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Learning as Optimization

o Consider a supervised learning problem with training data {(x,, y,)}"N_,

@ Goal: Find a function f that best approximates the x — y relationship
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@ Goal: Find a function f that best approximates the x — y relationship
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@ Problem: We (usually) don't know the true distribution and only have finite set of samples from it,
in form of the N training examples {(x,, yn)}V_,
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Learning as Optimization

o Consider a supervised learning problem with training data {(x,, y,)}"N_,
@ Goal: Find a function f that best approximates the x — y relationship
@ Define a "loss function” ¢(y, f(x)) : Error of f on an example (x,y)

@ Note: Choice of ¢() and f() will be problem specific, e.g.,

o Least squares regression: £() is squared loss, f(x) = w' x

@ We would like to find f that minimizes the true loss or “risk” defined as

L) = Buyyopltly (0] = [ Uy F(x)dP(x, )

@ Problem: We (usually) don't know the true distribution and only have finite set of samples from it,
in form of the N training examples {(x,, yn)}V_,

@ Solution: Work with the “empirical” risk defined on the training data

N

Lemp(f) = %Zg(ym f(Xn))

n=1
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Learning as Optimization

@ To find the best f, we minimize the empirical risk w.r.t. f. Empirical Risk Minimization (ERM)
N

f=arg mfin Lemp(f) = arg mfin Zé(yn, f(xn))

n=1
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Learning as Optimization

@ To find the best f, we minimize the empirical risk w.r.t. f. Empirical Risk Minimization (ERM)
N
f=arg mfin Lemp(f) = arg mfin Zlé(y,,, f(xn))
n=
e We also want f to be “simple”. To do so, we add a “regularizer” R(f)

N
f = argmin Zﬁ(yn, f(xn)) + AR(f)
f

n=1

@ The regularizer R(f) is a measure of complexity of our model f
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@ The regularizer R(f) is a measure of complexity of our model f

@ This is called Regularized (Empirical) Risk Minimization
e We want both Lemp(f) and R(f) to be small

e Small empirical error on training data and simple model
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N
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f
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@ The regularizer R(f) is a measure of complexity of our model f
@ This is called Regularized (Empirical) Risk Minimization
e We want both Lemp(f) and R(f) to be small

e Small empirical error on training data and simple model
e There is usually a trade-off between these two goals

o The regularization hyperparameter A can help us control this trade-off
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Learning as Optimization

@ To find the best f, we minimize the empirical risk w.r.t. f. Empirical Risk Minimization (ERM)
N
f=arg mfin Lemp(f) = arg mfin Zlé(y,,, f(xn))
n=
e We also want f to be “simple”. To do so, we add a “regularizer” R(f)

N
f = argmin Zﬁ(yn, f(xn)) + AR(f)
f

n=1

@ The regularizer R(f) is a measure of complexity of our model f

@ This is called Regularized (Empirical) Risk Minimization
e We want both Lemp(f) and R(f) to be small

e Small empirical error on training data and simple model

e There is usually a trade-off between these two goals

o The regularization hyperparameter A can help us control this trade-off
@ Various choices for the regularizer R(f); more on this later
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Regularization: Pictorially

Both curves have the same (zero) empirical error Lep,

Green curve has a smaller R(f) (thus smaller complexity). We'll look at forms of R(f) later

Output (y)

Input (x)
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Learning as Optimization

@ Our goal is to solve the optimization problem

Machine Learning (CS771A)

N

f=arg min ;é(yn, f(x,)) + AR(f) = arg min Lreg(F)
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@ Our goal is to solve the optimization problem

@ The function being optimized is L.z (f), our regularized loss function
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@ Our goal is to solve the optimization problem
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f=arg min ;((yn, f(x,)) + AR(f) = arg min Lreg(F)

@ The function being optimized is L.z (f), our regularized loss function

o Different learning problems basically differ in terms of choices of f, ¢, and R
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@ The function being optimized is L.z (f), our regularized loss function
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@ Our goal is to solve the optimization problem

N

f=arg min ;((yn, f(x,)) + AR(f) = arg min Lreg(F)

@ The function being optimized is L.z (f), our regularized loss function

o Different learning problems basically differ in terms of choices of f, ¢, and R

@ Given a specific choice of f, £, and R, some questions to consider

o Which method to use to solve the optimization problem?

e How do we solve it efficienly?

