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Why Learning Theory?

How can we tell if our learning algo will do a good job in future (test time)?

Experimental results

Theoretical analysis

Why theory?

Can only run a limited number of experiments..

Experiments rarely tell us what will go wrong

Want to deploy our learning algorithms on Mars

Using learning theory, we can make formal statements/give guarantees on

Expected performance (“generalization”) of a learning algorithm on test data

Number of examples required to attain a certain level of test accuracy

Hardness of learning problems in general

“Theory is the first term in the Taylor series expansion of Practice” - T. Cover
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Hypothesis Class, Training and True Error

A hypothesis class H is a set of functions/hypotheses (assume finite for now)

The learning algorithm, given training data, learns a hypothesis h ∈ H

Assume h is learned using a sample D of N i.i.d. training examples (xn, yn)Nn=1 drawn from
P(x , y); (also denoted as D ∼ PN)

The 0-1 training error (also called the empirical error) of h

LD(h) =
1

N

N∑
n=1

I(h(xn) 6= yn)

The 0-1 true error (also called the expected error) of h

LP (h) = E(x,y)∼P [I(h(x) 6= y)]

The true error, in general, is much worse than the training error

We want to know how much worse it is..

.. without doing experiments
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Case 1: Zero Training Error

Assume some h ∈ H can achieve zero training error

Assume its true error LP(h) > ε

Probability of h being correct on a single training example ≤ 1− ε

Probability of h having zero error on any training set of N examples

PD∼PN (LD(h) = 0 ∩ LP(h) > ε) ≤ (1− ε)N

Let’s call LD(h) = 0 ∩ LP(h) > ε as “h is bad”

Consider K hyp. {h1, . . . , hK}. Prob. that at least one of these is bad

PD∼PN (“h1 is bad” ∪ . . . ∪ “hK is bad”) ≤ K (1− ε)N (using union bound)

Since K ≤ |H|, K can be replaced by the size of set H

PD∼PN (∃h : “h is bad”) ≤ |H|(1− ε)N (Uniform Convergence)

Machine Learning (CS771A) Introduction to Learning Theory 4



Case 1: Zero Training Error

Assume some h ∈ H can achieve zero training error

Assume its true error LP(h) > ε

Probability of h being correct on a single training example ≤ 1− ε

Probability of h having zero error on any training set of N examples

PD∼PN (LD(h) = 0 ∩ LP(h) > ε) ≤ (1− ε)N

Let’s call LD(h) = 0 ∩ LP(h) > ε as “h is bad”

Consider K hyp. {h1, . . . , hK}. Prob. that at least one of these is bad

PD∼PN (“h1 is bad” ∪ . . . ∪ “hK is bad”) ≤ K (1− ε)N (using union bound)

Since K ≤ |H|, K can be replaced by the size of set H

PD∼PN (∃h : “h is bad”) ≤ |H|(1− ε)N (Uniform Convergence)

Machine Learning (CS771A) Introduction to Learning Theory 4



Case 1: Zero Training Error

Assume some h ∈ H can achieve zero training error

Assume its true error LP(h) > ε

Probability of h being correct on a single training example ≤ 1− ε

Probability of h having zero error on any training set of N examples

PD∼PN (LD(h) = 0 ∩ LP(h) > ε) ≤ (1− ε)N

Let’s call LD(h) = 0 ∩ LP(h) > ε as “h is bad”

Consider K hyp. {h1, . . . , hK}. Prob. that at least one of these is bad

PD∼PN (“h1 is bad” ∪ . . . ∪ “hK is bad”) ≤ K (1− ε)N (using union bound)

Since K ≤ |H|, K can be replaced by the size of set H

PD∼PN (∃h : “h is bad”) ≤ |H|(1− ε)N (Uniform Convergence)

Machine Learning (CS771A) Introduction to Learning Theory 4



Case 1: Zero Training Error

Assume some h ∈ H can achieve zero training error

Assume its true error LP(h) > ε

Probability of h being correct on a single training example ≤ 1− ε

Probability of h having zero error on any training set of N examples

PD∼PN (LD(h) = 0 ∩ LP(h) > ε) ≤ (1− ε)N

Let’s call LD(h) = 0 ∩ LP(h) > ε as “h is bad”

Consider K hyp. {h1, . . . , hK}. Prob. that at least one of these is bad

PD∼PN (“h1 is bad” ∪ . . . ∪ “hK is bad”) ≤ K (1− ε)N (using union bound)

Since K ≤ |H|, K can be replaced by the size of set H

PD∼PN (∃h : “h is bad”) ≤ |H|(1− ε)N (Uniform Convergence)

Machine Learning (CS771A) Introduction to Learning Theory 4



Case 1: Zero Training Error

Assume some h ∈ H can achieve zero training error

Assume its true error LP(h) > ε

Probability of h being correct on a single training example ≤ 1− ε

Probability of h having zero error on any training set of N examples

PD∼PN (LD(h) = 0 ∩ LP(h) > ε) ≤ (1− ε)N

Let’s call LD(h) = 0 ∩ LP(h) > ε as “h is bad”

