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Some Announcements

Homework 1 out tomorrow. Will be due in two weeks.

Will cover topics from up to the previous lecture

Project discussion next week.

Class TA’s finalized. Will soon announce their/mine office hours

Watch out the class webpage regularly for readings/reference materials

Please participate on Piazza actively. Share and learn from each other.
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Recap

Machine Learning (CS771A) Learning via Probabilistic Modeling, Probabilistic Linear Regression 3



Learning as Optimization

Supervised learning problem with training data {(xn, yn)}Nn=1

Goal: Find f : x → y that fits the training data well and is also “simple”

The function f is learned by solving the following optimization problem

f̂ = arg min
f

N∑
n=1

`(yn, f (xn)) + λR(f )

The objective is a sum of the empirical training loss and a regularizer term

`(yn, f (xn)) denotes the loss function: Error f makes on example (xn, yn)

The regularizer R(f ) is a measure of complexity of the function f

This is called Regularized Empirical Risk Minimization

Regularization hyperparameter λ controls the amount of regularization
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`2 Regularized Linear Regression: Ridge Regression

Linear regression model f (x) = w>x

Loss function: squared loss, regularizer: `2 norm of w

The resulting Ridge Regression problem is solved as

ŵ = arg min
w

N∑
n=1

(yn −w>xn)2 + λ||w ||2

A nice, convex objective function, has a unique global minima

Note: λ = 0 gives the ordinary least squares solution (no regularization)

Can take derivative w.r.t. w , set it to zero, and get simple, closed form soln

w = (
N∑

n=1

xnx>n + λID)−1
N∑

n=1

ynxn = (X>X + λID)−1X>y

Can also used iterative methods (e.g., gradient-descent) to optimize the objective function and
solve for w (for better efficiency)
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ŵ = arg min
w

N∑
n=1

(yn −w>xn)2 + λ||w ||2

A nice, convex objective function, has a unique global minima

Note: λ = 0 gives the ordinary least squares solution (no regularization)

Can take derivative w.r.t. w , set it to zero, and get simple, closed form soln

w = (
N∑

n=1

xnx>n + λID)−1
N∑

n=1

ynxn = (X>X + λID)−1X>y

Can also used iterative methods (e.g., gradient-descent) to optimize the objective function and
solve for w (for better efficiency)

Machine Learning (CS771A) Learning via Probabilistic Modeling, Probabilistic Linear Regression 5



`2 Regularized Linear Regression: Ridge Regression

Linear regression model f (x) = w>x

Loss function: squared loss, regularizer: `2 norm of w

The resulting Ridge Regression problem is solved as
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Ridge Regression: Effect of Regularization

Consider ridge regression on some data with 10 features (thus the weight vector w has 10
components)
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Learning via Probabilistic Modeling

Machine Learning (CS771A) Learning via Probabilistic Modeling, Probabilistic Linear Regression 7



Probabilistic Modeling of Data

Assume the data y = {y1, y2, . . . , yN} as generated from a probability model

yn ∼ p(y |θ) ∀n

Each data point yn is a random variable drawn from distribution p(y |θ)

θ denotes the parameters of the probability distribution

Assume the observations to be independently & identically distributed (i.i.d.)

We wish to learn the parameters θ using the data y = {y1, y2, . . . , yN}

Almost any learning problem can be formulated like this
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Parameter Estimation in Probabilistic Models

Since data is i.i.d., the probability of observing data y = {y1, y2, . . . , yN}

p(y |θ) = p(y1, y2, . . . , yN |θ) =
N∏

n=1

p(yn|θ)

p(y |θ) also called the likelihood, p(yn|θ) is lik. w.r.t. a single data point

The likelihood will be a function of the parameters

How do we estimate the “best” model parameters θ?