o Will there be (and can we find) a unique solution for f 7
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Learning as Optimization

@ Our goal is to solve the optimization problem

N

f=arg min ;((yn, f(x,)) + AR(f) = arg min Lreg(F)

@ The function being optimized is L.z (f), our regularized loss function

o Different learning problems basically differ in terms of choices of f, ¢, and R

@ Given a specific choice of f, £, and R, some questions to consider

o Which method to use to solve the optimization problem?

e How do we solve it efficienly?

o Will there be (and can we find) a unique solution for f 7

@ We will revisit these questions later. First let's look at an example problem
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Linear Regression
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Fitting a Line to the Data

@ Let's assume the relationship between x and y to have a linear model
y = wx
@ Problem boils down to fitting a line to the data

@ w is the model parameter (slope of the line here)

Machine Learning (CS771A) Learning as Optimization: Linear Regression



Fitting a Line to the Data

@ Let's assume the relationship between x and y to have a linear model
y = wx
@ Problem boils down to fitting a line to the data

@ w is the model parameter (slope of the line here)

Many w's (i.e., many lines) can be fit to this data

@ Which one is the best?
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Fitting a (Hyper)Plane to the Data

@ For 2-dim. inputs, we can fit a 2-dim. plane to the data

T

@ In higher dimensions, we can likewise fit a hyperplane w'x =0

o Defined by a D-dim vector w normal to the plane

@ Many planes are possible. Which one is the best?
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Linear Regression

e Given: Training data with N examples {(xn,yn)}N 1, x, € RP, y, € R

@ Assume the following linear model with model parameters w € RP

D

Yn = WTxn = Yn = E WdXnd
d=1

@ The response y, is a linear combination of the features of the inputs x,
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Linear Regression

Given: Training data with N examples {(x,,y.)}";, x, € RP, y, € R

Assume the following linear model with model parameters w € RP

(]

D

Yn = WTxn = Yn = E WdXnd
d=1

The response y, is a linear combination of the features of the inputs x,

w € RP is also called the (regression) weight vector

[

o Can think of wy as weight/importance of d-th feature in the data
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Given: Training data with N examples {(x,,y.)}";, x, € RP, y, € R

Assume the following linear model with model parameters w € RP

D

Yn = WTxn = Yn = E WdXnd
d=1

The response y, is a linear combination of the features of the inputs x,

w € RP is also called the (regression) weight vector

o Can think of wy as weight/importance of d-th feature in the data

A simple and interpretable linear model. Can also re-express it compactly for all the N examples

y ~ Xw (akin to a linear system of equations; w being the unknown)
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Linear Regression

Given: Training data with N examples {(x,,y.)}";, x, € RP, y, € R

Assume the following linear model with model parameters w € RP

D

Yn = WTxn = Yn = E WdXnd
d=1

The response y, is a linear combination of the features of the inputs x,

w € RP is also called the (regression) weight vector

o Can think of wy as weight/importance of d-th feature in the data

A simple and interpretable linear model. Can also re-express it compactly for all the N examples
y ~ Xw (akin to a linear system of equations; w being the unknown)
@ Notation used here:

o w € RP and each x, € RP are D x 1 column vectors
o X=|[x1x2 ... xN]T is an N x D matrix of features
oy=1[nny2 ... yw]" isan N x 1 column vector of responses
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Linear Regression

Linear system of equations with w being the unknown..

Nx1

NxD

Learning as Optimization: Linear Regression
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Linear Regression with Squared Loss

Tx,. The goal is to learn w € RP

@ Our linear regression model: y, ~ w
@ Let's use the squared loss to define our loss function

£(Yn, WTXn) =(yn— WTXn)2
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Linear Regression with Squared Loss

T

@ Our linear regression model: y, ~ w'x,. The goal is to learn w € RP

@ Let's use the squared loss to define our loss function

£(Yn, WTXn) =(yn— WTXn)2

@ Note: Squared loss chosen for simplicity; other losses can be used, e.g.,

Ymw ' xp) = |yn — w' x,| (more robust to outliers)
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Linear Regression with Squared Loss

T

@ Our linear regression model: y, ~ w'x,. The goal is to learn w € RP

@ Let's use the squared loss to define our loss function
(Y, WTXn) =(yn— WTXn)2
@ Note: Squared loss chosen for simplicity; other losses can be used, e.g.,

