Generative Models for Dimensionality Reduction: Probabilistic PCA and Factor Analysis

Piyush Rai
Machine Learning (CS771A)

Oct 5, 2016

Generative Model for Dimensionality Reduction

- Assume the following generative story for each $\boldsymbol{x}_{n} \in \mathbb{R}^{D}$

Generative Model for Dimensionality Reduction

- Assume the following generative story for each $\boldsymbol{x}_{n} \in \mathbb{R}^{D}$
- Generate latent variables $z_{n} \in \mathbb{R}^{K}(K \ll D)$ as

$$
z_{n} \sim \mathcal{N}\left(0, \mathbf{I}_{K}\right)
$$

Generative Model for Dimensionality Reduction

- Assume the following generative story for each $\boldsymbol{x}_{n} \in \mathbb{R}^{D}$
- Generate latent variables $z_{n} \in \mathbb{R}^{K}(K \ll D)$ as

$$
z_{n} \sim \mathcal{N}\left(0, \mathbf{I}_{K}\right)
$$

- Generate data \boldsymbol{x}_{n} conditioned on \boldsymbol{z}_{n} as

$$
\boldsymbol{x}_{n} \sim \mathcal{N}\left(\mathbf{W} \boldsymbol{z}_{n}, \sigma^{2} \mathbf{I}_{D}\right)
$$

Generative Model for Dimensionality Reduction

- Assume the following generative story for each $\boldsymbol{x}_{n} \in \mathbb{R}^{D}$
- Generate latent variables $\boldsymbol{z}_{n} \in \mathbb{R}^{K}(K \ll D)$ as

$$
z_{n} \sim \mathcal{N}\left(0, \mathbf{I}_{K}\right)
$$

- Generate data x_{n} conditioned on z_{n} as

$$
x_{n} \sim \mathcal{N}\left(\mathbf{W} z_{n}, \sigma^{2} \mathbf{I}_{D}\right)
$$

where \mathbf{W} is the $D \times K$ "factor loading matrix" or "dictionary"

Generative Model for Dimensionality Reduction

- Assume the following generative story for each $\boldsymbol{x}_{n} \in \mathbb{R}^{D}$
- Generate latent variables $\boldsymbol{z}_{n} \in \mathbb{R}^{K}(K \ll D)$ as

$$
z_{n} \sim \mathcal{N}\left(0, \mathbf{I}_{K}\right)
$$

- Generate data x_{n} conditioned on z_{n} as

$$
x_{n} \sim \mathcal{N}\left(\mathbf{W} z_{n}, \sigma^{2} \mathbf{I}_{D}\right)
$$

where \mathbf{W} is the $D \times K$ "factor loading matrix" or "dictionary"

- \boldsymbol{z}_{n} is K-dim latent features or latent factors or "coding" of \boldsymbol{x}_{n} w.r.t. W

Generative Model for Dimensionality Reduction

- Assume the following generative story for each $\boldsymbol{x}_{n} \in \mathbb{R}^{D}$
- Generate latent variables $z_{n} \in \mathbb{R}^{K}(K \ll D)$ as

$$
z_{n} \sim \mathcal{N}\left(0, \mathbf{I}_{K}\right)
$$

- Generate data x_{n} conditioned on z_{n} as

$$
x_{n} \sim \mathcal{N}\left(\mathbf{W} z_{n}, \sigma^{2} \mathbf{I}_{D}\right)
$$

where \mathbf{W} is the $D \times K$ "factor loading matrix" or "dictionary"

- \boldsymbol{z}_{n} is K-dim latent features or latent factors or "coding" of \boldsymbol{x}_{n} w.r.t. W
- Note: Can also write \boldsymbol{x}_{n} as a linear transformation of \boldsymbol{z}_{n}, plus Gaussian noise

$$
\boldsymbol{x}_{n}=\mathbf{W} \boldsymbol{z}_{n}+\epsilon_{n} \quad\left(\text { where } \epsilon_{n} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{D}\right)\right)
$$

Generative Model for Dimensionality Reduction

- Assume the following generative story for each $\boldsymbol{x}_{n} \in \mathbb{R}^{D}$
- Generate latent variables $z_{n} \in \mathbb{R}^{K}(K \ll D)$ as

$$
z_{n} \sim \mathcal{N}\left(0, \mathbf{I}_{K}\right)
$$

- Generate data \boldsymbol{x}_{n} conditioned on \boldsymbol{z}_{n} as

$$
x_{n} \sim \mathcal{N}\left(\mathbf{W} z_{n}, \sigma^{2} \mathbf{I}_{D}\right)
$$

where \mathbf{W} is the $D \times K$ "factor loading matrix" or "dictionary"

- \boldsymbol{z}_{n} is K-dim latent features or latent factors or "coding" of \boldsymbol{x}_{n} w.r.t. W
- Note: Can also write \boldsymbol{x}_{n} as a linear transformation of \boldsymbol{z}_{n}, plus Gaussian noise

$$
\boldsymbol{x}_{n}=\mathbf{W} \boldsymbol{z}_{n}+\epsilon_{n} \quad\left(\text { where } \epsilon_{n} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{D}\right)\right)
$$

- This is "Probabilistic PCA" (PPCA) with Gaussian observation model

Generative Model for Dimensionality Reduction

- Assume the following generative story for each $\boldsymbol{x}_{n} \in \mathbb{R}^{D}$
- Generate latent variables $z_{n} \in \mathbb{R}^{K}(K \ll D)$ as

$$
z_{n} \sim \mathcal{N}\left(0, \mathbf{I}_{K}\right)
$$

- Generate data x_{n} conditioned on z_{n} as

$$
x_{n} \sim \mathcal{N}\left(\mathbf{W} z_{n}, \sigma^{2} \mathbf{I}_{D}\right)
$$

where \mathbf{W} is the $D \times K$ "factor loading matrix" or "dictionary"

- \boldsymbol{z}_{n} is K-dim latent features or latent factors or "coding" of \boldsymbol{x}_{n} w.r.t. W
- Note: Can also write \boldsymbol{x}_{n} as a linear transformation of \boldsymbol{z}_{n}, plus Gaussian noise

$$
\boldsymbol{x}_{n}=\mathbf{W} \boldsymbol{z}_{n}+\epsilon_{n} \quad\left(\text { where } \epsilon_{n} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{D}\right)\right)
$$

- This is "Probabilistic PCA" (PPCA) with Gaussian observation model
- Want to learn model parameters \mathbf{W}, σ^{2} and latent factors $\left\{\boldsymbol{z}_{n}\right\}_{n=1}^{N}$

Generative Model for Dimensionality Reduction

- Assume the following generative story for each $\boldsymbol{x}_{n} \in \mathbb{R}^{D}$
- Generate latent variables $z_{n} \in \mathbb{R}^{K}(K \ll D)$ as

$$
z_{n} \sim \mathcal{N}\left(0, \mathbf{I}_{K}\right)
$$

- Generate data x_{n} conditioned on z_{n} as

$$
x_{n} \sim \mathcal{N}\left(\mathbf{W} z_{n}, \sigma^{2} \mathbf{I}_{D}\right)
$$

where \mathbf{W} is the $D \times K$ "factor loading matrix" or "dictionary"

- \boldsymbol{z}_{n} is K-dim latent features or latent factors or "coding" of \boldsymbol{x}_{n} w.r.t. W
- Note: Can also write \boldsymbol{x}_{n} as a linear transformation of \boldsymbol{z}_{n}, plus Gaussian noise

$$
\boldsymbol{x}_{n}=\mathbf{W} \boldsymbol{z}_{n}+\epsilon_{n} \quad\left(\text { where } \epsilon_{n} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{D}\right)\right)
$$

- This is "Probabilistic PCA" (PPCA) with Gaussian observation model
- Want to learn model parameters \mathbf{W}, σ^{2} and latent factors $\left\{\boldsymbol{z}_{n}\right\}_{n=1}^{N}$
- When $\epsilon_{n} \sim \mathcal{N}(0, \Psi), \Psi$ is diagonal, it is called "Factor Analysis" (FA)

Generative Model for Dimensionality Reduction

- Zooming in at the relationship between each $\boldsymbol{x}_{n} \in \mathbb{R}^{D}$ and each $\boldsymbol{z}_{n} \in \mathbb{R}^{K}$

Generative Model for Dimensionality Reduction

- Zooming in at the relationship between each $\boldsymbol{x}_{n} \in \mathbb{R}^{D}$ and each $\boldsymbol{z}_{n} \in \mathbb{R}^{K}$

- $W_{d k}$ denotes the weight of relationship between feature d and latent factor k

Generative Model for Dimensionality Reduction

- Zooming in at the relationship between each $\boldsymbol{x}_{n} \in \mathbb{R}^{D}$ and each $\boldsymbol{z}_{n} \in \mathbb{R}^{K}$

- $W_{d k}$ denotes the weight of relationship between feature d and latent factor k
- This view also helps in thinking about "deep" generative models that have many layers of latent variables or "hidden units"

Linear Gaussian Systems

- Note that PPCA and FA are special cases of linear Gaussian Systems which have the following general form

$$
\begin{aligned}
p(\boldsymbol{z}) & =\mathcal{N}\left(\boldsymbol{\mu}_{z}, \boldsymbol{\Sigma}_{z}\right) \\
p(\boldsymbol{x} \mid \boldsymbol{z}) & =\mathcal{N}\left(\mathbf{W} \boldsymbol{z}+\mathbf{b}, \boldsymbol{\Sigma}_{x}\right)
\end{aligned}
$$

Linear Gaussian Systems

- Note that PPCA and FA are special cases of linear Gaussian Systems which have the following general form

$$
\begin{aligned}
p(\boldsymbol{z}) & =\mathcal{N}\left(\boldsymbol{\mu}_{z}, \boldsymbol{\Sigma}_{z}\right) \\
p(\boldsymbol{x} \mid \boldsymbol{z}) & =\mathcal{N}\left(\mathbf{W} \boldsymbol{z}+\mathbf{b}, \boldsymbol{\Sigma}_{x}\right) \quad\left(\boldsymbol{x}=\mathbf{W} \boldsymbol{z}+\mathbf{b}+\epsilon, \text { where } \epsilon \sim \mathcal{N}\left(0, \boldsymbol{\Sigma}_{x}\right)\right)
\end{aligned}
$$

