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Learning as Optimization

Consider a supervised learning problem with training data {(xn, yn)}Nn=1

Goal: Find a function f that best approximates the x → y relationship

Define a “loss function” `(y , f (x)) : Error of f on an example (x , y)

Note: Choice of `() and f () will be problem specific, e.g.,

Least squares regression: `() is squared loss, f (x) = w>x

We would like to find f that minimizes the true loss or “risk” defined as

L(f ) = E(x,y)∼P [`(y , f (x)] =

∫
`(y , f (x)dP(x , y)

Problem: We (usually) don’t know the true distribution and only have finite set of samples from it,
in form of the N training examples {(xn, yn)}Nn=1

Solution: Work with the “empirical” risk defined on the training data

Lemp(f ) =
1

N

N∑
n=1

`(yn, f (xn))
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Learning as Optimization

To find the best f , we minimize the empirical risk w.r.t. f . Empirical Risk Minimization (ERM)

f̂ = arg min
f

Lemp(f ) = arg min
f

N∑
n=1

`(yn, f (xn))

We also want f to be “simple”. To do so, we add a “regularizer” R(f )

f̂ = arg min
f

N∑
n=1

`(yn, f (xn)) + λR(f )

The regularizer R(f ) is a measure of complexity of our model f

This is called Regularized (Empirical) Risk Minimization

We want both Lemp(f ) and R(f ) to be small

Small empirical error on training data and simple model

There is usually a trade-off between these two goals

The regularization hyperparameter λ can help us control this trade-off

Various choices for the regularizer R(f ); more on this later
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Regularization: Pictorially

Both curves have the same (zero) empirical error Lemp

Green curve has a smaller R(f ) (thus smaller complexity). We’ll look at forms of R(f ) later
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Learning as Optimization

Our goal is to solve the optimization problem

f̂ = arg min
f

N∑
n=1

`(yn, f (xn)) + λR(f ) = arg min
f

Lreg (f )

The function being optimized is Lreg (f ), our regularized loss function

Different learning problems basically differ in terms of choices of f , `, and R

Given a specific choice of f , `, and R, some questions to consider

Which method to use to solve the optimization problem?

How do we solve it efficienly?

Will there be (and can we find) a unique solution for f ?

We will revisit these questions later. First let’s look at an example problem
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Linear Regression
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Fitting a Line to the Data

Let’s assume the relationship between x and y to have a linear model

y = wx

Problem boils down to fitting a line to the data

w is the model parameter (slope of the line here)

Many w ’s (i.e., many lines) can be fit to this data

Which one is the best?
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Fitting a (Hyper)Plane to the Data

For 2-dim. inputs, we can fit a 2-dim. plane to the data

In higher dimensions, we can likewise fit a hyperplane w>x = 0

Defined by a D-dim vector w normal to the plane

Many planes are possible. Which one is the best?
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Linear Regression

Given: Training data with N examples {(xn, yn)}Nn=1, xn ∈ RD , yn ∈ R
Assume the following linear model with model parameters w ∈ RD

yn ≈ w>xn ⇒ yn ≈
D∑

d=1

wdxnd

The response yn is a linear combination of the features of the inputs xn

w ∈ RD is also called the (regression) weight vector

Can think of wd as weight/importance of d-th feature in the data

A simple and interpretable linear model. Can also re-express it compactly for all the N examples

y ≈ Xw (akin to a linear system of equations; w being the unknown)

Notation used here:

w ∈ RD and each xn ∈ RD are D × 1 column vectors

X = [x1 x2 . . . xN ]> is an N × D matrix of features

y = [y1 y2 . . . yN ]> is an N × 1 column vector of responses
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Linear Regression

Linear system of equations with w being the unknown..
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Linear Regression with Squared Loss

Our linear regression model: yn ≈ w>xn. The goal is to learn w ∈ RD

Let’s use the squared loss to define our loss function

`(yn,w>xn) = (yn −w>xn)2

Note: Squared loss chosen for simplicity; other losses can be used, e.g.,

`(yn,w>xn) = |yn −w>xn| (more robust to outliers)