Ymw ' xp) = |yn — w' x,| (more robust to outliers)

@ Using the squared loss, the total (empirical) error on the training data
N

N
Lemp(W) = ZE(Yn, WTXn) = Z(yn - WTXn)z

n=1 n=1
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Linear Regression with Squared Loss

T

@ Our linear regression model: y, ~ w'x,. The goal is to learn w € RP

@ Let's use the squared loss to define our loss function

£(Yn, WTXn) =(yn— WTXn)2

@ Note: Squared loss chosen for simplicity; other losses can be used, e.g.,

Ymw ' xp) = |yn — w' x,| (more robust to outliers)

@ Using the squared loss, the total (empirical) error on the training data
N

N
Lemp(W) = ZE(Yn, WTXn) = Z(yn - WTXn)z

n=1 n=1

o We'll estimate w by minimizing Lemp(w) w.r.t. w (an optimization problem)
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Least Squares Linear Regression

e Recall our objective function: Ley, = Z,’y:l(y,, —w'x,)?

IPlease refer to the Matrix Cookbook for more results on vector/matrix derivatives

Machine Learning (CS771A) Learning as Optimization: Linear Regression

12



Least Squares Linear Regression

e Recall our objective function: Ley, = Z,’y:l(y,, —w'x,)?
e Taking derivative! of Lemp(w) w.r.t. w and setting to zero
N 9 N
T T _ LT _
Z2(yn7w xn)a—w(y,,fw xn)=0 = Zx,,(y,, X, w)=0

n=1 n=1

IPlease refer to the Matrix Cookbook for more results on vector/matrix derivatives
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Least Squares Linear Regression

e Recall our objective function: Ley, = Z,’y:l(y,, —w'x,)?
e Taking derivative! of Lemp(w) w.r.t. w and setting to zero
z 0
T pr—
;2(yn7w X")GW( =W Xx,)=0 = nz:lx,, a w)=0
@ Simplifying further, we get a nice, closed form solution for w

Zx X, Zynx,,_ ) 1XT

@ Note: x,isDx1, XisNxD,yisNx1

IPlease refer to the Matrix Cookbook for more results on vector/matrix derivatives
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Least Squares Linear Regression

e Recall our objective function: Ley, = Z,’y:l(y,, —w'x,)?

e Taking derivative! of Lemp(w) w.r.t. w and setting to zero
z 0
T pr—
;2(yn7w X")GW( " — W xn)fO = nz:lx,, n w)=0
@ Simplifying further, we get a nice, closed form solution for w

Zx X, Zynx,,_ ) 1XT

@ Note: x,isDx1, XisNxD,yisNx1

@ Analytic, closed form solution, but has some issues

IPlease refer to the Matrix Cookbook for more results on vector/matrix derivatives
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@ Simplifying further, we get a nice, closed form solution for w

Zx X, Zynxn_ ) 1XT

@ Note: x,isDx1, XisNxD,yisNx1

@ Analytic, closed form solution, but has some issues
o We didn't impose any regularization on w (thus prone to overfitting)

IPlease refer to the Matrix Cookbook for more results on vector/matrix derivatives
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Least Squares Linear Regression

e Recall our objective function: Ley, = Z,’y:l(y,, —w'x,)?

e Taking derivative! of Lemp(w) w.r.t. w and setting to zero
z 0
T pr—
;2(yn7w X")GW( n— W xn)fO = nz:lx,, n w)=0
@ Simplifying further, we get a nice, closed form solution for w

Zx X, Zynxn_ ) 1XT

@ Note: x,isDx1, XisNxD,yisNx1

@ Analytic, closed form solution, but has some issues
o We didn't impose any regularization on w (thus prone to overfitting)

e Have to invert a D X D matrix; prohibitive especially when D (and N) is large

IPlease refer to the Matrix Cookbook for more results on vector/matrix derivatives
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Least Squares Linear Regression

e Recall our objective function: Ley, = Z,’y:l(y,, —w'x,)?

e Taking derivative! of Lemp(w) w.r.t. w and setting to zero

N 8 N

;z(yn —wixo) oy~ w X)) =0 = Z(y — X, w) =0
@ Simplifying further, we get a nice, closed form solution for w

N N
w= (Z XXy )" Zy,,x,, =(X"X)"'XTy
n=1 n=1

@ Note: x,isDx1, XisNxD,yisNx1
@ Analytic, closed form solution, but has some issues
o We didn't impose any regularization on w (thus prone to overfitting)
e Have to invert a D X D matrix; prohibitive especially when D (and N) is large

e The matrix XX may not even be invertible (e.g., when D > N). Unique solution not guaranteed

Please refer to the Matrix Cookbook for more results on vector/matrix derivatives
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Ridge Regression: Regularized Least Squares
o Least Squares objective: Lemp = S, (v — w T x,)?