Linear Gaussian Systems

- Note that PPCA and FA are special cases of linear Gaussian Systems which have the following general form

$$
\begin{aligned}
p(\boldsymbol{z}) & =\mathcal{N}\left(\boldsymbol{\mu}_{z}, \boldsymbol{\Sigma}_{z}\right) \\
p(\boldsymbol{x} \mid \boldsymbol{z}) & =\mathcal{N}\left(\mathbf{W} \boldsymbol{z}+\mathbf{b}, \boldsymbol{\Sigma}_{x}\right) \quad\left(\boldsymbol{x}=\mathbf{W} \boldsymbol{z}+\mathbf{b}+\epsilon, \text { where } \epsilon \sim \mathcal{N}\left(0, \boldsymbol{\Sigma}_{x}\right)\right)
\end{aligned}
$$

- A few nice properties of such systems (follow from properties of Gaussians):

Linear Gaussian Systems

- Note that PPCA and FA are special cases of linear Gaussian Systems which have the following general form

$$
\begin{aligned}
p(\boldsymbol{z}) & =\mathcal{N}\left(\boldsymbol{\mu}_{\boldsymbol{z}}, \boldsymbol{\Sigma}_{z}\right) \\
p(\boldsymbol{x} \mid \boldsymbol{z}) & =\mathcal{N}\left(\mathbf{W} \boldsymbol{z}+\mathbf{b}, \boldsymbol{\Sigma}_{x}\right) \quad\left(\boldsymbol{x}=\mathbf{W} \boldsymbol{z}+\mathbf{b}+\epsilon, \text { where } \epsilon \sim \mathcal{N}\left(0, \boldsymbol{\Sigma}_{x}\right)\right)
\end{aligned}
$$

- A few nice properties of such systems (follow from properties of Gaussians):
- The marginal distribution of x, i.e., $p(x)$, is Gaussian

$$
p(\boldsymbol{x})=\int p(\boldsymbol{x}, \boldsymbol{z}) d \boldsymbol{z}=\int p(\boldsymbol{x} \mid \boldsymbol{z}) p(\boldsymbol{z}) d \boldsymbol{z}=\mathcal{N}\left(\mathbf{W} \mu_{z}+\mathbf{b}, \boldsymbol{\Sigma}_{x}+\mathbf{W} \boldsymbol{\Sigma}_{z} \mathbf{W}^{\top}\right)
$$

Linear Gaussian Systems

- Note that PPCA and FA are special cases of linear Gaussian Systems which have the following general form

$$
\begin{aligned}
p(\boldsymbol{z}) & =\mathcal{N}\left(\boldsymbol{\mu}_{\boldsymbol{z}}, \boldsymbol{\Sigma}_{z}\right) \\
p(\boldsymbol{x} \mid \boldsymbol{z}) & =\mathcal{N}\left(\mathbf{W} \boldsymbol{z}+\mathbf{b}, \boldsymbol{\Sigma}_{x}\right) \quad\left(\boldsymbol{x}=\mathbf{W} \boldsymbol{z}+\mathbf{b}+\epsilon, \text { where } \epsilon \sim \mathcal{N}\left(0, \boldsymbol{\Sigma}_{x}\right)\right)
\end{aligned}
$$

- A few nice properties of such systems (follow from properties of Gaussians):
- The marginal distribution of \boldsymbol{x}, i.e., $p(\boldsymbol{x})$, is Gaussian

$$
p(\boldsymbol{x})=\int p(\boldsymbol{x}, \boldsymbol{z}) d \boldsymbol{z}=\int p(\boldsymbol{x} \mid \boldsymbol{z}) p(\boldsymbol{z}) d \boldsymbol{z}=\mathcal{N}\left(\mathbf{W} \mu_{z}+\mathbf{b}, \boldsymbol{\Sigma}_{x}+\mathbf{W} \boldsymbol{\Sigma}_{z} \mathbf{W}^{\top}\right)
$$

- The posterior distribution of \boldsymbol{z}, i.e., $p(z \mid \boldsymbol{x}) \propto p(z) p(\boldsymbol{x} \mid \boldsymbol{z})$ is Gaussian

$$
\begin{aligned}
p(\boldsymbol{z} \mid \boldsymbol{x}) & =\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
\boldsymbol{\Sigma}^{-1} & =\boldsymbol{\Sigma}_{z}^{-1}+\mathbf{W}^{\top} \boldsymbol{\Sigma}_{x}^{-1} \mathbf{W} \\
\boldsymbol{\mu} & =\boldsymbol{\Sigma}\left[\mathbf{W}^{\top} \boldsymbol{\Sigma}_{x}^{-1}(\boldsymbol{x}-\mathbf{b})+\boldsymbol{\Sigma}_{z}^{-1} \boldsymbol{\mu}_{z}\right]
\end{aligned}
$$

Linear Gaussian Systems

- Note that PPCA and FA are special cases of linear Gaussian Systems which have the following general form

$$
\begin{aligned}
p(\boldsymbol{z}) & =\mathcal{N}\left(\boldsymbol{\mu}_{z}, \boldsymbol{\Sigma}_{z}\right) \\
p(\boldsymbol{x} \mid \boldsymbol{z}) & =\mathcal{N}\left(\mathbf{W} \boldsymbol{z}+\mathbf{b}, \boldsymbol{\Sigma}_{x}\right) \quad\left(\boldsymbol{x}=\mathbf{W} \boldsymbol{z}+\mathbf{b}+\epsilon, \text { where } \epsilon \sim \mathcal{N}\left(0, \boldsymbol{\Sigma}_{x}\right)\right)
\end{aligned}
$$

- A few nice properties of such systems (follow from properties of Gaussians):
- The marginal distribution of \boldsymbol{x}, i.e., $p(\boldsymbol{x})$, is Gaussian

$$
p(x)=\int p(x, z) d z=\int p(x \mid z) p(z) d z=\mathcal{N}\left(\mathbf{W} \mu_{z}+\mathbf{b}, \boldsymbol{\Sigma}_{x}+\mathbf{W} \boldsymbol{\Sigma}_{z} \mathbf{W}^{\top}\right)
$$

- The posterior distribution of \boldsymbol{z}, i.e., $p(z \mid \boldsymbol{x}) \propto p(z) p(\boldsymbol{x} \mid \boldsymbol{z})$ is Gaussian

$$
\begin{aligned}
p(\boldsymbol{z} \mid \boldsymbol{x}) & =\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
\boldsymbol{\Sigma}^{-1} & =\boldsymbol{\Sigma}_{z}^{-1}+\mathbf{W}^{\top} \boldsymbol{\Sigma}_{x}^{-1} \mathbf{W} \\
\boldsymbol{\mu} & =\boldsymbol{\Sigma}\left[\mathbf{W}^{\top} \boldsymbol{\Sigma}_{x}^{-1}(\boldsymbol{x}-\mathbf{b})+\boldsymbol{\Sigma}_{z}^{-1} \boldsymbol{\mu}_{z}\right]
\end{aligned}
$$

(Chapter 4 of Murphy and Chapter 2 of Bishop have various useful results on properties of multivar. Gaussians)

PPCA or FA $=$ Low-Rank Gaussian

- Suppose we're modeling D-dim data using a (say zero mean) Gaussian

$$
p(\boldsymbol{x})=\mathcal{N}(0, \boldsymbol{\Sigma})
$$

where $\boldsymbol{\Sigma}$ is a $D \times D$ p.s.d. cov. matrix, $\mathcal{O}\left(D^{2}\right)$ parameters needed

PPCA or FA $=$ Low-Rank Gaussian

- Suppose we're modeling D-dim data using a (say zero mean) Gaussian

$$
p(\boldsymbol{x})=\mathcal{N}(0, \boldsymbol{\Sigma})
$$

where $\boldsymbol{\Sigma}$ is a $D \times D$ p.s.d. cov. matrix, $\mathcal{O}\left(D^{2}\right)$ parameters needed

- Consider modeling the same data using the one-layer PPCA model

$$
p(\boldsymbol{x} \mid \boldsymbol{z})=\mathcal{N}\left(\mathbf{W} \boldsymbol{z}, \sigma^{2} \mathbf{I}_{D}\right) \quad \text { where } p(\boldsymbol{z})=\mathcal{N}\left(0, \mathbf{I}_{K}\right)
$$

PPCA or FA $=$ Low-Rank Gaussian

- Suppose we're modeling D-dim data using a (say zero mean) Gaussian

$$
p(\boldsymbol{x})=\mathcal{N}(0, \boldsymbol{\Sigma})
$$

where $\boldsymbol{\Sigma}$ is a $D \times D$ p.s.d. cov. matrix, $\mathcal{O}\left(D^{2}\right)$ parameters needed

- Consider modeling the same data using the one-layer PPCA model

$$
p(\boldsymbol{x} \mid \boldsymbol{z})=\mathcal{N}\left(\mathbf{W} \boldsymbol{z}, \sigma^{2} \mathbf{I}_{D}\right) \quad \text { where } p(\boldsymbol{z})=\mathcal{N}\left(0, \mathbf{I}_{K}\right)
$$

- For this Gaussian PPCA, the marginal distribution $p(\boldsymbol{x})=\int p(\boldsymbol{x}, \boldsymbol{z}) d \boldsymbol{z}$ is

$$
p(\boldsymbol{x})=\mathcal{N}\left(0, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right) \quad \text { (using result from previous slide) }
$$

PPCA or FA $=$ Low-Rank Gaussian

- Suppose we're modeling D-dim data using a (say zero mean) Gaussian

$$
p(\boldsymbol{x})=\mathcal{N}(0, \boldsymbol{\Sigma})
$$

where $\boldsymbol{\Sigma}$ is a $D \times D$ p.s.d. cov. matrix, $\mathcal{O}\left(D^{2}\right)$ parameters needed

- Consider modeling the same data using the one-layer PPCA model

$$
p(\boldsymbol{x} \mid \boldsymbol{z})=\mathcal{N}\left(\mathbf{W} \boldsymbol{z}, \sigma^{2} \mathbf{I}_{D}\right) \quad \text { where } p(\boldsymbol{z})=\mathcal{N}\left(0, \mathbf{I}_{K}\right)
$$

- For this Gaussian PPCA, the marginal distribution $p(\boldsymbol{x})=\int p(\boldsymbol{x}, \boldsymbol{z}) d \boldsymbol{z}$ is

$$
p(\boldsymbol{x})=\mathcal{N}\left(0, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right) \quad \text { (using result from previous slide) }
$$

- Cov. matrix is close to low-rank. Also, only $(D K+1)$ free params to learn

PPCA or FA $=$ Low-Rank Gaussian

- Suppose we're modeling D-dim data using a (say zero mean) Gaussian

$$
p(\boldsymbol{x})=\mathcal{N}(0, \boldsymbol{\Sigma})
$$

where $\boldsymbol{\Sigma}$ is a $D \times D$ p.s.d. cov. matrix, $\mathcal{O}\left(D^{2}\right)$ parameters needed