One option: Find value of θ that makes observed data most probable

Maximize the likelihood p(y |θ) w.r.t. θ (Maximum Likelihood Estimation)
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Maximum Likelihood Estimation (MLE)

We doing MLE, we typically maximize log-likelihood instead of the likelihood, which is easier
(doesn’t affect the estimation because log is monotonic)

Log-likelihood:

L(θ) = log p(y | θ) = log
N∏

n=1

p(yn | θ) =
N∑

n=1

log p(yn | θ)

Maximum Likelihood Estimation (MLE)

θ̂MLE = arg max
θ
L(θ) = arg max

θ

N∑
n=1

log p(yn | θ)

Now this becomes an optimization problem w.r.t. θ
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Maximum Likelihood Estimation (MLE)

Maximum Likelihood parameter estimation

θ̂MLE = arg max
θ

N∑
n=1

log p(yn | θ)

We can also think of it as minimizing the negative log-likelihood (NLL)

θ̂MLE = arg min
θ

NLL(θ)

where NLL(θ) = −
∑N

n=1 log p(yn | θ)

We can think of the negative log-likelihood as a loss function

Thus MLE is equivalent to doing empirical risk (loss) minimization

This view relates the optimization and probabilistic modeling approaches

Something is still missing (we will look at that shortly)
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MLE: An Example

Consider a sequence of N coin toss outcomes (observations)

Each observation yn is a binary random variable. Head = 1, Tail = 0

Since each yn is binary, let’s use a Bernoulli distribution to model it

p(yn | θ) = θyn(1− θ)1−yn

Here θ to be probability of a head. Want to learn θ using MLE

Log-likelihood:
∑N

n=1 log p(yn | θ) =
∑N

n=1 yn log θ + (1− yn) log(1− θ)

Taking derivative of the log-likelihood w.r.t. θ, and setting it to zero gives

θ̂MLE =

∑N
n=1 yn
N

θ̂MLE in this example is simply the fraction of heads!

What can go wrong with this approach (or MLE in general)?

We haven’t “regularized” θ. Can do badly (i.e., overfit) if there are outliers or if we don’t have enough
data to learn θ reliably.
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Prior Distributions

In probabilistic models, we can specify a prior distribution p(θ) on parameters

The prior distribution plays two key roles

The prior helps us specify that some values of θ are more likely than others

The prior also works as a regularizer for θ (we will see this soon)

Note: A uniform prior distribution is the same as using no prior!
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Using a Prior in Parameter Estimation

We can combine the prior p(θ) with the likelihood p(y |θ) using Bayes rule and define the posterior
distribution over the parameters θ

p(θ|y) =
p(y |θ)p(θ)

p(y)

Now, instead of doing MLE which maximizes the likelihood, we can find the θ that maximizes the
posterior probability p(θ|y)

θ̂MAP = arg max
θ

p(θ|y)
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Maximum-a-Posteriori (MAP) Estimation

We will work with the log posterior probability (it is easier)

θ̂MAP = arg max
θ

p(θ|y)

= arg max
θ

logp(θ|y)

= arg max
θ

log
p(y |θ)p(θ)

p(y)

= arg max
θ

log p(y |θ) + log p(θ)

θ̂MAP = arg max
θ

N∑
n=1

log p(yn|θ) + log p(θ)

Same as MLE with an extra log-prior-distribution term (acts as a regularizer)

Can also write the same as the following (equivalent) minimization problem

θ̂MAP = arg min
θ

NLL(θ)− log p(θ)

When p(θ) is a uniform prior, MAP reduces to MLE
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MAP: An Example

Let’s again consider the coin-toss problem (estimating the bias of the coin)

Each likelihood term is Bernoulli: p(yn|θ) = θyn(1− θ)1−yn

Since θ ∈ (0, 1), we assume a Beta prior: θ ∼ Beta(α, β)

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

α, β are called hyperparameters of the prior. Note: Γ is the gamma function.

For Beta, using α = β = 1 corresponds to using a uniform prior distribution

Machine Learning (CS771A) Learning via Probabilistic Modeling, Probabilistic Linear Regression 16



MAP: An Example

Let’s again consider the coin-toss problem (estimating the bias of the coin)

Each likelihood term is Bernoulli: p(yn|θ) = θyn(1− θ)1−yn

Since θ ∈ (0, 1), we assume a Beta prior: θ ∼ Beta(α, β)

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

α, β are called hyperparameters of the prior. Note: Γ is the gamma function.

