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Generative Model for Dimensionality Reduction

Assume the following generative story for each xn ∈ RD

Generate latent variables zn ∈ RK (K � D) as

zn ∼ N (0, IK )

Generate data xn conditioned on zn as

xn ∼ N (Wzn, σ
2ID)

where W is the D × K “factor loading matrix” or “dictionary”

zn is K -dim latent features or latent factors or “coding” of xn w.r.t. W

Note: Can also write xn as a linear transformation of zn, plus Gaussian noise

xn = Wzn + εn (where εn ∼ N (0, σ2ID))

This is “Probabilistic PCA” (PPCA) with Gaussian observation model

Want to learn model parameters W, σ2 and latent factors {zn}Nn=1

When εn ∼ N (0,Ψ), Ψ is diagonal, it is called “Factor Analysis” (FA)
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Generative Model for Dimensionality Reduction

Zooming in at the relationship between each xn ∈ RD and each zn ∈ RK

Wdk denotes the weight of relationship between feature d and latent factor k

This view also helps in thinking about “deep” generative models that have many layers of latent
variables or “hidden units”
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Linear Gaussian Systems

Note that PPCA and FA are special cases of linear Gaussian Systems which have the following
general form

p(z) = N (µz ,Σz)

p(x |z) = N (Wz + b,Σx)

(x = Wz + b + ε, where ε ∼ N (0,Σx))

A few nice properties of such systems (follow from properties of Gaussians):

The marginal distribution of x , i.e., p(x), is Gaussian

p(x) =
∫

p(x , z)dz =

∫
p(x |z)p(z)dz = N (Wµz + b,Σx + WΣzW>)

The posterior distribution of z , i.e., p(z |x) ∝ p(z)p(x |z) is Gaussian

p(z |x) = N (µ,Σ)

Σ−1 = Σ−1
z + W>Σ−1

x W

µ = Σ[W>Σ−1
x (x − b) + Σ−1

z µz ]

(Chapter 4 of Murphy and Chapter 2 of Bishop have various useful results on properties of multivar. Gaussians)
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PPCA or FA = Low-Rank Gaussian

Suppose we’re modeling D-dim data using a (say zero mean) Gaussian

p(x) = N (0,Σ)

where Σ is a D × D p.s.d. cov. matrix, O(D2) parameters needed

Consider modeling the same data using the one-layer PPCA model

p(x |z) = N (Wz , σ2ID) where p(z) = N (0, IK )

For this Gaussian PPCA, the marginal distribution p(x) =
∫
p(x , z)dz is

p(x) = N (0,WW> + σ2ID) (using result from previous slide)

Cov. matrix is close to low-rank. Also, only (DK + 1) free params to learn

Thus modeling data using a Gaussian PPCA instead of Gaussian with full cov. may be easier when
we have very little but high-dim data (i.e., D � N)

p(x) is still a Gaussian but between two extremes (diagonal cov and full cov)
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Parameter Estimation for PPCA

Data: X = {xn}Nn=1, latent vars: Z = {zn}Nn=1, parameters: W, σ2

Note: If we just want to estimate W and σ2, we could do MLE directly† on incomplete data
likelihood p(x) = N (0,WW> + σ2ID )

Closed-form solution† can be obtained for W and σ2 by maximizing

log p(X) = −N

2
(D log 2π + log |C|+ trace(C−1S)

where S is the data cov. matrix and C−1 = σ−1I− σ−1WM−1W>and M = W>W + σ2I

But this method isn’t usually preferred because

It is expensive (have to work with cov. matrices and their eig-decomp)

A closed-form solution may not even be possible for more general models (e.g. Factor Analysis where
σ2I is replace by diagonal matrix, or mixture of PPCA)

Won’t be possible to learn the latent variables Z = {zn}Nn=1

†Probabilistic Principal Component Analysis (Tipping and Bishop, 1999)
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But this method isn’t usually preferred because

It is expensive (have to work with cov. matrices and their eig-decomp)

A closed-form solution may not even be possible for more general models (e.g. Factor Analysis where
σ2I is replace by diagonal matrix, or mixture of PPCA)

Won’t be possible to learn the latent variables Z = {zn}Nn=1

†Probabilistic Principal Component Analysis (Tipping and Bishop, 1999)
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EM based Parameter Estimation for PPCA

We will instead go the EM route and work with the complete data log-lik.