Consider K hyp. {h1, . . . , hK}. Prob. that at least one of these is bad

PD∼PN (“h1 is bad” ∪ . . . ∪ “hK is bad”) ≤ K (1− ε)N (using union bound)

Since K ≤ |H|, K can be replaced by the size of set H

PD∼PN (∃h : “h is bad”) ≤ |H|(1− ε)N (Uniform Convergence)

Machine Learning (CS771A) Introduction to Learning Theory 4



Case 1: Zero Training Error

Assume some h ∈ H can achieve zero training error

Assume its true error LP(h) > ε

Probability of h being correct on a single training example ≤ 1− ε

Probability of h having zero error on any training set of N examples

PD∼PN (LD(h) = 0 ∩ LP(h) > ε) ≤ (1− ε)N

Let’s call LD(h) = 0 ∩ LP(h) > ε as “h is bad”

Consider K hyp. {h1, . . . , hK}. Prob. that at least one of these is bad

PD∼PN (“h1 is bad” ∪ . . . ∪ “hK is bad”) ≤ K (1− ε)N (using union bound)

Since K ≤ |H|, K can be replaced by the size of set H

PD∼PN (∃h : “h is bad”) ≤ |H|(1− ε)N (Uniform Convergence)

Machine Learning (CS771A) Introduction to Learning Theory 4



Case 1: Zero Training Error

Assume some h ∈ H can achieve zero training error

Assume its true error LP(h) > ε

Probability of h being correct on a single training example ≤ 1− ε

Probability of h having zero error on any training set of N examples

PD∼PN (LD(h) = 0 ∩ LP(h) > ε) ≤ (1− ε)N

Let’s call LD(h) = 0 ∩ LP(h) > ε as “h is bad”

Consider K hyp. {h1, . . . , hK}. Prob. that at least one of these is bad

PD∼PN (“h1 is bad” ∪ . . . ∪ “hK is bad”) ≤ K (1− ε)N (using union bound)

Since K ≤ |H|, K can be replaced by the size of set H

PD∼PN (∃h : “h is bad”) ≤ |H|(1− ε)N (Uniform Convergence)

Machine Learning (CS771A) Introduction to Learning Theory 4



Case 1: Zero Training Error

Using (1− ε) < e−ε, we get:

PD∼PN (∃h : “h is bad”) ≤ |H|e−Nε

Suppose |H|e−Nε = δ. Then for a given ε and δ

N ≥
1

ε
(log |H| + log

1

δ
)

.. gives the min. number of training ex. to ensure that there is a “bad” h with probability at most
δ (or no bad h with probability at least 1− δ)

Essentially, gives a condition that h will be probably (with probability 1− δ) and approximately
(with error ε) correct, given at least these many examples

Framework of “Probably and Approximately Correct” (PAC) Learning

Likewise, given N and δ, with probability 1− δ, the true error

LP (h) ≤
log |H| + log 1

δ

N
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PAC Learnability and Efficient PAC Learnability

Definition: An algorithm A is an (ε, δ)-PAC learning algorithm if, for all distributions D: given
samples from D, the probability that it returns a “bad hypothesis” h is at most δ, where a “bad”
hypothesis is one with test error rate more than ε on D.

Definition: An algorithm A is an efficient (ε, δ)-PAC learning algorithm if it is an (ε, δ)-PAC
learning algorithm with runtime polynomial in 1

ε and 1
δ

Note: a similar notion of an efficient (ε, δ)-PAC learning algorithm holds in terms of the number of
training examples required (polynomial in 1

ε
and 1

δ
)
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Case 2: Non-Zero Training Error

Given N random variables z1, . . . , zN , the empirical mean

z̄ =
1

N

N∑
n=1

zn

Let’s assume the true mean is µz

Hoeffding’s inequality says:

P(|µz − z̄ | ≥ ε) ≤ e−2Nε2

Using the same result, for any single hypothesis h ∈ H, we have:

P(LP(h)− LD(h) ≥ ε) ≤ e−2Nε2

Using the union bound, we have:

P(∃h : LP(h)− LD(h) ≥ ε) ≤ |H|e−2Nε2
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P(LP(h)− LD(h) ≥ ε) ≤ e−2Nε2

Using the union bound, we have:

P(∃h : LP(h)− LD(h) ≥ ε) ≤ |H|e−2Nε2

Machine Learning (CS771A) Introduction to Learning Theory 7



Case 2: Non-Zero Training Error

Given N random variables z1, . . . , zN , the empirical mean

z̄ =
1

N

N∑
n=1

zn

Let’s assume the true mean is µz

Hoeffding’s inequality says:

P(|µz − z̄ | ≥ ε) ≤ e−2Nε2

Using the same result, for any single hypothesis h ∈ H, we have:

P(LP(h)− LD(h) ≥ ε) ≤ e−2Nε2

Using the union bound, we have:

P(∃h : LP(h)− LD(h) ≥ ε) ≤ |H|e−2Nε2

Machine Learning (CS771A) Introduction to Learning Theory 7



Case 2: Non-Zero Training Error

Given N random variables z1, . . . , zN , the empirical mean

z̄ =
1

N

N∑
n=1

zn

Let’s assume the true mean is µz

Hoeffding’s inequality says:

P(|µz − z̄ | ≥ ε) ≤ e−2Nε2

Using the same result, for any single hypothesis h ∈ H, we have:

P(LP(h)− LD(h) ≥ ε) ≤ e−2Nε2

Using the union bound, we have:

P(∃h : LP(h)− LD(h) ≥ ε) ≤ |H|e−2Nε2

Machine Learning (CS771A) Introduction to Learning Theory 7



Case 2: Non-Zero Training Error

Suppose |H|e−2Nε2

= δ. Then for a given ε and δ

N ≥
1

2ε2
(log |H| + log

1

δ
)

.. gives the min. number of training ex. required to ensure that LP(h)− LD(h) ≤ ε with

probability at least 1− δ

Note: Number of examples grows as square of 1/ε (note: ε < 1)

In zero training error case, it grows linearly with 1/ε

For given ε, δ, the non-zero training error case requires more examples

Likewise, given N and δ, with probability 1− δ, the true error

LP (h) ≤ LD(h) +

√
log |H| + log 1

δ

2N
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Example: Decision Trees

Let’s consider the hypothesis class of DTs with k leaves

Suppose data has D binary features/attributes

A loose bound (using Sterling’s approximation): Hk ≤ Dk−122k−1

Thus log2 Hk ≤ (k − 1) log2 D + 2k − 1 (linear in k)
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Infinite Sized Hypothesis Spaces

For the finite sized hypothesis class H

LP(h) ≤ LD(h) +

√
log |H|+ log 1

δ

2N

What happens when the hypothesis class size |H| is infinite?

Example: the set of all linear classifiers

The above bound doesn’t apply (it just becomes trivial)

We need some other way of measuring the size of H
One way: use the complexity H as a measure of its size

.. enters the Vapnik-Chervonenkis dimension (VC dimension)

VC dimension: a measure of the complexity of a hypothesis class
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Shattering

A set of points is shattered by a hypothesis class H if, no matter how the points are labeled, there
exists some h ∈ H that can separate the points

Figure above: 3 points in 2D, H: set of linear classifiers
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VC Dimension: The Shattering Game

The concept of shattering is used to define the VC dimension of hypothesis classes

Consider the following shattering game between us and an adversary

We choose d points in an input space, positioned however we want

Adversary labels these d points

We find a hypothesis h ∈ H that separates the points

Note: Shattering just one configuration of d points is enough to win

The VC dimension of H, in that input space, is the maximum d we can choose so that we always
succeed in the game
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VC Dimension

VC dimension of linear classifiers in R2 = 3?

VC dimension of linear classifiers in R3 = 4?

What about the VC dimension of linear classifiers in RD?

VC = D + 1

Recall: a linear classifier in RD is defined by D parameters

For linear classifiers, high D ⇒ high VC dimension ⇒ high complexity

What about the VC dimension of 1-nearest neighbors?
Infinite. Why?

What about the VC dimension of SVM with RBF kernel?
Infinite. Why?

VC dimension intuition: How many points the hypothesis class can “memorize”
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Using VC Dimension in Generalization Bounds

Recall the PAC based Generalization Bound

ExpectedLoss(h) ≤ TrainingLoss(h) +

√
log |H|+ log 1

δ

2N

For hypothesis classes with infinite size (|H| =∞), but VC dimension d :

ExpectedLoss(h) ≤ TrainingLoss(h) +

√
d(log 2N

d + 1) + log 4
δ

2N

For linear classifiers, what does it imply?

Having fewer features is better (since it means smaller VC dimension)
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VC Dimension of Support Vector Machines

Recall: VC dimension of an SVM with RBF kernel is infinite. Is it a bad thing?

Not really. SVM’s large margin property ensures good generalization

Theorem (Vapnik, 1982):
• Given N data points in RD : X = {x1, . . . , xN} with ||xn|| ≤ R
• Define Hγ : set of classifiers in RD having margin γ on X
The VC dimension of Hγ is bounded by:

VC(Hγ) ≤ min

{
D,

⌈
4R2

γ2

⌉}

Generalization bound for the SVM:

ExpectedLoss(h) ≤ TrainingLoss(h) +

√
VC(Hγ)(log 2N

VC(Hγ ) + 1) + log 4
δ

2N

Large γ ⇒ small VC dim. ⇒ small complexity of Hγ ⇒ good generalization
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Things to Remember..

We care about the expected error, not the training error

Generalization bounds quantify the difference between these two errors

It has the following general form

ExpLoss(h) ≤ TrainLoss(h) + f (model complexity, N)︸ ︷︷ ︸
approaches 0 as N → ∞

Finite sized hypothesis spaces: log |H| is a measure of complexity

Finite sized hypothesis spaces: VC dimension is a measure of complexity

Often these bounds are loose for moderate values of N

Tighter generalization bounds exist (often data-dependent; e.g., using complexity measures such as
Radamacher Complexity)

But even loose bounds are often useful for understanding the basic properties of learning
models/algorithms
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