@ No constraints/regularization on w. Components [wy, wa, ..., wp] of w may become arbitrarily
large. Why is this a bad thing to have?
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o Least Squares objective: Lemp = S, (v — w T x,)?

@ No constraints/regularization on w. Components [wy, wa, ..., wp] of w may become arbitrarily
large. Why is this a bad thing to have?

e Let's add squared ¢, norm of w as a regularizer: R(f) = R(w) = ||w/|?
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Ridge Regression: Regularized Least Squares

@ Least Squares objective: Lemp = ZnNzl(y,, —w'x,)?
No constraints/regularization on w. Components [wy, wy, ..., wp] of w may become arbitrarily
large. Why is this a bad thing to have?
Let's add squared /> norm of w as a regularizer: R(f) = R(w) = ||w/||?
This results in the so-called “Ridge Regression” model

N

Lreg = Z(Yn - WTXn)2+)‘HWH2

Note that ||w|]? = w'w = 25:1 wj

Machine Learning (CS771A)

n=1
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Ridge Regression: Regularized Least Squares

Least Squares objective: Lemp = Son_, (yn — w ' x,)?2

No constraints/regularization on w. Components [wy, wy, ..., wp] of w may become arbitrarily
large. Why is this a bad thing to have?

Let's add squared /> norm of w as a regularizer: R(f) = R(w) = ||w/||?
This results in the so-called “Ridge Regression” model
N
Lreg = Z(Yn - WTXn)2+)‘HWH2
n=1

Note that ||w|]? = w'w = 25:1 wj

Minimizing L. will prevent components of w from becoming very large. Why is this nice?
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Ridge Regression: Regularized Least Squares

o Least Squares objective: Lemp = S, (v — w T x,)?

@ No constraints/regularization on w. Components [wy, wa, ..., wp] of w may become arbitrarily
large. Why is this a bad thing to have?

e Let's add squared ¢, norm of w as a regularizer: R(f) = R(w) = ||w/|?

@ This results in the so-called “Ridge Regression” model

N

Lreg = Z(Yn - WTXn)2+)‘HWH2

n=

o Note that ||w|?=w'w = 25:1 wj

1

@ Minimizing L, will prevent components of w from becoming very large. Why is this nice?

@ Taking derivative of L,z w.r.t. w and setting to zero gives (verify yourself)

Machine Learning (CS771A)

N
w = (anan + Alp
n=1

N
)7 yaxn = (XTX + M) Xy

n=1

Learning as Optimization: Linear Regression
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Intuitively, Why Small Weights are Good?

T

@ Small weights ensure that the function y = f(x) = w ' x is smooth (i.e., we expect similar x’s to

have similar y's).
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Intuitively, Why Small Weights are Good?
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@ Small weights ensure that the function y = f(x) = w ' x is smooth (i.e., we expect similar x’s to

have similar y's). Below is an informal justification:
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Intuitively, Why Small Weights are Good?
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@ Small weights ensure that the function y = f(x) = w ' x is smooth (i.e., we expect similar x’s to

have similar y's). Below is an informal justification:

e Consider two points x, € RP and x,,, € RP that are exactly similar in all features except the d-th
feature where they differ by a small value, say €
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Intuitively, Why Small Weights are Good?

@ Small weights ensure that the function y = f(x) = w ' x is smooth (i.e., we expect similar x's to
have similar y's). Below is an informal justification:

e Consider two points x, € RP and x,,, € RP that are exactly similar in all features except the d-th
feature where they differ by a small value, say €

@ Assuming a simple/smooth function f(x), y, and y,, should also be close
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Intuitively, Why Small Weights are Good?