- Consider modeling the same data using the one-layer PPCA model

$$
p(\boldsymbol{x} \mid \boldsymbol{z})=\mathcal{N}\left(\mathbf{W} \boldsymbol{z}, \sigma^{2} \mathbf{I}_{D}\right) \quad \text { where } p(\boldsymbol{z})=\mathcal{N}\left(0, \mathbf{I}_{K}\right)
$$

- For this Gaussian PPCA, the marginal distribution $p(\boldsymbol{x})=\int p(\boldsymbol{x}, \boldsymbol{z}) d \boldsymbol{z}$ is

$$
p(\boldsymbol{x})=\mathcal{N}\left(0, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right) \quad \text { (using result from previous slide) }
$$

- Cov. matrix is close to low-rank. Also, only $(D K+1)$ free params to learn
- Thus modeling data using a Gaussian PPCA instead of Gaussian with full cov. may be easier when we have very little but high-dim data (i.e., $D \gg N$)

PPCA or FA $=$ Low-Rank Gaussian

- Suppose we're modeling D-dim data using a (say zero mean) Gaussian

$$
p(\boldsymbol{x})=\mathcal{N}(0, \boldsymbol{\Sigma})
$$

where $\boldsymbol{\Sigma}$ is a $D \times D$ p.s.d. cov. matrix, $\mathcal{O}\left(D^{2}\right)$ parameters needed

- Consider modeling the same data using the one-layer PPCA model

$$
p(\boldsymbol{x} \mid \boldsymbol{z})=\mathcal{N}\left(\mathbf{W} \boldsymbol{z}, \sigma^{2} \mathbf{I}_{D}\right) \quad \text { where } p(\boldsymbol{z})=\mathcal{N}\left(0, \mathbf{I}_{K}\right)
$$

- For this Gaussian PPCA, the marginal distribution $p(\boldsymbol{x})=\int p(\boldsymbol{x}, \boldsymbol{z}) d \boldsymbol{z}$ is

$$
p(\boldsymbol{x})=\mathcal{N}\left(0, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right) \quad \text { (using result from previous slide) }
$$

- Cov. matrix is close to low-rank. Also, only $(D K+1)$ free params to learn
- Thus modeling data using a Gaussian PPCA instead of Gaussian with full cov. may be easier when we have very little but high-dim data (i.e., $D \gg N$)
- $p(\boldsymbol{x})$ is still a Gaussian but between two extremes (diagonal cov and full cov)

Parameter Estimation for PPCA

- Data: $\mathbf{X}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$, latent vars: $\mathbf{Z}=\left\{\boldsymbol{z}_{n}\right\}_{n=1}^{N}$, parameters: \mathbf{W}, σ^{2}

Parameter Estimation for PPCA

- Data: $\mathbf{X}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$, latent vars: $\mathbf{Z}=\left\{\boldsymbol{z}_{n}\right\}_{n=1}^{N}$, parameters: \mathbf{W}, σ^{2}
- Note: If we just want to estimate \mathbf{W} and σ^{2}, we could do MLE directly ${ }^{\dagger}$ on incomplete data likelihood $p(x)=\mathcal{N}\left(0, \mathbf{w w}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)$

Parameter Estimation for PPCA

- Data: $\mathbf{X}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$, latent vars: $\mathbf{Z}=\left\{\boldsymbol{z}_{n}\right\}_{n=1}^{N}$, parameters: \mathbf{W}, σ^{2}
- Note: If we just want to estimate \mathbf{W} and σ^{2}, we could do MLE directly ${ }^{\dagger}$ on incomplete data likelihood $p(x)=\mathcal{N}\left(0, \mathbf{w w}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)$
- Closed-form solution ${ }^{\dagger}$ can be obtained for \mathbf{W} and σ^{2} by maximizing

$$
\log p(\mathbf{X})=-\frac{N}{2}\left(D \log 2 \pi+\log |\mathbf{C}|+\operatorname{trace}\left(\mathbf{C}^{-1} \mathbf{S}\right)\right.
$$

where \mathbf{S} is the data cov. matrix and $\mathbf{c}^{-1}=\sigma^{-1} \mathbf{I}-\sigma^{-1} \mathbf{W M}^{-1} \mathbf{w}^{\top}$ and $\mathbf{M}=\mathbf{W}^{\top} \mathbf{w}+\sigma^{2} \mathbf{I}$

Parameter Estimation for PPCA

- Data: $\mathbf{X}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$, latent vars: $\mathbf{Z}=\left\{\boldsymbol{z}_{n}\right\}_{n=1}^{N}$, parameters: \mathbf{W}, σ^{2}
- Note: If we just want to estimate \mathbf{W} and σ^{2}, we could do MLE directly ${ }^{\dagger}$ on incomplete data likelihood $p(x)=\mathcal{N}\left(0, \mathbf{w w}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)$
- Closed-form solution ${ }^{\dagger}$ can be obtained for \mathbf{W} and σ^{2} by maximizing

$$
\log p(\mathbf{X})=-\frac{N}{2}\left(D \log 2 \pi+\log |\mathbf{C}|+\operatorname{trace}\left(\mathbf{C}^{-1} \mathbf{S}\right)\right.
$$

where \mathbf{S} is the data cov. matrix and $\mathbf{c}^{-1}=\sigma^{-1} \mathbf{I}-\sigma^{-1} \mathbf{W M}^{-1} \mathbf{w}^{\top}$ and $\mathbf{M}=\mathbf{W}^{\top} \mathbf{w}+\sigma^{2} \mathbf{I}$

- But this method isn't usually preferred because

Parameter Estimation for PPCA

- Data: $\mathbf{X}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$, latent vars: $\mathbf{Z}=\left\{\boldsymbol{z}_{n}\right\}_{n=1}^{N}$, parameters: \mathbf{W}, σ^{2}
- Note: If we just want to estimate \mathbf{W} and σ^{2}, we could do MLE directly ${ }^{\dagger}$ on incomplete data likelihood $p(x)=\mathcal{N}\left(0, \mathbf{w w}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)$
- Closed-form solution ${ }^{\dagger}$ can be obtained for \mathbf{W} and σ^{2} by maximizing

$$
\log p(\mathbf{X})=-\frac{N}{2}\left(D \log 2 \pi+\log |\mathbf{C}|+\operatorname{trace}\left(\mathbf{C}^{-1} \mathbf{S}\right)\right.
$$

where \mathbf{S} is the data cov. matrix and $\mathbf{c}^{-1}=\sigma^{-1} \mathbf{I}-\sigma^{-1} \mathbf{W M}^{-1} \mathbf{w}^{\top}$ and $\mathbf{M}=\mathbf{W}^{\top} \mathbf{w}+\sigma^{2} \mathbf{I}$

- But this method isn't usually preferred because
- It is expensive (have to work with cov. matrices and their eig-decomp)

Parameter Estimation for PPCA

- Data: $\mathbf{X}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$, latent vars: $\mathbf{Z}=\left\{\boldsymbol{z}_{n}\right\}_{n=1}^{N}$, parameters: \mathbf{W}, σ^{2}
- Note: If we just want to estimate \mathbf{W} and σ^{2}, we could do MLE directly ${ }^{\dagger}$ on incomplete data likelihood $p(x)=\mathcal{N}\left(0, \mathbf{w w}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)$
- Closed-form solution ${ }^{\dagger}$ can be obtained for \mathbf{W} and σ^{2} by maximizing

$$
\log p(\mathbf{X})=-\frac{N}{2}\left(D \log 2 \pi+\log |\mathbf{C}|+\operatorname{trace}\left(\mathbf{C}^{-1} \mathbf{S}\right)\right.
$$

where \mathbf{S} is the data cov. matrix and $\mathbf{c}^{-1}=\sigma^{-1} \mathbf{I}-\sigma^{-1} \mathbf{W M}^{-1} \mathbf{w}^{\top}$ and $\mathbf{M}=\mathbf{W}^{\top} \mathbf{w}+\sigma^{2} \mathbf{I}$

- But this method isn't usually preferred because
- It is expensive (have to work with cov. matrices and their eig-decomp)
- A closed-form solution may not even be possible for more general models (e.g. Factor Analysis where $\sigma^{2} \mathbf{I}$ is replace by diagonal matrix, or mixture of PPCA)

Parameter Estimation for PPCA

- Data: $\mathbf{X}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$, latent vars: $\mathbf{Z}=\left\{\boldsymbol{z}_{n}\right\}_{n=1}^{N}$, parameters: \mathbf{W}, σ^{2}
- Note: If we just want to estimate \mathbf{W} and σ^{2}, we could do MLE directly ${ }^{\dagger}$ on incomplete data likelihood $p(x)=\mathcal{N}\left(0, \mathbf{w w}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)$
- Closed-form solution ${ }^{\dagger}$ can be obtained for \mathbf{W} and σ^{2} by maximizing

$$
\log p(\mathbf{X})=-\frac{N}{2}\left(D \log 2 \pi+\log |\mathbf{C}|+\operatorname{trace}\left(\mathbf{C}^{-1} \mathbf{S}\right)\right.
$$

where \mathbf{S} is the data cov. matrix and $\mathbf{c}^{-1}=\sigma^{-1} \mathbf{I}-\sigma^{-1} \mathbf{W M}^{-1} \mathbf{w}^{\top}$ and $\mathbf{M}=\mathbf{W}^{\top} \mathbf{w}+\sigma^{2} \mathbf{I}$

- But this method isn't usually preferred because
- It is expensive (have to work with cov. matrices and their eig-decomp)
- A closed-form solution may not even be possible for more general models (e.g. Factor Analysis where $\sigma^{2} \mathbf{I}$ is replace by diagonal matrix, or mixture of PPCA)
- Won't be possible to learn the latent variables $\mathbf{Z}=\left\{\boldsymbol{z}_{n}\right\}_{n=1}^{N}$

[^0]
EM based Parameter Estimation for PPCA

- We will instead go the EM route and work with the complete data log-lik.

$$
\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)
$$

EM based Parameter Estimation for PPCA

- We will instead go the EM route and work with the complete data log-lik.

$$
\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)=\log \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \mathbf{W}, \sigma^{2}\right)
$$

EM based Parameter Estimation for PPCA

- We will instead go the EM route and work with the complete data log-lik.

$$
\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)=\log \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \mathbf{W}, \sigma^{2}\right)=\log \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}, \mathbf{W}, \sigma^{2}\right) p\left(\mathbf{z}_{n}\right)
$$

EM based Parameter Estimation for PPCA

- We will instead go the EM route and work with the complete data log-lik.