Using the squared loss, the total (empirical) error on the training data

Lemp(w) =
N∑

n=1

`(yn,w>xn) =
N∑

n=1

(yn −w>xn)2

We’ll estimate w by minimizing Lemp(w) w.r.t. w (an optimization problem)

ŵ = arg min
w

N∑
n=1

(yn −w>xn)2
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Least Squares Linear Regression

Recall our objective function: Lemp =
∑N

n=1(yn −w>xn)2

Taking derivative1 of Lemp(w) w.r.t. w and setting to zero
N∑

n=1

2(yn − w>xn)
∂

∂w
(yn − w>xn) = 0 ⇒

N∑
n=1

xn(yn − x>n w) = 0

Simplifying further, we get a nice, closed form solution for w

w = (
N∑

n=1

xnx>n )−1
N∑

n=1

ynxn = (X>X)−1X>y

Note: xn is D × 1, X is N × D, y is N × 1

Analytic, closed form solution, but has some issues

We didn’t impose any regularization on w (thus prone to overfitting)

Have to invert a D × D matrix; prohibitive especially when D (and N) is large

The matrix X>X may not even be invertible (e.g., when D > N). Unique solution not guaranteed

1Please refer to the Matrix Cookbook for more results on vector/matrix derivatives
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Ridge Regression: Regularized Least Squares

Least Squares objective: Lemp =
∑N

n=1(yn −w>xn)2

No constraints/regularization on w . Components [w1,w2, . . . ,wD ] of w may become arbitrarily
large. Why is this a bad thing to have?

Let’s add squared `2 norm of w as a regularizer: R(f ) = R(w) = ||w ||2

This results in the so-called “Ridge Regression” model

Lreg =
N∑

n=1

(yn −w>xn)2+λ||w ||2

Note that ||w ||2 = w>w =
∑D

d=1 w
2
d

Minimizing Lreg will prevent components of w from becoming very large. Why is this nice?

Taking derivative of Lreg w.r.t. w and setting to zero gives (verify yourself)

w = (
N∑

n=1

xnx>n + λID)−1
N∑

n=1

ynxn = (X>X + λID)−1X>y
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Intuitively, Why Small Weights are Good?

Small weights ensure that the function y = f (x) = w>x is smooth (i.e., we expect similar x ’s to
have similar y ’s).

Below is an informal justification:

Consider two points xn ∈ RD and xm ∈ RD that are exactly similar in all features except the d-th
feature where they differ by a small value, say ε

Assuming a simple/smooth function f (x), yn and ym should also be close

However, as per the model y = f (x) = w>x , yn and ym will differ by εwd

Unless we constrain wd to have a small value, the difference εwd would also be very large (which
isn’t what we want).

That’s why regularizing (via `2 regularization) and making the individual components of the weight
vector small helps

Lesson: Don’t learn a model that gives a single feature too much importance in the final prediction!
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Ridge Regression: Effect of Regularization

Consider ridge regression on some data with 10 features (thus the weight vector w has 10
components)
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Solution via Gradient-based Methods

Both least squares and ridge regression require matrix inversion

Least Squares w = (X>X)−1X>y
Ridge w = (X>X + λID)−1X>y

This can be computationally very expensive when D is very large

We can instead solve for w more efficiently using generic/specialized optimization methods on the
respective loss functions (Lemp or Lreg )

A simple scheme can be the following iterative gradient-descent procedure

Start with an initial value of w = w (0)

Update w by moving along the gradient of the loss function L (Lemp or Lreg )

w (t) = w (t−1) − η ∂L
∂w

∣∣∣∣
w=w (t−1)

where η is the learning rate

Repeat until converge

For unreg. least squares, the gradient is ∂L
∂w = −

∑N
n=1 xn(yn − x>n w)
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Gradient-based Methods: Some Notes

Guaranteed to converge to a local minima

Converge to global minima if the function is convex

Formally: Convex if second derivative is non-negative everywhere (for scalar functions) or if Hessian
is positive semi-definite (for vector-valued functions). For a convex function, every local minima is
also a global minima.