T

Small weights ensure that the function y = f(x) = w' x is smooth (i.e., we expect similar x's to

have similar y's). Below is an informal justification:

Consider two points x, € RP and x,,, € RP that are exactly similar in all features except the d-th
feature where they differ by a small value, say €

@ Assuming a simple/smooth function f(x), y, and y,, should also be close

@ However, as per the model y = f(x) = w ' x, y, and y,, will differ by ew,
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x is smooth (i.e., we expect similar x's to

Consider two points x, € RP and x,,, € RP that are exactly similar in all features except the d-th
feature where they differ by a small value, say €

Assuming a simple/smooth function f(x), y, and y,, should also be close
However, as per the model y = f(x) = w'x, y, and y,, will differ by ewy

Unless we constrain wy to have a small value, the difference ewy would also be very large (which
isn't what we want).
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feature where they differ by a small value, say €

@ Assuming a simple/smooth function f(x), y, and y,, should also be close
@ However, as per the model y = f(x) = w ' x, y, and y,, will differ by ew,

@ Unless we constrain wy to have a small value, the difference ewy would also be very large (which
isn't what we want).

That's why regularizing (via ¢, regularization) and making the individual components of the weight
vector small helps
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Intuitively, Why Small Weights are Good?

Small weights ensure that the function y = f(x) = w'

have similar y's). Below is an informal justification:

x is smooth (i.e., we expect similar x's to

Consider two points x, € RP and x,,, € RP that are exactly similar in all features except the d-th
feature where they differ by a small value, say €

Assuming a simple/smooth function f(x), y, and y,, should also be close
However, as per the model y = f(x) = w'x, y, and y,, will differ by ewy

Unless we constrain wy to have a small value, the difference ewy would also be very large (which
isn't what we want).

That's why regularizing (via ¢, regularization) and making the individual components of the weight

vector small helps

Lesson: Don’t learn a model that gives a single feature too much importance in the final prediction!
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Ridge Regression: Effect of Regularization

o Consider ridge regression on some data with 10 features (thus the weight vector w has 10

components)

Effect of regularization on the weights

Now S
= = =

a8
T

Value of the weights
Soh 2 o
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o~
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Solution via Gradient-based Methods

@ Both least squares and ridge regression require matrix inversion
Least Squares w = (X'X)7 !XTy
Ridge w = (X'X+Mp) !XTy

@ This can be computationally very expensive when D is very large
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Ridge w = (X'X+Mp) !XTy

@ This can be computationally very expensive when D is very large

@ We can instead solve for w more efficiently using generic/specialized optimization methods on the
respective loss functions (Lemp Of Lyeg)
@ A simple scheme can be the following iterative gradient-descent procedure

o Start with an initial value of w = w®
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Solution via Gradient-based Methods

@ Both least squares and ridge regression require matrix inversion
Least Squares w = (X'X)7 !XTy
Ridge w = (X'X+Mp) !XTy

@ This can be computationally very expensive when D is very large

@ We can instead solve for w more efficiently using generic/specialized optimization methods on the
respective loss functions (Lemp Of Lyeg)

@ A simple scheme can be the following iterative gradient-descent procedure

o Start with an initial value of w = w®

o Update w by moving along the gradient of the loss function L (Lemp of Lreg)

W — e _ oL
. . ow w=w(t—1)
where 7 is the learning rate
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@ This can be computationally very expensive when D is very large

@ We can instead solve for w more efficiently using generic/specialized optimization methods on the
respective loss functions (Lemp Of Lyeg)

@ A simple scheme can be the following iterative gradient-descent procedure
o Start with an initial value of w = w©®

o Update w by moving along the gradient of the loss function L (Lemp of Lreg)

- L
W — e _ 90
. . ow w=w(t—1)
where 7 is the learning rate

o Repeat until converge

Machine Learning (CS771A) Learning as Optimization: Linear Regression

16



Solution via Gradient-based Methods

@ Both least squares and ridge regression require matrix inversion
Least Squares w = (X'X)7 !XTy
Ridge w = (X'X+Mp) !XTy

@ This can be computationally very expensive when D is very large

@ We can instead solve for w more efficiently using generic/specialized optimization methods on the
respective loss functions (Lemp Of Lyeg)
@ A simple scheme can be the following iterative gradient-descent procedure
o Start with an initial value of w = w(®

o Update w by moving along the gradient of the loss function L (Lemp of Lreg)

_ oL
w® — - _ oL
. . ow w=w(t—1)
where 7 is the learning rate
o Repeat until converge
o For unreg. least squares, the gradient is 95 = — Zﬁzl xn(Yn — X, w)
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Gradient-based Methods: Some Notes