$$
\begin{aligned}
\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)=\log \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \mathbf{W}, \sigma^{2}\right) & =\log \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n} \mid \mathbf{z}_{n}, \mathbf{W}, \sigma^{2}\right) p\left(\boldsymbol{z}_{n}\right) \\
& =\sum_{n=1}^{N}\left\{\log p\left(\boldsymbol{x}_{n} \mid \mathbf{z}_{n}, \mathbf{W}, \sigma^{2}\right)+\log p\left(\boldsymbol{z}_{n}\right)\right\}
\end{aligned}
$$

EM based Parameter Estimation for PPCA

- We will instead go the EM route and work with the complete data log-lik.

$$
\begin{aligned}
\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)=\log \prod_{n=1}^{N} p\left(x_{n}, z_{n} \mid \mathbf{W}, \sigma^{2}\right) & =\log \prod_{n=1}^{N} p\left(x_{n} \mid z_{n}, \mathbf{W}, \sigma^{2}\right) p\left(z_{n}\right) \\
& =\sum_{n=1}^{N}\left\{\log p\left(x_{n} \mid z_{n}, \mathbf{W}, \sigma^{2}\right)+\log p\left(z_{n}\right)\right\}
\end{aligned}
$$

- As we'll see, it leads to much simpler expressions and efficient solutions

EM based Parameter Estimation for PPCA

- We will instead go the EM route and work with the complete data log-lik.

$$
\begin{aligned}
\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)=\log \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \mathbf{W}, \sigma^{2}\right) & =\log \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}, \mathbf{W}, \sigma^{2}\right) p\left(\boldsymbol{z}_{n}\right) \\
& =\sum_{n=1}^{N}\left\{\log p\left(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}, \mathbf{W}, \sigma^{2}\right)+\log p\left(\boldsymbol{z}_{n}\right)\right\}
\end{aligned}
$$

- As we'll see, it leads to much simpler expressions and efficient solutions
- Recall that $p\left(x_{n} \mid z_{n}, \mathbf{W}, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{D / 2}} \exp \left(-\frac{\left(x_{n}-\mathbf{W}_{z_{n}}\right)^{\top}\left(x_{n}-\mathbf{w}_{z_{n}}\right)}{2 \sigma^{2}}\right)$ and $p\left(z_{n}\right) \propto \exp \left(-\frac{-\bar{z}_{n}^{\top} z_{n}}{2}\right)$

EM based Parameter Estimation for PPCA

- We will instead go the EM route and work with the complete data log-lik.

$$
\begin{aligned}
\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)=\log \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \mathbf{W}, \sigma^{2}\right) & =\log \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}, \mathbf{W}, \sigma^{2}\right) p\left(\boldsymbol{z}_{n}\right) \\
& =\sum_{n=1}^{N}\left\{\log p\left(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}, \mathbf{W}, \sigma^{2}\right)+\log p\left(\boldsymbol{z}_{n}\right)\right\}
\end{aligned}
$$

- As we'll see, it leads to much simpler expressions and efficient solutions
- Recall that $p\left(x_{n} \mid z_{n}, \mathbf{W}, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{D / 2}} \exp \left(-\frac{\left(x_{n}-\mathbf{w}_{z_{n}}\right)^{\top}\left(x_{n}-\mathbf{w}_{z_{n}}\right)}{2 \sigma^{2}}\right)$ and $p\left(z_{n}\right) \propto \exp \left(-\frac{z_{n}^{\top} z_{n}}{2}\right)$
- Plugging in, simplifying, using the trace trick, and ignoring constants, we get the following expression for complete data \log-likelihood $\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)$

$$
-\sum_{n=1}^{N}\left\{\frac{D}{2} \log \sigma^{2}+\frac{1}{2 \sigma^{2}}\left\|\boldsymbol{x}_{n}\right\|^{2}-\frac{1}{\sigma^{2}} \mathbf{z}_{n}^{\top} \mathbf{W}^{\top} \boldsymbol{x}_{n}+\frac{1}{2 \sigma^{2}} \operatorname{tr}\left(\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top} \mathbf{W}^{\top} \mathbf{W}\right)+\frac{1}{2} \operatorname{tr}\left(\mathbf{z}_{n} \mathbf{z}_{n}^{\top}\right)\right\}
$$

EM based Parameter Estimation for PPCA

- We will instead go the EM route and work with the complete data log-lik.

$$
\begin{aligned}
\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)=\log \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \mathbf{W}, \sigma^{2}\right) & =\log \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}, \mathbf{W}, \sigma^{2}\right) p\left(\boldsymbol{z}_{n}\right) \\
& =\sum_{n=1}^{N}\left\{\log p\left(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}, \mathbf{W}, \sigma^{2}\right)+\log p\left(\boldsymbol{z}_{n}\right)\right\}
\end{aligned}
$$

- As we'll see, it leads to much simpler expressions and efficient solutions
- Recall that $p\left(x_{n} \mid z_{n}, \mathbf{W}, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{D / 2}} \exp \left(-\frac{\left(x_{n}-\mathbf{w}_{z_{n}}\right)^{\top}\left(x_{n}-\mathbf{w}_{z_{n}}\right)}{2 \sigma^{2}}\right)$ and $p\left(z_{n}\right) \propto \exp \left(-\frac{z_{n}^{\top} z_{n}}{2}\right)$
- Plugging in, simplifying, using the trace trick, and ignoring constants, we get the following expression for complete data log-likelihood $\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)$

$$
-\sum_{n=1}^{N}\left\{\frac{D}{2} \log \sigma^{2}+\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{n}\right\|^{2}-\frac{1}{\sigma^{2}} \mathbf{z}_{n}^{\top} \mathbf{W}^{\top} \mathbf{x}_{n}+\frac{1}{2 \sigma^{2}} \operatorname{tr}\left(\mathbf{z}_{n} \mathbf{z}_{n}^{\top} \mathbf{W}^{\top} \mathbf{W}\right)+\frac{1}{2} \operatorname{tr}\left(\mathbf{z}_{n} \mathbf{z}_{n}^{\top}\right)\right\}
$$

- We will need the expected value of this quantity in M step of EM

EM based Parameter Estimation for PPCA

- We will instead go the EM route and work with the complete data log-lik.

$$
\begin{aligned}
\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)=\log \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \mathbf{W}, \sigma^{2}\right) & =\log \prod_{n=1}^{N} p\left(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}, \mathbf{W}, \sigma^{2}\right) p\left(\boldsymbol{z}_{n}\right) \\
& =\sum_{n=1}^{N}\left\{\log p\left(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}, \mathbf{W}, \sigma^{2}\right)+\log p\left(\boldsymbol{z}_{n}\right)\right\}
\end{aligned}
$$

- As we'll see, it leads to much simpler expressions and efficient solutions
- Recall that $p\left(x_{n} \mid z_{n}, \mathbf{W}, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{D / 2}} \exp \left(-\frac{\left(x_{n}-\mathbf{w}_{z_{n}}\right)^{\top}\left(x_{n}-\mathbf{w}_{z_{n}}\right)}{2 \sigma^{2}}\right)$ and $p\left(z_{n}\right) \propto \exp \left(-\frac{z_{n}^{\top} z_{n}}{2}\right)$
- Plugging in, simplifying, using the trace trick, and ignoring constants, we get the following expression for complete data log-likelihood $\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)$

$$
-\sum_{n=1}^{N}\left\{\frac{D}{2} \log \sigma^{2}+\frac{1}{2 \sigma^{2}}\left\|\boldsymbol{x}_{n}\right\|^{2}-\frac{1}{\sigma^{2}} \mathbf{z}_{n}^{\top} \mathbf{W}^{\top} \boldsymbol{x}_{n}+\frac{1}{2 \sigma^{2}} \operatorname{tr}\left(\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top} \mathbf{W}^{\top} \mathbf{W}\right)+\frac{1}{2} \operatorname{tr}\left(\mathbf{z}_{n} \mathbf{z}_{n}^{\top}\right)\right\}
$$

- We will need the expected value of this quantity in M step of EM
- This requires computing the posterior distribution of z_{n} in E step (which is Gaussian; recall the result from earlier slide on linear Gaussian systems)

EM based Parameter Estimation for PPCA

- The expected complete data log-likelihood $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)\right]$

$$
=-\sum_{n=1}^{N}\left\{\frac{D}{2} \log \sigma^{2}+\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{n}\right\|^{2}-\frac{1}{\sigma^{2}} \mathbb{E}\left[z_{n}\right]^{\top} \mathbf{W}^{\top} \mathbf{x}_{n}+\frac{1}{2 \sigma^{2}} \operatorname{tr}\left(\mathbb{E}\left[z_{n} \mathbf{z}_{n}^{\top}\right] \mathbf{W}^{\top} \mathbf{W}\right)+\frac{1}{2} \operatorname{tr}\left(\mathbb{E}\left[z_{n} \mathbf{z}_{n}^{\top}\right]\right)\right\}
$$

EM based Parameter Estimation for PPCA

- The expected complete data log-likelihood $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)\right]$

$$
=-\sum_{n=1}^{N}\left\{\frac{D}{2} \log \sigma^{2}+\frac{1}{2 \sigma^{2}}\left\|x_{n}\right\|^{2}-\frac{1}{\sigma^{2}} \mathbb{E}\left[z_{n}\right]^{\top} \mathbf{W}^{\top} \mathbf{x}_{n}+\frac{1}{2 \sigma^{2}} \operatorname{tr}\left(\mathbb{E}\left[z_{n} z_{n}^{\top}\right] \mathbf{W}^{\top} \mathbf{W}\right)+\frac{1}{2} \operatorname{tr}\left(\mathbb{E}\left[z_{n} z_{n}^{\top}\right]\right)\right\}
$$

- Taking the derivative of $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)\right]$ w.r.t. \mathbf{W} and setting to zero

$$
\mathbf{W}=\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]\right]^{-1}
$$

EM based Parameter Estimation for PPCA

- The expected complete data log-likelihood $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)\right]$

$$
=-\sum_{n=1}^{N}\left\{\frac{D}{2} \log \sigma^{2}+\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{n}\right\|^{2}-\frac{1}{\sigma^{2}} \mathbb{E}\left[z_{n}\right]^{\top} \mathbf{W}^{\top} \mathbf{x}_{n}+\frac{1}{2 \sigma^{2}} \operatorname{tr}\left(\mathbb{E}\left[z_{n} z_{n}^{\top}\right] \mathbf{W}^{\top} \mathbf{W}\right)+\frac{1}{2} \operatorname{tr}\left(\mathbb{E}\left[z_{n} z_{n}^{\top}\right]\right)\right\}
$$

