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A Prelude: Linear Models

Linear models are nice and simple

Were some of the first models for learning from data (e.g., Perceptron, 1958)

But linear models have limitations: Can’t learn nonlinear functions

Before kernel methods (e.g., SVMs) were invented, people thought about this a lot and tried to
come up with ways to address this
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Multi-layer Perceptron

Composed of several Perceptron-like units arranged in multiple layers

Consists of an input layer, one or more hidden layers, and an output layer

Nodes in the hidden layers compute a nonlinear transform of the inputs

Also called a Feedforward Neural Network

“Feedforward”: no backward connections between layers (no loops)

Note: All nodes between layers are assumed connected with each other

Universal Function Approximator (Hornik, 1991): A one hidden layer FFNN with sufficiently large
number of hidden nodes can approximate any function

Caveat: This results is only in terms of theoretical feasibility. Learning the model can be very difficult
in practice (e.g., due to optimization difficulties)
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What do Hidden Layers Learn?

Hidden layers can automatically extract features from data

The bottom-most hidden layer captures very low level features (e.g., edges). Subsequent hidden
layers learn progressively more high-level features (e.g., parts of objects) that are composed of
previous layer’s features

Machine Learning (CS771A) Deep Learning: Feedforward Neural Nets and CNNs 4



What do Hidden Layers Learn?

Hidden layers can automatically extract features from data

The bottom-most hidden layer captures very low level features (e.g., edges). Subsequent hidden
layers learn progressively more high-level features (e.g., parts of objects) that are composed of
previous layer’s features
Machine Learning (CS771A) Deep Learning: Feedforward Neural Nets and CNNs 4



A Simple Feedforward Neural Net

Below: FFNN with 4 inputs, one hidden layer with 3 nodes, and 1 output

Each hidden node computes a nonlinear transformation of its incoming inputs

Weighted linear combination followed by a nonlinear “activation function”

Nonlinearity required. Otherwise, the model would reduce to a linear model

Output y is a weighted comb. of the preceding layer’s hidden nodes (followed by another transform
if y isn’t real valued, e.g., binary/multiclass label)
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Feedforward Neural Net

For an FFNN with D inputs x = [x1, . . . , xD ]

, a single hidden layer with K hidden nodes
h = [h1, . . . , hK ], and a scalar-valued output node y

y = v>h = v>f (W>x)

where v = [v1 v2 . . . vK ] ∈ RK , W = [w 1 w 2 . . . wK ] ∈ RD×K , f is the nonlinear activation
function

Each hidden node’s value is computed as: hk = f (w>k x) = f (
∑D

d=1 wdkxd)
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(Deeper) Feedforward Neural Net

Feedforward neural net with L hidden layers h(1),h(2), . . . ,h(L) where

h(1) = f (W(1)>x) and h(`) = f (W(`)>h(`−1)), ` ≥ 2

Note: The hidden layer ` contains K` hidden nodes, W(1) is of size D × K1, W(`) for ` ≥ 2 is of
size K` × K`+1, v is of size KL × 1
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Nonlinear Activation Functions

Some popular choices for the nonlinear activation function f

Sigmoid: f (x) = σ(x) = 1
1+exp(−x)

(range between 0-1)

tanh: f (x) = 2σ(2x) − 1 (range between -1 and +1)

Rectified Linear Unit (ReLU): f (x) = max(0, x)

Sigmoid saturates and can kill gradients. Also not “zero-centered”

tanh also saturates but is zero-centered (thus preferred over sigmoid)

ReLU is currently the most popular (also cheap to compute)
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Learning Feedforward Neural Nets

Want to learn the parameters by minimizing some loss function

Backpropagation (gradient descent + chain rule for derivatives) is commonly used to do this
efficiently
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Learning Feedforward Neural Nets

Consider the feedforward neural net with one hidden layer

Recall that h = [h1 h2 . . . hK ] = f (W>x)

Assuming a regression problem, the optimization problem would be

min
W,v

1

2

N∑
n=1

(
yn − v>f (W>xn)

)2
= min

W,v

1

2

N∑
n=1

(
yn −

K∑
k=1

vk f (w
>
k xn)