@ Guaranteed to converge to a local minima

@ Converge to global minima if the function is convex

Convex

Non-convex
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@ Converge to global minima if the function is convex

Convex

Non-convex

A B

@ Formally: Convex if second derivative is non-negative everywhere (for scalar functions) or if Hessian
is positive semi-definite (for vector-valued functions). For a convex function, every local minima is
also a global minima.
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@ Formally: Convex if second derivative is non-negative everywhere (for scalar functions) or if Hessian
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o With /¢, regularizer, it becomes strictly convex (single global minima)

Machine Learning (CS771A) Learning as Optimization: Linear Regression 17



Gradient-based Methods: Some Notes

@ Guaranteed to converge to a local minima
@ Converge to global minima if the function is convex
Convex
Non-convex
A B
@ Formally: Convex if second derivative is non-negative everywhere (for scalar functions) or if Hessian

is positive semi-definite (for vector-valued functions). For a convex function, every local minima is
also a global minima.

@ Note: The squared loss function in linear regression is convex

o With /¢, regularizer, it becomes strictly convex (single global minima)

Learning rate is important (should not be too large or too small)
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Gradient-based Methods: Some Notes

@ Guaranteed to converge to a local minima
@ Converge to global minima if the function is convex
Convex
Non-convex
A B
@ Formally: Convex if second derivative is non-negative everywhere (for scalar functions) or if Hessian

is positive semi-definite (for vector-valued functions). For a convex function, every local minima is
also a global minima.

@ Note: The squared loss function in linear regression is convex

o With /¢, regularizer, it becomes strictly convex (single global minima)

Learning rate is important (should not be too large or too small)

o Can also use stochastic/online gradient descent for more speed-ups. Require computing the
gradients using only one or a small number of examples
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Some Aspects about Linear Regression

@ A simple and interpretable method. Very widely used.
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o Ridge uses an ¢, regularizer on weights. Other regularizers can be used

N D
o E.g., {1 regularization ||w|[1 = >",_; |wal
e This regularizer promotes w to have very few nonzero components (reason discussed later)

e Optimization is not as straightforward as the ¢ regularizer case
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e Optimization is not as straightforward as the ¢ regularizer case

o We will also discuss this and other choices of regularizers in later classes
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Some Aspects about Linear Regression

A simple and interpretable method. Very widely used.
Highly scalable using efficient optimization solvers
Ridge uses an ¢, regularizer on weights. Other regularizers can be used
o E.g., {1 regularization ||w||; = 25:1 |wq|
e This regularizer promotes w to have very few nonzero components (reason discussed later)
e Optimization is not as straightforward as the ¢ regularizer case
o We will also discuss this and other choices of regularizers in later classes
The basic (regularized) linear regression can also be easily extended to

o Nonlinear Regression y, = w ' ¢(x,) by replacing the original feature vector x, by a nonlinear
transformation ¢(x,).

o Another way to do nonlinear regression: y, ~ f(x,) where f is modeled by a deep neural net

o Generalized Linear Model y, = g(wa,,) when response y, is not real-valued but

binary/categorical /count, etc, and g is a “link function”
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Unsupervised Learning as Optimization

@ Can also formulate unsupervised learning problems as optimization problems
o Consider an unsupervised learning problem with data X = {x,}V_,

o No labels. We are interested in learning a new representation Z = {z,}V_,
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Unsupervised Learning as Optimization

@ Can also formulate unsupervised learning problems as optimization problems
o Consider an unsupervised learning problem with data X = {x,}V_,
o No labels. We are interested in learning a new representation Z = {z,}V_,

@ Assume a function f that models the relationship between x, and z,

X, =~ f(z,) Vn
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Unsupervised Learning as Optimization

Can also formulate unsupervised learning problems as optimization problems

Consider an unsupervised learning problem with data X = {x,}N_;

No labels. We are interested in learning a new representation Z = {z,}N_,

Assume a function f that models the relationship between x, and z,
xn = f(z,) Vn

@ In this case, we can define a loss function ¢(x,, f(z,)) that measures how well f can “reconstruct”
the original x, from its new representation z,

@ This generic unsupervised learning problem can thus be written as
N
f=arg rpin xn, f(zn)) + AR(f, Z)

Z
n=1

In this case both f and Z need to be learned (usually, in an alternating fashion, until you converge;
more on this when we discuss unsupervised learning)
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