For Beta, using α = β = 1 corresponds to using a uniform prior distribution

Machine Learning (CS771A) Learning via Probabilistic Modeling, Probabilistic Linear Regression 16



MAP: An Example

Let’s again consider the coin-toss problem (estimating the bias of the coin)

Each likelihood term is Bernoulli: p(yn|θ) = θyn(1− θ)1−yn

Since θ ∈ (0, 1), we assume a Beta prior: θ ∼ Beta(α, β)

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

α, β are called hyperparameters of the prior. Note: Γ is the gamma function.

For Beta, using α = β = 1 corresponds to using a uniform prior distribution

Machine Learning (CS771A) Learning via Probabilistic Modeling, Probabilistic Linear Regression 16



MAP: An Example

The log posterior probability for the coin-toss model
N∑

n=1

log p(yn|θ)+ log p(θ)

Ignoring the constants w.r.t. θ, the log posterior probability simplifies to∑N
n=1{yn log θ + (1− yn) log(1− θ)} + (α− 1) log θ + (β − 1) log(1− θ)

Taking derivative w.r.t. θ and setting to zero gives

θ̂MAP =

∑N
n=1 yn + α− 1

N + α + β − 2

Note: For α = 1, β = 1, i.e., p(θ) = Beta(1, 1) (which is equivalent to a uniform prior, hence no
regularizer), we get the same solution as θ̂MLE

Note: Hyperparameters of a prior distribution usually have intuitive meaning. E.g., in the coin-toss
example, α− 1, β − 1 are like “pseudo-observations” - expected numbers of heads and tails,
respectively, before tossing the coin
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Inferring the full Posterior (aka Bayesian Inference)

MLE/MAP only give us a point estimate of θ. Doesn’t capture the uncertainty in θ

The Bayes rule (at least in theory) also allows us to compute the full posterior distribution of θ

p(θ|y) =
p(y |θ)p(θ)

p(y)

A much harder problem than MLE/MAP! Easy if the prior is “conjugate” to the likelihood (the
posterior will then have the same “form” as the prior - basically, the same type of distribution)

A very nice aspect is that Bayesian inference is naturally “online” (the posterior can be treated as a
prior for next batch of data and updated recursively as we see more and more data)
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Bayesian Inference

Bayesian inference fits naturally into an “online” learning setting

Our belief about θ keeps getting updated as we see more and more data
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Bayesian Inference: An Example

Let’s again consider the coin-toss example

With Bernoulli likelihood and Beta prior (a conjugate pair), the posterior is also Beta

Beta(α + N1, β + N0)

where N1 is the number of heads and N0 = N − N1 is the number of tails

Exercise: Can verify the above by simply plugging in the expressions of likelihood and prior into the
Bayes rule and identifying the form of resulting posterior (note: this may not always be easy)
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Making Predictions: MLE/MAP/Bayesian

Once θ is learned, we can use it to make predictions about the future observations

E.g., for the coin-toss example, we can predict the probability of next toss being head

This can be done by using the MLE/MAP estimate, or by using the full distribution (harder)

In the coin-toss example, θMLE = N1

N , θMAP = N1+α−1
N+α+β−2 , and p(θ|y) = Beta(θ|α + N1, β + N0)

Thus for this example (where observations are assumed to come from a Bernoulli)

MLE prediction: p(yN+1|y) = p(yN+1 = 1|θMLE ) = θMLE =
N1

N

MAP prediction: p(yN+1|y) = p(yN+1 = 1|θMAP ) = θMAP =
N1 + α− 1

N + α + β − 2

Fully Bayesian prediction: p(yN+1|y) =

∫
θp(θ|y)dθ =

∫
θ × Beta(θ|α + N1, β + N0)dθ =

N1 + α

N + α + β

Note that the fully Bayesian approach to prediction averages over all possible values of θ, weighted
by their respective posterior probabilities (easy in this example, but a hard problem in general)
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N+α+β−2 , and p(θ|y) = Beta(θ|α + N1, β + N0)

