn)xnx
>
n = X>SX

where S is a diagonal matrix with its nth diagonal element = µn(1− µn)
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Newton’s method for Logistic Regression

Update for the Newton’s method then have the following form:

w (t+1) = w (t) − H(t)−1
g(t)

= w (t) − (X>S(t)X)−1X>(µ(t) − y)

= w (t) + (X>S(t)X)−1X>(y − µ
(t))

= (X>S(t)X)−1[(X>S(t)X)w (t) + X>(y − µ
(t))]

= (X>S(t)X)−1X>[S(t)Xw t + y − µ
(t)]

= (X>S(t)X)−1X>S(t)[Xw (t) + S(t)−1
(y − µ

(t))]

= (X>S(t)X)−1X>S(t)ŷ (t)

Interpreting the solution found by Newton’s method:

It basically solves an Iteratively Reweighted Least Squares (IRLS) problem

arg min
w

N∑
n=1

S (t)
n (ŷ (t)

n − w>xn)2

A weighted least squares with ŷ (t) and S
(t)
n changing in each iteration

The weight S
(t)
n is the nth diagonal element of S(t)

Expensive in practice (requires matrix inversion). Can use Quasi-Newton (approximate the Hessian
using gradients) or BFGS for better efficiency
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n (ŷ (t)

n − w>xn)2

A weighted least squares with ŷ (t) and S
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(t)
n changing in each iteration

The weight S
(t)
n is the nth diagonal element of S(t)

Expensive in practice (requires matrix inversion). Can use Quasi-Newton (approximate the Hessian
using gradients) or BFGS for better efficiency

Machine Learning (CS771A) Learning via Probabilistic Modeling, Logistic and Softmax Regression 21



Newton’s method for Logistic Regression

Update for the Newton’s method then have the following form:

w (t+1) = w (t) − H(t)−1
g(t)

= w (t) − (X>S(t)X)−1X>(µ(t) − y)

= w (t) + (X>S(t)X)−1X>(y − µ
(t))

= (X>S(t)X)−1[(X>S(t)X)w (t) + X>(y − µ
(t))]

= (X>S(t)X)−1X>[S(t)Xw t + y − µ
(t)]

= (X>S(t)X)−1X>S(t)[Xw (t) + S(t)−1
(y − µ

(t))]

= (X>S(t)X)−1X>S(t)ŷ (t)
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n (ŷ (t)

n − w>xn)2

A weighted least squares with ŷ (t) and S
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Multiclass Logistic (or “Softmax”) Regression

Logistic regression can be extended to handle K > 2 classes

In this case, yn ∈ {0, 1, 2, . . . ,K − 1} and label probabilities are defined as

p(yn = k|xn,W) =
exp(w>k xn)∑K
`=1 exp(w

>
` xn)

= µnk

µnk : probability that example n belongs to class k . Also,
∑K
`=1 µn` = 1

W = [w 1 w 2 . . . wK ] is D × K weight matrix (column k for class k)

“Softmax” because class ’k’ with largest w>k xn dominates the probability

We can think of the yn’s as drawn from a multinomial distribution

p(y |X,W) =
N∏

n=1

K∏
`=1

µ
yn`
n` (Likelihood function)

where yn` = 1 if true class of example n is ` and yn`′ = 0 for all other `′ 6= `

Can do MLE/MAP for W similar to the binary logistic regression case
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Logistic Regression: Summary

A probabilistic model for binary classification

Simple objective, easy to optimize using gradient based methods

Very widely used, very efficient solvers exist

Can be extended for multiclass (softmax) classification

Used as modules in more complex models (e.g, deep neural nets)
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