Note: The squared loss function in linear regression is convex

With `2 regularizer, it becomes strictly convex (single global minima)

Learning rate is important (should not be too large or too small)

Can also use stochastic/online gradient descent for more speed-ups. Require computing the
gradients using only one or a small number of examples
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Some Aspects about Linear Regression

A simple and interpretable method. Very widely used.

Highly scalable using efficient optimization solvers

Ridge uses an `2 regularizer on weights. Other regularizers can be used

E.g., `1 regularization ||w ||1 =
∑D

d=1 |wd |
This regularizer promotes w to have very few nonzero components (reason discussed later)

Optimization is not as straightforward as the `2 regularizer case

We will also discuss this and other choices of regularizers in later classes

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn).

Another way to do nonlinear regression: yn ≈ f (xn) where f is modeled by a deep neural net

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Machine Learning (CS771A) Learning as Optimization: Linear Regression 18



Some Aspects about Linear Regression

A simple and interpretable method. Very widely used.

Highly scalable using efficient optimization solvers

Ridge uses an `2 regularizer on weights. Other regularizers can be used

E.g., `1 regularization ||w ||1 =
∑D

d=1 |wd |
This regularizer promotes w to have very few nonzero components (reason discussed later)

Optimization is not as straightforward as the `2 regularizer case

We will also discuss this and other choices of regularizers in later classes

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn).

Another way to do nonlinear regression: yn ≈ f (xn) where f is modeled by a deep neural net

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Machine Learning (CS771A) Learning as Optimization: Linear Regression 18



Some Aspects about Linear Regression

A simple and interpretable method. Very widely used.

Highly scalable using efficient optimization solvers

Ridge uses an `2 regularizer on weights. Other regularizers can be used

E.g., `1 regularization ||w ||1 =
∑D

d=1 |wd |
This regularizer promotes w to have very few nonzero components (reason discussed later)

Optimization is not as straightforward as the `2 regularizer case

We will also discuss this and other choices of regularizers in later classes

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn).

Another way to do nonlinear regression: yn ≈ f (xn) where f is modeled by a deep neural net

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Machine Learning (CS771A) Learning as Optimization: Linear Regression 18



Some Aspects about Linear Regression

A simple and interpretable method. Very widely used.

Highly scalable using efficient optimization solvers

Ridge uses an `2 regularizer on weights. Other regularizers can be used

E.g., `1 regularization ||w ||1 =
∑D

d=1 |wd |

This regularizer promotes w to have very few nonzero components (reason discussed later)

Optimization is not as straightforward as the `2 regularizer case

We will also discuss this and other choices of regularizers in later classes

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn).

Another way to do nonlinear regression: yn ≈ f (xn) where f is modeled by a deep neural net

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Machine Learning (CS771A) Learning as Optimization: Linear Regression 18



Some Aspects about Linear Regression

A simple and interpretable method. Very widely used.

Highly scalable using efficient optimization solvers

Ridge uses an `2 regularizer on weights. Other regularizers can be used

E.g., `1 regularization ||w ||1 =
∑D

d=1 |wd |
This regularizer promotes w to have very few nonzero components (reason discussed later)

Optimization is not as straightforward as the `2 regularizer case

We will also discuss this and other choices of regularizers in later classes

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn).

Another way to do nonlinear regression: yn ≈ f (xn) where f is modeled by a deep neural net

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Machine Learning (CS771A) Learning as Optimization: Linear Regression 18



Some Aspects about Linear Regression

A simple and interpretable method. Very widely used.

Highly scalable using efficient optimization solvers

Ridge uses an `2 regularizer on weights. Other regularizers can be used

E.g., `1 regularization ||w ||1 =
∑D

d=1 |wd |
This regularizer promotes w to have very few nonzero components (reason discussed later)

Optimization is not as straightforward as the `2 regularizer case

We will also discuss this and other choices of regularizers in later classes

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn).