Thus for this example (where observations are assumed to come from a Bernoulli)

MLE prediction: p(yN+1|y) = p(yN+1 = 1|θMLE ) = θMLE =
N1

N

MAP prediction: p(yN+1|y) = p(yN+1 = 1|θMAP ) = θMAP =
N1 + α− 1

N + α + β − 2

Fully Bayesian prediction: p(yN+1|y) =

∫
θp(θ|y)dθ =

∫
θ × Beta(θ|α + N1, β + N0)dθ =

N1 + α

N + α + β

Note that the fully Bayesian approach to prediction averages over all possible values of θ, weighted
by their respective posterior probabilities (easy in this example, but a hard problem in general)

Machine Learning (CS771A) Learning via Probabilistic Modeling, Probabilistic Linear Regression 21



Making Predictions: MLE/MAP/Bayesian

Once θ is learned, we can use it to make predictions about the future observations

E.g., for the coin-toss example, we can predict the probability of next toss being head

This can be done by using the MLE/MAP estimate, or by using the full distribution (harder)

In the coin-toss example, θMLE = N1

N , θMAP = N1+α−1
N+α+β−2 , and p(θ|y) = Beta(θ|α + N1, β + N0)

Thus for this example (where observations are assumed to come from a Bernoulli)

MLE prediction: p(yN+1|y) = p(yN+1 = 1|θMLE ) = θMLE =
N1

N

MAP prediction: p(yN+1|y) = p(yN+1 = 1|θMAP ) = θMAP =
N1 + α− 1

N + α + β − 2

Fully Bayesian prediction: p(yN+1|y) =

∫
θp(θ|y)dθ =

∫
θ × Beta(θ|α + N1, β + N0)dθ =

N1 + α

N + α + β

Note that the fully Bayesian approach to prediction averages over all possible values of θ, weighted
by their respective posterior probabilities (easy in this example, but a hard problem in general)

Machine Learning (CS771A) Learning via Probabilistic Modeling, Probabilistic Linear Regression 21



Making Predictions: MLE/MAP/Bayesian

Once θ is learned, we can use it to make predictions about the future observations

E.g., for the coin-toss example, we can predict the probability of next toss being head

This can be done by using the MLE/MAP estimate, or by using the full distribution (harder)

In the coin-toss example, θMLE = N1

N , θMAP = N1+α−1
N+α+β−2 , and p(θ|y) = Beta(θ|α + N1, β + N0)

Thus for this example (where observations are assumed to come from a Bernoulli)

MLE prediction: p(yN+1|y) = p(yN+1 = 1|θMLE ) = θMLE =
N1

N

MAP prediction: p(yN+1|y) = p(yN+1 = 1|θMAP ) = θMAP =
N1 + α− 1

N + α + β − 2

Fully Bayesian prediction: p(yN+1|y) =

∫
θp(θ|y)dθ =

∫
θ × Beta(θ|α + N1, β + N0)dθ =

N1 + α

N + α + β

Note that the fully Bayesian approach to prediction averages over all possible values of θ, weighted
by their respective posterior probabilities (easy in this example, but a hard problem in general)

Machine Learning (CS771A) Learning via Probabilistic Modeling, Probabilistic Linear Regression 21



Probabilistic Linear Regression
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Linear Regression: A Probabilistic View

Given: N training examples {xn, yn}Nn=1, features: xn ∈ RD , response yn ∈ R

Probabilistic view: responses yn’s are generated from a probabilistic model

Assume a “noisy” linear model with regression weight vector w ∈ RD :

yn = w>xn + εn

Gaussian noise: εn ∼ N (0, σ2), σ2: variance of Gaussian noise

Thus each yn can be thought of as drawn from a Gaussian, as follows

yn ∼ N (w>xn, σ
2)

Goal: Learn weight vector w (note: σ2 assumed known but can be learned)

Let’s look at both MLE and MAP estimation for this probabilistic model
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Gaussian Distribution: Brief Review
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Univariate Gaussian Distribution