- Taking the derivative of $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)\right]$ w.r.t. \mathbf{W} and setting to zero

$$
\mathbf{W}=\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]\right]^{-1}
$$

- To compute \mathbf{W}, we also need two expectations $\mathbb{E}\left[\boldsymbol{z}_{n}\right]$ and $\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]$

EM based Parameter Estimation for PPCA

- The expected complete data log-likelihood $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)\right]$

$$
=-\sum_{n=1}^{N}\left\{\frac{D}{2} \log \sigma^{2}+\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{n}\right\|^{2}-\frac{1}{\sigma^{2}} \mathbb{E}\left[z_{n}\right]^{\top} \mathbf{W}^{\top} \mathbf{x}_{n}+\frac{1}{2 \sigma^{2}} \operatorname{tr}\left(\mathbb{E}\left[z_{n} \mathbf{z}_{n}^{\top}\right] \mathbf{W}^{\top} \mathbf{W}\right)+\frac{1}{2} \operatorname{tr}\left(\mathbb{E}\left[z_{n} \mathbf{z}_{n}^{\top}\right]\right)\right\}
$$

- Taking the derivative of $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)\right]$ w.r.t. \mathbf{W} and setting to zero

$$
\mathbf{W}=\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]\right]^{-1}
$$

- To compute \mathbf{W}, we also need two expectations $\mathbb{E}\left[\boldsymbol{z}_{n}\right]$ and $\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]$
- These can be obtained in E step by computing posterior over \boldsymbol{z}_{n}, which, using the results of Gaussian posterior for linear Gaussian models, is

$$
p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \mathbf{W}\right)=\mathcal{N}\left(\mathbf{M}^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}, \sigma^{2} \mathbf{M}^{-1}\right) \quad \text { where } \mathbf{M}=\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}
$$

EM based Parameter Estimation for PPCA

- The expected complete data log-likelihood $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)\right]$

$$
=-\sum_{n=1}^{N}\left\{\frac{D}{2} \log \sigma^{2}+\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{n}\right\|^{2}-\frac{1}{\sigma^{2}} \mathbb{E}\left[z_{n}\right]^{\top} \mathbf{W}^{\top} \mathbf{x}_{n}+\frac{1}{2 \sigma^{2}} \operatorname{tr}\left(\mathbb{E}\left[z_{n} z_{n}^{\top}\right] \mathbf{W}^{\top} \mathbf{W}\right)+\frac{1}{2} \operatorname{tr}\left(\mathbb{E}\left[z_{n} z_{n}^{\top}\right]\right)\right\}
$$

- Taking the derivative of $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{z} \mid \mathbf{W}, \sigma^{2}\right)\right]$ w.r.t. \mathbf{W} and setting to zero

$$
\mathbf{W}=\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]\right]^{-1}
$$

- To compute \mathbf{W}, we also need two expectations $\mathbb{E}\left[\boldsymbol{z}_{n}\right]$ and $\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]$
- These can be obtained in E step by computing posterior over \boldsymbol{z}_{n}, which, using the results of Gaussian posterior for linear Gaussian models, is

$$
p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \mathbf{W}\right)=\mathcal{N}\left(\mathbf{M}^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}, \sigma^{2} \mathbf{M}^{-1}\right) \quad \text { where } \mathbf{M}=\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}
$$

- The required expectations can be easily obtained from the Gaussian posterior

EM based Parameter Estimation for PPCA

- The expected complete data log-likelihood $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)\right]$

$$
=-\sum_{n=1}^{N}\left\{\frac{D}{2} \log \sigma^{2}+\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{n}\right\|^{2}-\frac{1}{\sigma^{2}} \mathbb{E}\left[z_{n}\right]^{\top} \mathbf{W}^{\top} \mathbf{x}_{n}+\frac{1}{2 \sigma^{2}} \operatorname{tr}\left(\mathbb{E}\left[z_{n} z_{n}^{\top}\right] \mathbf{W}^{\top} \mathbf{W}\right)+\frac{1}{2} \operatorname{tr}\left(\mathbb{E}\left[z_{n} z_{n}^{\top}\right]\right)\right\}
$$

- Taking the derivative of $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{z} \mid \mathbf{W}, \sigma^{2}\right)\right]$ w.r.t. \mathbf{W} and setting to zero

$$
\mathbf{W}=\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]\right]^{-1}
$$

- To compute \mathbf{W}, we also need two expectations $\mathbb{E}\left[\boldsymbol{z}_{n}\right]$ and $\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]$
- These can be obtained in E step by computing posterior over \boldsymbol{z}_{n}, which, using the results of Gaussian posterior for linear Gaussian models, is

$$
p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \mathbf{W}\right)=\mathcal{N}\left(\mathbf{M}^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}, \sigma^{2} \mathbf{M}^{-1}\right) \quad \text { where } \mathbf{M}=\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}
$$

- The required expectations can be easily obtained from the Gaussian posterior

$$
\mathbb{E}\left[\boldsymbol{z}_{n}\right]=\mathbf{M}^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}
$$

EM based Parameter Estimation for PPCA

- The expected complete data log-likelihood $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)\right]$

$$
=-\sum_{n=1}^{N}\left\{\frac{D}{2} \log \sigma^{2}+\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{n}\right\|^{2}-\frac{1}{\sigma^{2}} \mathbb{E}\left[z_{n}\right]^{\top} \mathbf{W}^{\top} \mathbf{x}_{n}+\frac{1}{2 \sigma^{2}} \operatorname{tr}\left(\mathbb{E}\left[z_{n} z_{n}^{\top}\right] \mathbf{W}^{\top} \mathbf{W}\right)+\frac{1}{2} \operatorname{tr}\left(\mathbb{E}\left[z_{n} z_{n}^{\top}\right]\right)\right\}
$$

- Taking the derivative of $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{z} \mid \mathbf{W}, \sigma^{2}\right)\right]$ w.r.t. \mathbf{W} and setting to zero

$$
\mathbf{W}=\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]\right]^{-1}
$$

- To compute \mathbf{W}, we also need two expectations $\mathbb{E}\left[\boldsymbol{z}_{n}\right]$ and $\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]$
- These can be obtained in E step by computing posterior over \boldsymbol{z}_{n}, which, using the results of Gaussian posterior for linear Gaussian models, is

$$
p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \mathbf{W}\right)=\mathcal{N}\left(\mathbf{M}^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}, \sigma^{2} \mathbf{M}^{-1}\right) \quad \text { where } \mathbf{M}=\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}
$$

- The required expectations can be easily obtained from the Gaussian posterior

$$
\begin{aligned}
\mathbb{E}\left[\boldsymbol{z}_{n}\right] & =\mathbf{M}^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n} \\
\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right] & =\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\operatorname{cov}\left(\boldsymbol{z}_{n}\right)
\end{aligned}
$$

EM based Parameter Estimation for PPCA

- The expected complete data log-likelihood $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)\right]$

$$
=-\sum_{n=1}^{N}\left\{\frac{D}{2} \log \sigma^{2}+\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{n}\right\|^{2}-\frac{1}{\sigma^{2}} \mathbb{E}\left[z_{n}\right]^{\top} \mathbf{W}^{\top} \mathbf{x}_{n}+\frac{1}{2 \sigma^{2}} \operatorname{tr}\left(\mathbb{E}\left[z_{n} z_{n}^{\top}\right] \mathbf{W}^{\top} \mathbf{W}\right)+\frac{1}{2} \operatorname{tr}\left(\mathbb{E}\left[z_{n} z_{n}^{\top}\right]\right)\right\}
$$

- Taking the derivative of $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)\right]$ w.r.t. \mathbf{W} and setting to zero

$$
\mathbf{W}=\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]\right]^{-1}
$$

- To compute \mathbf{W}, we also need two expectations $\mathbb{E}\left[\boldsymbol{z}_{n}\right]$ and $\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]$
- These can be obtained in E step by computing posterior over \boldsymbol{z}_{n}, which, using the results of Gaussian posterior for linear Gaussian models, is

$$
p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \mathbf{W}\right)=\mathcal{N}\left(\mathbf{M}^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}, \sigma^{2} \mathbf{M}^{-1}\right) \quad \text { where } \mathbf{M}=\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}
$$

- The required expectations can be easily obtained from the Gaussian posterior

$$
\begin{aligned}
\mathbb{E}\left[\boldsymbol{z}_{n}\right] & =\mathbf{M}^{-1} \mathbf{w}^{\top} \boldsymbol{x}_{n} \\
\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right] & =\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\operatorname{cov}\left(\boldsymbol{z}_{n}\right)=\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\sigma^{2} \mathbf{M}^{-1}
\end{aligned}
$$

EM based Parameter Estimation for PPCA

- The expected complete data log-likelihood $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{Z} \mid \mathbf{W}, \sigma^{2}\right)\right]$

$$
=-\sum_{n=1}^{N}\left\{\frac{D}{2} \log \sigma^{2}+\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{n}\right\|^{2}-\frac{1}{\sigma^{2}} \mathbb{E}\left[z_{n}\right]^{\top} \mathbf{W}^{\top} \mathbf{x}_{n}+\frac{1}{2 \sigma^{2}} \operatorname{tr}\left(\mathbb{E}\left[z_{n} z_{n}^{\top}\right] \mathbf{W}^{\top} \mathbf{W}\right)+\frac{1}{2} \operatorname{tr}\left(\mathbb{E}\left[z_{n} z_{n}^{\top}\right]\right)\right\}
$$

- Taking the derivative of $\mathbb{E}\left[\log p\left(\mathbf{X}, \mathbf{z} \mid \mathbf{W}, \sigma^{2}\right)\right]$ w.r.t. \mathbf{W} and setting to zero

$$
\mathbf{W}=\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]\right]^{-1}
$$

- To compute \mathbf{W}, we also need two expectations $\mathbb{E}\left[\boldsymbol{z}_{n}\right]$ and $\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]$
- These can be obtained in E step by computing posterior over \boldsymbol{z}_{n}, which, using the results of Gaussian posterior for linear Gaussian models, is

$$
p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n}, \mathbf{W}\right)=\mathcal{N}\left(\mathbf{M}^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}, \sigma^{2} \mathbf{M}^{-1}\right) \quad \text { where } \mathbf{M}=\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}
$$

- The required expectations can be easily obtained from the Gaussian posterior

$$
\begin{aligned}
\mathbb{E}\left[\boldsymbol{z}_{n}\right] & =\mathbf{M}^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n} \\
\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right] & =\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\operatorname{cov}\left(\boldsymbol{z}_{n}\right)=\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\sigma^{2} \mathbf{M}^{-1}
\end{aligned}
$$

- Note: The noise variance σ^{2} can also be estimated (take deriv., set to zero..)