log p(X,Z|W, σ
2)

= log
N∏

n=1

p(xn, zn|W, σ
2) = log

N∏
n=1

p(xn|zn,W, σ
2)p(zn)

=
N∑

n=1

{log p(xn|zn,W, σ
2) + log p(zn)}

As we’ll see, it leads to much simpler expressions and efficient solutions

Recall that p(xn|zn,W, σ2) = 1

(2πσ2)D/2
exp(− (xn−Wzn)>(xn−Wzn)

2σ2
) and p(zn) ∝ exp(− z>n zn

2 )

Plugging in, simplifying, using the trace trick, and ignoring constants, we get the following
expression for complete data log-likelihood log p(X,Z|W, σ2)

−
N∑

n=1

{
D

2
log σ2+

1

2σ2
||xn||2 −

1

σ2
z>n W>xn +

1

2σ2
tr(znz

>
n W>W) +

1

2
tr(znz

>
n )

}

We will need the expected value of this quantity in M step of EM

This requires computing the posterior distribution of zn in E step (which is Gaussian; recall the result
from earlier slide on linear Gaussian systems)
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EM based Parameter Estimation for PPCA

The expected complete data log-likelihood E[log p(X,Z|W, σ2)]

= −
N∑

n=1

{
D

2
log σ2 +

1

2σ2
||xn||2 −

1

σ2
E[zn]

>W>xn +
1

2σ2
tr(E[znz

>
n ]W>W) +

1

2
tr(E[znz

>
n ])

}

Taking the derivative of E[log p(X,Z|W, σ2)] w.r.t. W and setting to zero

W =

[
N∑

n=1

xnE[zn]
>
][

N∑
n=1

E[znz
>
n ]

]−1

To compute W, we also need two expectations E[zn] and E[znz>n ]

These can be obtained in E step by computing posterior over zn, which, using the results of
Gaussian posterior for linear Gaussian models, is

p(zn|xn,W) = N (M−1W>xn, σ
2M−1) where M = W>W + σ

2IK

The required expectations can be easily obtained from the Gaussian posterior

E[zn] = M−1W>xn

E[znz
>
n ] = E[zn]E[zn]

> + cov(zn) = E[zn]E[zn]
> + σ

2M−1

Note: The noise variance σ2 can also be estimated (take deriv., set to zero..)
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EM based Parameter Estimation for PPCA
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= −
N∑

n=1

{
D

2
log σ2 +

1

2σ2
||xn||2 −

1

σ2
E[zn]

>W>xn +
1

2σ2
tr(E[znz

>
n ]W>W) +

1

2
tr(E[znz

>
n ])

}

Taking the derivative of E[log p(X,Z|W, σ2)] w.r.t. W and setting to zero

W =
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N∑

n=1

xnE[zn]
>
][

N∑
n=1

E[znz
>
n ]

]−1
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The Full EM Algorithm for PPCA

Specify K , initialize W and σ2 randomly. Also center the data

E step: Compute the expectations required in M step. For each data point

E[zn] = (W>W + σ
2IK )
−1W>xn = M−1W>xn

E[znz
>
n ] = cov(zn) + E[zn]E[zn]

> = E[zn]E[zn]
> + σ

2M−1

M step: Re-estimate W and σ2

Wnew =

[
N∑

n=1

xnE[zn]
>
][

N∑
n=1

E[znz
>
n ]

]−1

=

[
N∑

n=1

xnE[zn]
>
][

N∑
n=1

E[zn]E[zn]
> + σ

2M−1

]−1

σ
2
new =

1

ND

N∑
n=1

{
||xn||2 − 2E[zn]

>W>newxn + tr
(
E[znz

>
n ]W>newWnew

)}

Set W = Wnew and σ2 = σ2
new

If not converged, go back to E step (can monitor the incomplete/complete log-likelihood to assess
convergence)
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EM for Factor Analysis

Similar to PPCA except that the Gaussian conditional distribution p(xn|zn) has diagonal instead of
spherical covariance, i.e., xn ∼ N (Wzn,Ψ), where Ψ is a diagonal matrix

EM for Factor Analysis is very similar to that for PPCA

The required expectations in the E step :

E[zn] = G−1W>Ψ−1xn

E[znz
>
n ] = E[zn]E[zn]

> + G

where G = (W>Ψ−1W + IK )−1. Note that if Ψ = σ2ID , we get the same equations as in
PPCA

In the M step, updates for Wnew are the same as PPCA

In the M step, updates for Ψ are

Ψnew = diag

{
S−Wnew

1

N

N∑
n=1

E[zn]x
>
n

}
(S is the cov. matrix of data)
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Some Aspects about PPCA/FA

Can also handle missing data as additional latent variables in E step. Just write each data point as
xn = [xobs

n xmiss
n ] and treat xmiss

n as latent vars.