Distribution over real-valued scalar r.v. x

Defined by a scalar mean µ and a scalar variance σ2

Distribution defined as
N (x ;µ, σ2) =

1√
2πσ2

e−
(x−µ)2

2σ2

Mean: E[x ] = µ

Variance: var[x ] = σ2
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Multivariate Gaussian Distribution

Distribution over a multivariate r.v. vector x ∈ RD of real numbers

Defined by a mean vector µ ∈ RD and a D × D covariance matrix Σ

N (x;µ,Σ) =
1√

(2π)D |Σ|
e−

1
2 (x−µ)>Σ−1(x−µ)

The covariance matrix Σ must be symmetric and positive definite

All eigenvalues are positive

z>Σz > 0 for any real vector z
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MLE for Probabilistic Linear Regression

Assuming Gaussian distributed responses yn, we have

p(yn|xn,w) = N (w>xn, σ
2) =

1√
2πσ2

exp

{
− (yn −w>xn)2

2σ2

}

Thus the likelihood (assuming i.i.d. responses) or probability of data:

p(y |X,w) =
N∏

n=1

p(yn|xn,w) =

(
1

2πσ2

) N
2

exp

{
−

N∑
n=1

(yn −w>xn)2

2σ2

}
Note: xn (features) assumed given/fixed. Only modeling the response yn

Log-likelihood (ignoring constants w.r.t. w)

log p(y |X,w) ∝ − 1

2σ2

N∑
n=1

(yn −w>xn)2

Note that negative log likelihood (NLL) is similar to squared loss function

MLE will give the same solution as in the (unregularized) least squares

Machine Learning (CS771A) Learning via Probabilistic Modeling, Probabilistic Linear Regression 27



MLE for Probabilistic Linear Regression

Assuming Gaussian distributed responses yn, we have

p(yn|xn,w) = N (w>xn, σ
2) =

1√
2πσ2

exp

{
− (yn −w>xn)2

2σ2

}
Thus the likelihood (assuming i.i.d. responses) or probability of data:

p(y |X,w) =
N∏

n=1

p(yn|xn,w) =

(
1

2πσ2

) N
2

exp

{
−

N∑
n=1

(yn −w>xn)2

2σ2

}
Note: xn (features) assumed given/fixed. Only modeling the response yn

Log-likelihood (ignoring constants w.r.t. w)

log p(y |X,w) ∝ − 1

2σ2

N∑
n=1

(yn −w>xn)2

Note that negative log likelihood (NLL) is similar to squared loss function

MLE will give the same solution as in the (unregularized) least squares

Machine Learning (CS771A) Learning via Probabilistic Modeling, Probabilistic Linear Regression 27



MLE for Probabilistic Linear Regression

Assuming Gaussian distributed responses yn, we have

p(yn|xn,w) = N (w>xn, σ
2) =

1√
2πσ2

exp

{
− (yn −w>xn)2

2σ2

}
Thus the likelihood (assuming i.i.d. responses) or probability of data:

p(y |X,w) =
N∏

n=1

p(yn|xn,w) =

(
1

2πσ2

) N
2

exp

{
−

N∑
n=1

(yn −w>xn)2

2σ2

}
Note: xn (features) assumed given/fixed. Only modeling the response yn

Log-likelihood (ignoring constants w.r.t. w)

log p(y |X,w) ∝ − 1

2σ2

N∑
n=1

(yn −w>xn)2

Note that negative log likelihood (NLL) is similar to squared loss function

MLE will give the same solution as in the (unregularized) least squares

Machine Learning (CS771A) Learning via Probabilistic Modeling, Probabilistic Linear Regression 27



MLE for Probabilistic Linear Regression

Assuming Gaussian distributed responses yn, we have

p(yn|xn,w) = N (w>xn, σ
2) =

1√
2πσ2

exp

{
− (yn −w>xn)2

2σ2

}
Thus the likelihood (assuming i.i.d. responses) or probability of data:

p(y |X,w) =
N∏

n=1

p(yn|xn,w) =

(
1

2πσ2

) N
2

exp

{
−

N∑
n=1

(yn −w>xn)2

2σ2

}
Note: xn (features) assumed given/fixed. Only modeling the response yn

Log-likelihood (ignoring constants w.r.t. w)

log p(y |X,w) ∝ − 1

2σ2

N∑
n=1

(yn −w>xn)2

Note that negative log likelihood (NLL) is similar to squared loss function

MLE will give the same solution as in the (unregularized) least squares

Machine Learning (CS771A) Learning via Probabilistic Modeling, Probabilistic Linear Regression 27