The Full EM Algorithm for PPCA

- Specify K, initialize \mathbf{W} and σ^{2} randomly. Also center the data

The Full EM Algorithm for PPCA

- Specify K, initialize \mathbf{W} and σ^{2} randomly. Also center the data
- E step: Compute the expectations required in M step. For each data point

The Full EM Algorithm for PPCA

- Specify K, initialize \mathbf{W} and σ^{2} randomly. Also center the data
- E step: Compute the expectations required in M step. For each data point

$$
\mathbb{E}\left[\boldsymbol{z}_{n}\right]=\left(\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}=\mathbf{M}^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}
$$

The Full EM Algorithm for PPCA

- Specify K, initialize \mathbf{W} and σ^{2} randomly. Also center the data
- E step: Compute the expectations required in M step. For each data point

$$
\begin{aligned}
\mathbb{E}\left[\boldsymbol{z}_{n}\right] & =\left(\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}=\mathbf{M}^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n} \\
\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right] & =\operatorname{cov}\left(\boldsymbol{z}_{n}\right)+\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}=\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\sigma^{2} \mathbf{M}^{-1}
\end{aligned}
$$

The Full EM Algorithm for PPCA

- Specify K, initialize \mathbf{W} and σ^{2} randomly. Also center the data
- E step: Compute the expectations required in M step. For each data point

$$
\begin{aligned}
\mathbb{E}\left[\boldsymbol{z}_{n}\right] & =\left(\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}=\mathbf{M}^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n} \\
\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right] & =\operatorname{cov}\left(\boldsymbol{z}_{n}\right)+\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}=\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\sigma^{2} \mathbf{M}^{-1}
\end{aligned}
$$

- M step: Re-estimate \mathbf{W} and σ^{2}

The Full EM Algorithm for PPCA

- Specify K, initialize \mathbf{W} and σ^{2} randomly. Also center the data
- E step: Compute the expectations required in M step. For each data point

$$
\begin{aligned}
\mathbb{E}\left[\boldsymbol{z}_{n}\right] & =\left(\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}=\mathbf{M}^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n} \\
\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right] & =\operatorname{cov}\left(\boldsymbol{z}_{n}\right)+\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}=\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\sigma^{2} \mathbf{M}^{-1}
\end{aligned}
$$

- M step: Re-estimate \mathbf{W} and σ^{2}

$$
\mathbf{W}_{\text {new }}=\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]\right]^{-1}=\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\sigma^{2} \mathbf{M}^{-1}\right]^{-1}
$$

The Full EM Algorithm for PPCA

- Specify K, initialize \mathbf{W} and σ^{2} randomly. Also center the data
- E step: Compute the expectations required in M step. For each data point

$$
\begin{aligned}
\mathbb{E}\left[\boldsymbol{z}_{n}\right] & =\left(\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}=\mathbf{M}^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n} \\
\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right] & =\operatorname{cov}\left(\boldsymbol{z}_{n}\right)+\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}=\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\sigma^{2} \mathbf{M}^{-1}
\end{aligned}
$$

- \mathbf{M} step: Re-estimate \mathbf{W} and σ^{2}

$$
\begin{aligned}
\mathbf{W}_{\text {new }} & =\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]\right]^{-1}=\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\sigma^{2} \mathbf{M}^{-1}\right]^{-1} \\
\sigma_{\text {new }}^{2} & =\frac{1}{N D} \sum_{n=1}^{N}\left\{\left\|\boldsymbol{x}_{n}\right\|^{2}-2 \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top} \mathbf{W}_{\text {new }}^{\top} \boldsymbol{x}_{n}+\operatorname{tr}\left(\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right] \mathbf{W}_{\text {new }}^{\top} \mathbf{W}_{\text {new }}\right)\right\}
\end{aligned}
$$

The Full EM Algorithm for PPCA

- Specify K, initialize \mathbf{W} and σ^{2} randomly. Also center the data
- E step: Compute the expectations required in M step. For each data point

$$
\begin{aligned}
\mathbb{E}\left[\boldsymbol{z}_{n}\right] & =\left(\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}=\mathbf{M}^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n} \\
\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right] & =\operatorname{cov}\left(\boldsymbol{z}_{n}\right)+\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}=\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\sigma^{2} \mathbf{M}^{-1}
\end{aligned}
$$

- \mathbf{M} step: Re-estimate \mathbf{W} and σ^{2}

$$
\begin{aligned}
\mathbf{W}_{\text {new }} & =\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]\right]^{-1}=\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\sigma^{2} \mathbf{M}^{-1}\right]^{-1} \\
\sigma_{\text {new }}^{2} & =\frac{1}{N D} \sum_{n=1}^{N}\left\{\left\|\boldsymbol{x}_{n}\right\|^{2}-2 \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top} \mathbf{W}_{\text {new }}^{\top} \boldsymbol{x}_{n}+\operatorname{tr}\left(\mathbb{E}\left[\boldsymbol{z}_{n} \mathbf{z}_{n}^{\top}\right] \mathbf{W}_{\text {new }}^{\top} \mathbf{W}_{\text {new }}\right)\right\}
\end{aligned}
$$

- Set $\mathbf{W}=\mathbf{W}_{\text {new }}$ and $\sigma^{2}=\sigma_{\text {new }}^{2}$

The Full EM Algorithm for PPCA

- Specify K, initialize \mathbf{W} and σ^{2} randomly. Also center the data
- E step: Compute the expectations required in M step. For each data point

$$
\begin{aligned}
\mathbb{E}\left[\boldsymbol{z}_{n}\right] & =\left(\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}=\mathbf{M}^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n} \\
\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right] & =\operatorname{cov}\left(\boldsymbol{z}_{n}\right)+\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}=\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\sigma^{2} \mathbf{M}^{-1}
\end{aligned}
$$

- M step: Re-estimate \mathbf{W} and σ^{2}

$$
\begin{aligned}
\mathbf{W}_{\text {new }} & =\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]\right]^{-1}=\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\sigma^{2} \mathbf{M}^{-1}\right]^{-1} \\
\sigma_{\text {new }}^{2} & =\frac{1}{N D} \sum_{n=1}^{N}\left\{\left\|\boldsymbol{x}_{n}\right\|^{2}-2 \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top} \mathbf{W}_{\text {new }}^{\top} \boldsymbol{x}_{n}+\operatorname{tr}\left(\mathbb{E}\left[\boldsymbol{z}_{n} \mathbf{z}_{n}^{\top}\right] \mathbf{W}_{\text {new }}^{\top} \mathbf{W}_{\text {new }}\right)\right\}
\end{aligned}
$$

- Set $\mathbf{W}=\mathbf{W}_{\text {new }}$ and $\sigma^{2}=\sigma_{\text {new }}^{2}$
- If not converged, go back to E step (can monitor the incomplete/complete log-likelihood to assess convergence)

EM for Factor Analysis

- Similar to PPCA except that the Gaussian conditional distribution $p\left(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}\right)$ has diagonal instead of spherical covariance, i.e., $\boldsymbol{x}_{n} \sim \mathcal{N}\left(\mathbf{W} \boldsymbol{z}_{n}, \boldsymbol{\Psi}\right)$, where $\boldsymbol{\Psi}$ is a diagonal matrix

EM for Factor Analysis

- Similar to PPCA except that the Gaussian conditional distribution $p\left(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}\right)$ has diagonal instead of spherical covariance, i.e., $\boldsymbol{x}_{n} \sim \mathcal{N}\left(\mathbf{W} \boldsymbol{z}_{n}, \boldsymbol{\Psi}\right)$, where $\boldsymbol{\Psi}$ is a diagonal matrix
- EM for Factor Analysis is very similar to that for PPCA

EM for Factor Analysis

- Similar to PPCA except that the Gaussian conditional distribution $p\left(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}\right)$ has diagonal instead of spherical covariance, i.e., $\boldsymbol{x}_{n} \sim \mathcal{N}\left(\mathbf{W} \boldsymbol{z}_{n}, \boldsymbol{\Psi}\right)$, where $\boldsymbol{\Psi}$ is a diagonal matrix
- EM for Factor Analysis is very similar to that for PPCA
- The required expectations in the E step :

$$
\begin{aligned}
\mathbb{E}\left[\boldsymbol{z}_{n}\right] & =\mathbf{G}^{-1} \mathbf{W}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{x}_{n} \\
\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right] & =\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\mathbf{G}
\end{aligned}
$$

where $\mathbf{G}=\left(\mathbf{W}^{\top} \boldsymbol{\Psi}^{-1} \mathbf{W}+\mathbf{I}_{K}\right)^{-1}$. Note that if $\boldsymbol{\Psi}=\sigma^{2} \mathbf{I}_{D}$, we get the same equations as in PPCA

EM for Factor Analysis

- Similar to PPCA except that the Gaussian conditional distribution $p\left(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}\right)$ has diagonal instead of spherical covariance, i.e., $\boldsymbol{x}_{n} \sim \mathcal{N}\left(\mathbf{W} \boldsymbol{z}_{n}, \boldsymbol{\Psi}\right)$, where $\boldsymbol{\Psi}$ is a diagonal matrix
- EM for Factor Analysis is very similar to that for PPCA
- The required expectations in the E step :

$$
\begin{aligned}
\mathbb{E}\left[\boldsymbol{z}_{n}\right] & =\mathbf{G}^{-1} \mathbf{W}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{x}_{n} \\
\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right] & =\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\mathbf{G}
\end{aligned}
$$

where $\mathbf{G}=\left(\mathbf{W}^{\top} \boldsymbol{\Psi}^{-1} \mathbf{W}+\mathbf{I}_{K}\right)^{-1}$. Note that if $\boldsymbol{\Psi}=\sigma^{2} \mathbf{I}_{D}$, we get the same equations as in PPCA

- In the M step, updates for $\mathbf{W}_{\text {new }}$ are the same as PPCA

EM for Factor Analysis

- Similar to PPCA except that the Gaussian conditional distribution $p\left(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}\right)$ has diagonal instead of spherical covariance, i.e., $\boldsymbol{x}_{n} \sim \mathcal{N}\left(\mathbf{W} \boldsymbol{z}_{n}, \boldsymbol{\Psi}\right)$, where $\boldsymbol{\Psi}$ is a diagonal matrix
- EM for Factor Analysis is very similar to that for PPCA
- The required expectations in the E step :

$$
\begin{aligned}
\mathbb{E}\left[\boldsymbol{z}_{n}\right] & =\mathbf{G}^{-1} \mathbf{W}^{\top} \boldsymbol{\Psi}^{-1} \boldsymbol{x}_{n} \\
\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right] & =\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}+\mathbf{G}
\end{aligned}
$$

where $\mathbf{G}=\left(\mathbf{W}^{\top} \boldsymbol{\Psi}^{-1} \mathbf{W}+\mathbf{I}_{K}\right)^{-1}$. Note that if $\boldsymbol{\Psi}=\sigma^{2} \mathbf{I}_{D}$, we get the same equations as in PPCA

- In the M step, updates for $\mathbf{W}_{\text {new }}$ are the same as PPCA
- In the M step, updates for $\boldsymbol{\Psi}$ are

$$
\boldsymbol{\Psi}_{\text {new }}=\operatorname{diag}\left\{\mathbf{s}-\mathbf{W}_{\text {nee }} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbf{x}_{n}^{\top}\right\} \quad \text { (} \mathbf{S} \text { is the cov. matrix of data) }
$$

Some Aspects about PPCA/FA

- Can also handle missing data as additional latent variables in E step. Just write each data point as $\boldsymbol{x}_{n}=\left[\boldsymbol{x}_{n}^{\text {obs }} \boldsymbol{x}_{n}^{\text {miss }}\right]$ and treat $\boldsymbol{x}_{n}^{\text {miss }}$ as latent vars.