Usually the posterior p(xmiss
n |xobs

n ) over missing data can be computed

Note: Ability to handle missing data is the property of EM in general and can be used in other models
as well (e.g., GMM)

Can learn other model params such as noise variance σ2 using MLE/MAP

Also more efficient than the näıve PCA. Doesn’t require computing the D × D cov. matrix of data
and doing expensive eigen-decomposition

Can learn the model very efficiently using “online EM”

Possible to give it a fully Bayesian treatment (which has many other benefits such as inferring K
using nonparametric Bayesian modeling)
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Also more efficient than the näıve PCA. Doesn’t require computing the D × D cov. matrix of data
and doing expensive eigen-decomposition

Can learn the model very efficiently using “online EM”

Possible to give it a fully Bayesian treatment (which has many other benefits such as inferring K
using nonparametric Bayesian modeling)

Machine Learning (CS771A) Generative Models for Dimensionality Reduction: Probabilistic PCA and Factor Analysis 11



Some Aspects about PPCA/FA

Can also handle missing data as additional latent variables in E step. Just write each data point as
xn = [xobs

n xmiss
n ] and treat xmiss

n as latent vars.

Usually the posterior p(xmiss
n |xobs

n ) over missing data can be computed

Note: Ability to handle missing data is the property of EM in general and can be used in other models
as well (e.g., GMM)

Can learn other model params such as noise variance σ2 using MLE/MAP
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Some Aspects about PPCA/FA

Provides a framework that could be extended to build more complex models

Mixture of PPCA/FA models (joint clust. + dim. red., or nonlin. dim. red.)

Deep models for feature learning and dimensionality reduction

Supervised extensions, e.g., by jointly modeling labels yn as conditioned on latent factors, i.e.,
p(yn = 1|zn, θ) using a logistic model with weights θ ∈ RK
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Some Applications of PPCA

Learning the noise variance allows “image denoising”

Ability to fill-in missing data allows “image inpainting” (left: image with 80% missing data, middle:
reconstructed, right: original)
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Using EM for (efficiently) solving standard PCA

Let’s see what happens if the noise variance σ2 goes to 0

Let’s first look at the E step

E[zn] = (W>W + σ
2IK )
−1W>xn = (W>W)−1W>xn

(no need to compute E[znz>n ] since it will simply be equal to E[zn]E[zn]>)

Let’s now look at the M step

Wnew =

[
N∑

n=1

xnE[zn]
>
][

N∑
n=1

E[zn]E[zn]
>
]−1

= X>Ω(Ω>Ω)−1

where Ω = E[Z] is an N × K matrix with row n equal to E[zn]
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Identifiability

Note that p(xn) = N (0,WW> + σ2ID)

If we replace W by W̃ = WR for some orthogonal rotation matrix R then

p(xn) = N (0, W̃W̃> + σ2ID)

= N (0,WRR>W> + σ2ID)

= N (0,WW> + σ2ID)

Thus PPCA doesn’t give a unique solution (for every W, there is another W̃ = WR that gives the
same solution)

Thus the PPCA model is not uniquely identifiable

Usually this is not a problem, unless we want to very strictly interpret W

To ensure identifiability, we can impose some more structure on W, e.g., constrain it to be a
lower-triangular or sparse matrix
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Some Concluding Thoughts

Discussed the basic idea of generative models for doing unsupervised learning

Looked at a way (EM) to perform parameter estimation in such models

EM is a general framework for parameter estimation in latent variable models

Looked at two types of unsupervised learning problems

Mixture models: Clustering

Latent factor models: Dimensionality reduction

Both these models can also be used for estimating the prob. density p(x)

More sophisticated models are usually built on these basic principles

E.g., Hidden Markov Models and Kalman Filters can be seen as generalization of mixture models and
Gaussian latent factor models, respectively, for sequential data (zn correspond to the “state” of xn)

We will look at these and other related models (e.g., LSTM) when talking about learning from
seqential data
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