)2

where w k is the k-th column of the D × K matrix W
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Learning Feedforward Neural Nets

We can learn the parameters by doing gradient descent (or stochastic gradient descent) on the
objective function

L =
1

2

N∑
n=1

(
yn −

K∑
k=1

vk f (w
>
k xn)

)2

=
1

2

N∑
n=1

(
yn − v>hn)

)2

Gradient w.r.t. v = [v1 v2 . . . vK ] is straightforward

∂L
∂v

= −
N∑

n=1

(
yn −

K∑
k=1

vk f (w
>
k xn)

)
hn = −

N∑
n=1

enhn

Gradient w.r.t. the weights W = [w 1 w 2 . . . wK ] is a bit more involved due to the presence of f
but can be computed using chain rule

∂L
∂w k

=
∂L
∂fk

∂fk

∂w k

(note: fk = f (w>
k x))

We have: ∂L
∂fk

= −
∑N

n=1(yn −
∑K

k=1 vk f (w
>
k xn))vk = −

∑N
n=1 envk

We have: ∂fk
∂wk

=
∑N

n=1 f
′(w>

k xn)xn, where f ′(w>
k xn) is f ’s derivative at w>k xn

These calculations can be done efficiently using backpropagation
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Backpropagation

Basically consists of a forward pass and a backward pass

Forward pass computes the errors en using the current parameters

Backward pass computes the gradients and updates the parameters, starting from the parameters
at the top layer and then moving backwards

Also good at reusing previous computations (updates of parameters at any layer depends on
parameters at the layer above)
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Kernel Methods vs Deep Neural Nets

Recall the prediction rule for a kernel method (e.g., kernel SVM)

y =
N∑

n=1

αnk(xn, x)

This is analogous to a single hidden layer NN with fixed/pre-defined hidden nodes {k(xn, x)}Nn=1

and output layer weights {αn}Nn=1

The prediction rule for a deep neural network

y =
K∑

k=1

vkhk

In this case, the hk ’s are learned from data (possibly after multiple layers of nonlinear
transformations)

Both kernel methods and deep NNs be seen as using nonlinear basis functions for making
predictions. Kernel methods use fixed basis functions (defined by the kernel) whereas NN learns the
basis functions adaptively from data
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Wide vs Deep?

Why might we prefer a deep model over a wide and shallow model?

An informal justification:

- Deep “programs” can reuse computational subroutines (and are more compact)

Learning Certain functions may require a huge number of units in a shallow model
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Convolutional Neural Network (CNN)

A feedforward neural network with a special structure

Sparse “local” connectivity between layers (except the last output layer). Reduces the number of
parameters to be learned

Shared weights (like a “global” filter). Helps capture the local properties of the signal (useful for
data such as images or time-series)
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Convolutional Neural Network (CNN)

Uses a sequence of 2 operations, convolution and pooling (subsampling), applied repeatedly on the
input data

Convolution: Extract “local” properties of the signal. Uses a set of “filters” that have to be learned
(these are the “weighted” W between layers)

Pooling: Downsamples the outputs to reduce the size of representation

Note: A nonlinearity is also introduced after the convolution layer
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Convolution

An operation that captures local (e.g., spatial) properties of a signal

Mathematically, the operation is defined as

hkij = f ((W k ∗ X)ij + bk)

where W k is a filter, ∗ is the convolution operator, and f is a nonlinearity

Usually a number of filters {W k}Kk=1 are applied (each will produce a separate “feature map”).
These filters have to be learned

Size of these filters have to be specified
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Pooling/Subsampling

This operation is used to reduce the size of the representation
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Deep Neural Nets: Some Comments

Highly effective in learning good feature representations from data in an “end-to-end” manner

The objective functions of these models are highly non-convex

But lots of recent work on non-convex optimization, so non-convexity doesn’t scare us (that much)
anymore

Training these models is computationally very expensive

But GPUs can help to speed up many of the computations

Training these models can be tricky, especially a proper initialization

But now we have several ways to intelligently initialize these models (e.g., unsupervised layer-wise
pre-training)

Deep learning models can also be probabilistic and generative, e.g., deep belief networks (we did
not consider these here)
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