Some Aspects about PPCA/FA

- Can also handle missing data as additional latent variables in E step. Just write each data point as $\boldsymbol{x}_{n}=\left[\boldsymbol{x}_{n}^{\text {obs }} \boldsymbol{x}_{n}^{\text {miss }}\right]$ and treat $\boldsymbol{x}_{n}^{\text {miss }}$ as latent vars.
- Usually the posterior $p\left(x_{n}^{m i s s} \mid x_{n}^{\text {obs }}\right)$ over missing data can be computed

Some Aspects about PPCA/FA

- Can also handle missing data as additional latent variables in E step. Just write each data point as $\boldsymbol{x}_{n}=\left[\boldsymbol{x}_{n}^{\text {obs }} \boldsymbol{x}_{n}^{\text {miss }}\right]$ and treat $\boldsymbol{x}_{n}^{\text {miss }}$ as latent vars.
- Usually the posterior $p\left(x_{n}^{m i s s} \mid x_{n}^{\text {obs }}\right)$ over missing data can be computed
- Note: Ability to handle missing data is the property of EM in general and can be used in other models as well (e.g., GMM)

Some Aspects about PPCA/FA

- Can also handle missing data as additional latent variables in E step. Just write each data point as $\boldsymbol{x}_{n}=\left[\boldsymbol{x}_{n}^{\text {obs }} \boldsymbol{x}_{n}^{\text {miss }}\right]$ and treat $\boldsymbol{x}_{n}^{\text {miss }}$ as latent vars.
- Usually the posterior $p\left(x_{n}^{m i s s} \mid x_{n}^{o b s}\right)$ over missing data can be computed
- Note: Ability to handle missing data is the property of EM in general and can be used in other models as well (e.g., GMM)
- Can learn other model params such as noise variance σ^{2} using MLE/MAP

Some Aspects about PPCA/FA

- Can also handle missing data as additional latent variables in E step. Just write each data point as $\boldsymbol{x}_{n}=\left[\boldsymbol{x}_{n}^{\text {obs }} \boldsymbol{x}_{n}^{\text {miss }}\right]$ and treat $\boldsymbol{x}_{n}^{\text {miss }}$ as latent vars.
- Usually the posterior $p\left(x_{n}^{m i s s} \mid x_{n}^{\text {obs }}\right)$ over missing data can be computed
- Note: Ability to handle missing data is the property of EM in general and can be used in other models as well (e.g., GMM)
- Can learn other model params such as noise variance σ^{2} using MLE/MAP
- Also more efficient than the naïve PCA. Doesn't require computing the $D \times D$ cov. matrix of data and doing expensive eigen-decomposition

Some Aspects about PPCA/FA

- Can also handle missing data as additional latent variables in E step. Just write each data point as $\boldsymbol{x}_{n}=\left[\boldsymbol{x}_{n}^{\text {obs }} \boldsymbol{x}_{n}^{\text {miss }}\right]$ and treat $\boldsymbol{x}_{n}^{\text {miss }}$ as latent vars.
- Usually the posterior $p\left(x_{n}^{m i s s} \mid x_{n}^{\text {obs }}\right)$ over missing data can be computed
- Note: Ability to handle missing data is the property of EM in general and can be used in other models as well (e.g., GMM)
- Can learn other model params such as noise variance σ^{2} using MLE/MAP
- Also more efficient than the naïve PCA. Doesn't require computing the $D \times D$ cov. matrix of data and doing expensive eigen-decomposition
- Can learn the model very efficiently using "online EM"

Some Aspects about PPCA/FA

- Can also handle missing data as additional latent variables in E step. Just write each data point as $\boldsymbol{x}_{n}=\left[\boldsymbol{x}_{n}^{\text {obs }} \boldsymbol{x}_{n}^{\text {miss }}\right]$ and treat $\boldsymbol{x}_{n}^{\text {miss }}$ as latent vars.
- Usually the posterior $p\left(x_{n}^{\text {miss }} \mid x_{n}^{\text {obs }}\right)$ over missing data can be computed
- Note: Ability to handle missing data is the property of EM in general and can be used in other models as well (e.g., GMM)
- Can learn other model params such as noise variance σ^{2} using MLE/MAP
- Also more efficient than the naïve PCA. Doesn't require computing the $D \times D$ cov. matrix of data and doing expensive eigen-decomposition
- Can learn the model very efficiently using "online EM"
- Possible to give it a fully Bayesian treatment (which has many other benefits such as inferring K using nonparametric Bayesian modeling)

Some Aspects about PPCA/FA

- Provides a framework that could be extended to build more complex models

Some Aspects about PPCA/FA

- Provides a framework that could be extended to build more complex models
- Mixture of PPCA/FA models (joint clust. + dim. red., or nonlin. dim. red.)

Some Aspects about PPCA/FA

- Provides a framework that could be extended to build more complex models
- Mixture of PPCA/FA models (joint clust. + dim. red., or nonlin. dim. red.)

- Deep models for feature learning and dimensionality reduction

Some Aspects about PPCA/FA

- Provides a framework that could be extended to build more complex models
- Mixture of PPCA/FA models (joint clust. + dim. red., or nonlin. dim. red.)

- Deep models for feature learning and dimensionality reduction

- Supervised extensions, e.g., by jointly modeling labels y_{n} as conditioned on latent factors, i.e., $p\left(y_{n}=1 \mid z_{n}, \theta\right)$ using a logistic model with weights $\theta \in \mathbb{R}^{K}$

Some Applications of PPCA

- Learning the noise variance allows "image denoising"

Some Applications of PPCA

- Learning the noise variance allows "image denoising"

- Ability to fill-in missing data allows "image inpainting" (left: image with 80% missing data, middle: reconstructed, right: original)

Using EM for (efficiently) solving standard PCA

- Let's see what happens if the noise variance σ^{2} goes to 0

Using EM for (efficiently) solving standard PCA

- Let's see what happens if the noise variance σ^{2} goes to 0
- Let's first look at the E step

$$
\mathbb{E}\left[\boldsymbol{z}_{n}\right]=\left(\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}=\left(\mathbf{W}^{\top} \mathbf{W}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}
$$

Using EM for (efficiently) solving standard PCA

- Let's see what happens if the noise variance σ^{2} goes to 0
- Let's first look at the E step

$$
\mathbb{E}\left[\boldsymbol{z}_{n}\right]=\left(\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}=\left(\mathbf{W}^{\top} \mathbf{W}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}
$$

(no need to compute $\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]$ since it will simply be equal to $\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}$)

Using EM for (efficiently) solving standard PCA

- Let's see what happens if the noise variance σ^{2} goes to 0
- Let's first look at the E step

$$
\mathbb{E}\left[\boldsymbol{z}_{n}\right]=\left(\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}=\left(\mathbf{W}^{\top} \mathbf{W}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}
$$

(no need to compute $\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]$ since it will simply be equal to $\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}$)

- Let's now look at the M step

$$
\mathbf{W}_{\text {new }}=\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]^{-1}
$$

Using EM for (efficiently) solving standard PCA

- Let's see what happens if the noise variance σ^{2} goes to 0
- Let's first look at the E step

$$
\mathbb{E}\left[\boldsymbol{z}_{n}\right]=\left(\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}=\left(\mathbf{W}^{\top} \mathbf{W}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}
$$

(no need to compute $\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]$ since it will simply be equal to $\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}$)

- Let's now look at the M step

$$
\mathbf{W}_{\text {new }}=\left[\sum_{n=1}^{N} \boldsymbol{x}_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]^{-1}=\mathbf{X}^{\top} \Omega\left(\Omega^{\top} \Omega\right)^{-1}
$$

Using EM for (efficiently) solving standard PCA

- Let's see what happens if the noise variance σ^{2} goes to 0
- Let's first look at the E step

$$
\mathbb{E}\left[\boldsymbol{z}_{n}\right]=\left(\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}=\left(\mathbf{W}^{\top} \mathbf{W}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}
$$

(no need to compute $\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]$ since it will simply be equal to $\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}$)

- Let's now look at the M step

$$
\mathbf{w}_{\text {new }}=\left[\sum_{n=1}^{N} x_{n} \mathbb{E}\left[z_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[z_{n}\right] \mathbb{E}\left[z_{n}\right]^{\top}\right]^{-1}=\mathbf{x}^{\top} \Omega\left(\Omega^{\top} \Omega\right)^{-1}
$$

where $\boldsymbol{\Omega}=\mathbb{E}[\mathbf{Z}]$ is an $N \times K$ matrix with row n equal to $\mathbb{E}\left[\boldsymbol{z}_{n}\right]$

Using EM for (efficiently) solving standard PCA

- Let's see what happens if the noise variance σ^{2} goes to 0
- Let's first look at the E step

$$
\mathbb{E}\left[\boldsymbol{z}_{n}\right]=\left(\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}=\left(\mathbf{W}^{\top} \mathbf{W}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}
$$

(no need to compute $\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]$ since it will simply be equal to $\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}$)

- Let's now look at the M step

$$
\mathbf{w}_{\text {new }}=\left[\sum_{n=1}^{N} x_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]^{-1}=\mathbf{x}^{\top} \Omega\left(\Omega^{\top} \Omega\right)^{-1}
$$

where $\Omega=\mathbb{E}[\mathbf{Z}]$ is an $N \times K$ matrix with row n equal to $\mathbb{E}\left[\boldsymbol{z}_{n}\right]$