Another way to do nonlinear regression: yn ≈ f (xn) where f is modeled by a deep neural net

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Machine Learning (CS771A) Learning as Optimization: Linear Regression 18



Some Aspects about Linear Regression

A simple and interpretable method. Very widely used.

Highly scalable using efficient optimization solvers

Ridge uses an `2 regularizer on weights. Other regularizers can be used

E.g., `1 regularization ||w ||1 =
∑D

d=1 |wd |
This regularizer promotes w to have very few nonzero components (reason discussed later)

Optimization is not as straightforward as the `2 regularizer case

We will also discuss this and other choices of regularizers in later classes

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn).

Another way to do nonlinear regression: yn ≈ f (xn) where f is modeled by a deep neural net

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Machine Learning (CS771A) Learning as Optimization: Linear Regression 18



Some Aspects about Linear Regression

A simple and interpretable method. Very widely used.

Highly scalable using efficient optimization solvers

Ridge uses an `2 regularizer on weights. Other regularizers can be used

E.g., `1 regularization ||w ||1 =
∑D

d=1 |wd |
This regularizer promotes w to have very few nonzero components (reason discussed later)

Optimization is not as straightforward as the `2 regularizer case

We will also discuss this and other choices of regularizers in later classes

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn).

Another way to do nonlinear regression: yn ≈ f (xn) where f is modeled by a deep neural net

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Machine Learning (CS771A) Learning as Optimization: Linear Regression 18



Some Aspects about Linear Regression

A simple and interpretable method. Very widely used.

Highly scalable using efficient optimization solvers

Ridge uses an `2 regularizer on weights. Other regularizers can be used

E.g., `1 regularization ||w ||1 =
∑D

d=1 |wd |
This regularizer promotes w to have very few nonzero components (reason discussed later)

Optimization is not as straightforward as the `2 regularizer case

We will also discuss this and other choices of regularizers in later classes

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn).

Another way to do nonlinear regression: yn ≈ f (xn) where f is modeled by a deep neural net

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Machine Learning (CS771A) Learning as Optimization: Linear Regression 18



Some Aspects about Linear Regression

A simple and interpretable method. Very widely used.

Highly scalable using efficient optimization solvers

Ridge uses an `2 regularizer on weights. Other regularizers can be used

E.g., `1 regularization ||w ||1 =
∑D

d=1 |wd |
This regularizer promotes w to have very few nonzero components (reason discussed later)

Optimization is not as straightforward as the `2 regularizer case

We will also discuss this and other choices of regularizers in later classes

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn).

Another way to do nonlinear regression: yn ≈ f (xn) where f is modeled by a deep neural net

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Machine Learning (CS771A) Learning as Optimization: Linear Regression 18



Some Aspects about Linear Regression

A simple and interpretable method. Very widely used.

Highly scalable using efficient optimization solvers

Ridge uses an `2 regularizer on weights. Other regularizers can be used

E.g., `1 regularization ||w ||1 =
∑D

d=1 |wd |
This regularizer promotes w to have very few nonzero components (reason discussed later)

Optimization is not as straightforward as the `2 regularizer case

We will also discuss this and other choices of regularizers in later classes

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn).

Another way to do nonlinear regression: yn ≈ f (xn) where f is modeled by a deep neural net

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Machine Learning (CS771A) Learning as Optimization: Linear Regression 18



Unsupervised Learning as Optimization

Can also formulate unsupervised learning problems as optimization problems

Consider an unsupervised learning problem with data X = {xn}Nn=1

No labels. We are interested in learning a new representation Z = {zn}Nn=1

Assume a function f that models the relationship between xn and zn

xn ≈ f (zn) ∀n

In this case, we can define a loss function `(xn, f (zn)) that measures how well f can “reconstruct”
the original xn from its new representation zn

This generic unsupervised learning problem can thus be written as

f̂ = arg min
f ,Z

N∑
n=1

`(xn, f (zn)) + λR(f ,Z)

In this case both f and Z need to be learned (usually, in an alternating fashion, until you converge;
more on this when we discuss unsupervised learning)
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