MLE for Probabilistic Linear Regression

Assuming Gaussian distributed responses yn, we have

p(yn|xn,w) = N (w>xn, σ
2) =

1√
2πσ2

exp

{
− (yn −w>xn)2

2σ2

}
Thus the likelihood (assuming i.i.d. responses) or probability of data:

p(y |X,w) =
N∏

n=1

p(yn|xn,w) =

(
1

2πσ2

) N
2

exp

{
−

N∑
n=1

(yn −w>xn)2

2σ2

}
Note: xn (features) assumed given/fixed. Only modeling the response yn

Log-likelihood (ignoring constants w.r.t. w)

log p(y |X,w) ∝ − 1

2σ2

N∑
n=1

(yn −w>xn)2

Note that negative log likelihood (NLL) is similar to squared loss function

MLE will give the same solution as in the (unregularized) least squares

Machine Learning (CS771A) Learning via Probabilistic Modeling, Probabilistic Linear Regression 27



MAP Estimation for Probabilistic Linear Regression

We want to regularize our model, so we will use a prior distribution on the weight vector w . We
will use a multivariate Gaussian prior with zero mean

p(w) = N (0, ρ2ID) ∝ exp

{
−w>w

2ρ2

}

The log-likelihood, as we have already seen, is given by

log p(y |X,w) ∝ − 1

2σ2

N∑
n=1

(yn −w>xn)2

The MAP objective (log-posterior) will be the log-likelihood + log p(w)

− 1

2σ2

N∑
n=1

(yn −w>xn)2−w>w
2ρ2

Maximizing this is equivalent to minimizing the following w.r.t. w

ŵMAP = arg min
w

N∑
n=1

(yn −w>xn)2 +
σ2

ρ2
w>w

Assuming λ = σ2

ρ2 (regularization hyperparam), it’s equivalent to regularized (i.e., ridge) regression
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MLE vs MAP Estimation: An Illustration

wMAP is a compromise between prior’s mean and wMLE

In this case, doing MAP shrinks the estimate of w towards the prior’s mean
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MLE vs MAP for Linear Regression: Summary

MLE solution:

ŵMLE = arg min
w

N∑
n=1

(yn −w>xn)2

MAP solution:

ŵMAP = arg min
w

N∑
n=1

(yn −w>xn)2 +
σ2

ρ2
w>w

Some Take-home messages:
MLE estimation of a parameter leads to unregularized solutions

MAP estimation of a parameter leads to regularized solutions

A Gaussian likelihood model corresponds to using squared loss

A Gaussian prior on parameters acts as an `2 regularizer

Other likelihoods/priors can be chosen. E.g., using a Laplace likelihood model can give more
robustness to outliers than Gaussian likelihood

Note: Full Bayesian inference can be performed as well (not a focus of this course though)
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Probabilistic Modeling: Summary

A flexible way to model data by specifying a proper probabilistic model

Can choose likelihoods and priors based on the nature/property of data

Allows us to do Bayesian learning

Allows learning the full distribution of the parameters (note that MLE/MAP only give a “single best”
answer as a point estimate of the parameters)

Makes more robust predictions by posterior averaging (rather than using a single point estimate)

Allows getting an estimate of confidence in the model’s prediction (useful for doing Active Learning)

Allows learning the size/complexity of the model from data (no tuning)

Allows learning the hyperparameters from data (no tuning)

Allows learning in the presence of missing data

.. and many other benefits (a proper treatment deserves a separate course :) )

MLE/MAP estimation is also related to the optimization view of ML
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Next Class:
Probabilistic Models for Classification

(Logistic Regression)
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