- Note that M step is equivalent to finding \mathbf{W} that minimizes the recon. error

$$
\mathbf{W}_{\text {new }}=\arg \min _{\mathbf{W}}\|\mathbf{X}-\mathbb{E}[\mathbf{Z}] \mathbf{W}\|^{2}=\arg \min _{\mathbf{W}}\|\mathbf{X}-\boldsymbol{\Omega} \mathbf{W}\|^{2}
$$

Using EM for (efficiently) solving standard PCA

- Let's see what happens if the noise variance σ^{2} goes to 0
- Let's first look at the E step

$$
\mathbb{E}\left[\boldsymbol{z}_{n}\right]=\left(\mathbf{W}^{\top} \mathbf{W}+\sigma^{2} \mathbf{I}_{K}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}=\left(\mathbf{W}^{\top} \mathbf{W}\right)^{-1} \mathbf{W}^{\top} \boldsymbol{x}_{n}
$$

(no need to compute $\mathbb{E}\left[\boldsymbol{z}_{n} \boldsymbol{z}_{n}^{\top}\right]$ since it will simply be equal to $\mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}$)

- Let's now look at the M step

$$
\mathbf{w}_{\text {new }}=\left[\sum_{n=1}^{N} x_{n} \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]\left[\sum_{n=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{n}\right] \mathbb{E}\left[\boldsymbol{z}_{n}\right]^{\top}\right]^{-1}=\mathbf{x}^{\top} \Omega\left(\Omega^{\top} \Omega\right)^{-1}
$$

where $\boldsymbol{\Omega}=\mathbb{E}[\mathbf{Z}]$ is an $N \times K$ matrix with row n equal to $\mathbb{E}\left[\boldsymbol{z}_{n}\right]$

- Note that M step is equivalent to finding \mathbf{W} that minimizes the recon. error

$$
\mathbf{W}_{\text {new }}=\arg \min _{\mathbf{W}}\|\mathbf{X}-\mathbb{E}[\mathbf{Z}] \mathbf{W}\|^{2}=\arg \min _{\mathbf{W}}\|\mathbf{X}-\boldsymbol{\Omega} \mathbf{W}\|^{2}
$$

- Thus EM can also be used to efficiently solve the standard non-probabilistic PCA without doing eigendecomposition

Identifiability

- Note that $p\left(\boldsymbol{x}_{n}\right)=\mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)$

Identifiability

- Note that $p\left(\boldsymbol{x}_{n}\right)=\mathcal{N}\left(\mathbf{0}, \mathbf{W W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)$
- If we replace \mathbf{W} by $\tilde{\mathbf{W}}=\mathbf{W} \mathbf{R}$ for some orthogonal rotation matrix \mathbf{R} then

$$
\begin{aligned}
p\left(\boldsymbol{x}_{n}\right) & =\mathcal{N}\left(\mathbf{0}, \tilde{\mathbf{W}} \tilde{\mathbf{W}}^{\top}+\sigma^{2} \mathbf{I}_{D}\right) \\
& =\mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{R R}^{\top} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right) \\
& =\mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)
\end{aligned}
$$

Identifiability

- Note that $p\left(\boldsymbol{x}_{n}\right)=\mathcal{N}\left(\mathbf{0}, \mathbf{W W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)$
- If we replace \mathbf{W} by $\tilde{\mathbf{W}}=\mathbf{W} \mathbf{R}$ for some orthogonal rotation matrix \mathbf{R} then

$$
\begin{aligned}
p\left(\boldsymbol{x}_{n}\right) & =\mathcal{N}\left(\mathbf{0}, \tilde{\mathbf{W}} \tilde{\mathbf{W}}^{\top}+\sigma^{2} \mathbf{I}_{D}\right) \\
& =\mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{R R}^{\top} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right) \\
& =\mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)
\end{aligned}
$$

- Thus PPCA doesn't give a unique solution (for every \mathbf{W}, there is another $\tilde{\mathbf{W}}=\mathbf{W} \boldsymbol{R}$ that gives the same solution)

Identifiability

- Note that $p\left(\boldsymbol{x}_{n}\right)=\mathcal{N}\left(\mathbf{0}, \mathbf{W W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)$
- If we replace \mathbf{W} by $\tilde{\mathbf{W}}=\mathbf{W} \mathbf{R}$ for some orthogonal rotation matrix \mathbf{R} then

$$
\begin{aligned}
p\left(\boldsymbol{x}_{n}\right) & =\mathcal{N}\left(\mathbf{0}, \tilde{\mathbf{W}} \tilde{\mathbf{W}}^{\top}+\sigma^{2} \mathbf{I}_{D}\right) \\
& =\mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{R R}^{\top} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right) \\
& =\mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)
\end{aligned}
$$

- Thus PPCA doesn't give a unique solution (for every \mathbf{W}, there is another $\tilde{\mathbf{W}}=\mathbf{W} \boldsymbol{R}$ that gives the same solution)
- Thus the PPCA model is not uniquely identifiable

Identifiability

- Note that $p\left(\boldsymbol{x}_{n}\right)=\mathcal{N}\left(\mathbf{0}, \mathbf{W W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)$
- If we replace \mathbf{W} by $\tilde{\mathbf{W}}=\mathbf{W} \mathbf{R}$ for some orthogonal rotation matrix \mathbf{R} then

$$
\begin{aligned}
p\left(\boldsymbol{x}_{n}\right) & =\mathcal{N}\left(\mathbf{0}, \tilde{\mathbf{W}} \tilde{\mathbf{W}}^{\top}+\sigma^{2} \mathbf{I}_{D}\right) \\
& =\mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{R R}^{\top} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right) \\
& =\mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)
\end{aligned}
$$

- Thus PPCA doesn't give a unique solution (for every \mathbf{W}, there is another $\tilde{\mathbf{W}}=\mathbf{W} \mathbf{R}$ that gives the same solution)
- Thus the PPCA model is not uniquely identifiable
- Usually this is not a problem, unless we want to very strictly interpret W

Identifiability

- Note that $p\left(\boldsymbol{x}_{n}\right)=\mathcal{N}\left(\mathbf{0}, \mathbf{W W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)$
- If we replace \mathbf{W} by $\tilde{\mathbf{W}}=\mathbf{W} \mathbf{R}$ for some orthogonal rotation matrix \mathbf{R} then

$$
\begin{aligned}
p\left(\boldsymbol{x}_{n}\right) & =\mathcal{N}\left(\mathbf{0}, \tilde{\mathbf{W}} \tilde{\mathbf{W}}^{\top}+\sigma^{2} \mathbf{I}_{D}\right) \\
& =\mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{R R}^{\top} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right) \\
& =\mathcal{N}\left(\mathbf{0}, \mathbf{W} \mathbf{W}^{\top}+\sigma^{2} \mathbf{I}_{D}\right)
\end{aligned}
$$

- Thus PPCA doesn't give a unique solution (for every \mathbf{W}, there is another $\tilde{\mathbf{W}}=\mathbf{W} \mathbf{R}$ that gives the same solution)
- Thus the PPCA model is not uniquely identifiable
- Usually this is not a problem, unless we want to very strictly interpret W
- To ensure identifiability, we can impose some more structure on \mathbf{W}, e.g., constrain it to be a lower-triangular or sparse matrix

Some Concluding Thoughts

- Discussed the basic idea of generative models for doing unsupervised learning

Some Concluding Thoughts

- Discussed the basic idea of generative models for doing unsupervised learning
- Looked at a way (EM) to perform parameter estimation in such models
- EM is a general framework for parameter estimation in latent variable models

Some Concluding Thoughts

- Discussed the basic idea of generative models for doing unsupervised learning
- Looked at a way (EM) to perform parameter estimation in such models
- EM is a general framework for parameter estimation in latent variable models
- Looked at two types of unsupervised learning problems

Some Concluding Thoughts

- Discussed the basic idea of generative models for doing unsupervised learning
- Looked at a way (EM) to perform parameter estimation in such models
- EM is a general framework for parameter estimation in latent variable models
- Looked at two types of unsupervised learning problems
- Mixture models: Clustering

Some Concluding Thoughts

- Discussed the basic idea of generative models for doing unsupervised learning
- Looked at a way (EM) to perform parameter estimation in such models
- EM is a general framework for parameter estimation in latent variable models
- Looked at two types of unsupervised learning problems
- Mixture models: Clustering
- Latent factor models: Dimensionality reduction

Some Concluding Thoughts

- Discussed the basic idea of generative models for doing unsupervised learning
- Looked at a way (EM) to perform parameter estimation in such models
- EM is a general framework for parameter estimation in latent variable models
- Looked at two types of unsupervised learning problems
- Mixture models: Clustering
- Latent factor models: Dimensionality reduction
- Both these models can also be used for estimating the prob. density $p(x)$

Some Concluding Thoughts

- Discussed the basic idea of generative models for doing unsupervised learning
- Looked at a way (EM) to perform parameter estimation in such models
- EM is a general framework for parameter estimation in latent variable models
- Looked at two types of unsupervised learning problems
- Mixture models: Clustering
- Latent factor models: Dimensionality reduction
- Both these models can also be used for estimating the prob. density $p(x)$
- More sophisticated models are usually built on these basic principles

Some Concluding Thoughts

- Discussed the basic idea of generative models for doing unsupervised learning
- Looked at a way (EM) to perform parameter estimation in such models
- EM is a general framework for parameter estimation in latent variable models
- Looked at two types of unsupervised learning problems
- Mixture models: Clustering
- Latent factor models: Dimensionality reduction
- Both these models can also be used for estimating the prob. density $p(x)$
- More sophisticated models are usually built on these basic principles
- E.g., Hidden Markov Models and Kalman Filters can be seen as generalization of mixture models and Gaussian latent factor models, respectively, for sequential data (z_{n} correspond to the "state" of \boldsymbol{x}_{n})

Some Concluding Thoughts

- Discussed the basic idea of generative models for doing unsupervised learning
- Looked at a way (EM) to perform parameter estimation in such models
- EM is a general framework for parameter estimation in latent variable models
- Looked at two types of unsupervised learning problems
- Mixture models: Clustering
- Latent factor models: Dimensionality reduction
- Both these models can also be used for estimating the prob. density $p(x)$
- More sophisticated models are usually built on these basic principles
- E.g., Hidden Markov Models and Kalman Filters can be seen as generalization of mixture models and Gaussian latent factor models, respectively, for sequential data (z_{n} correspond to the "state" of \boldsymbol{x}_{n})
- We will look at these and other related models (e.g., LSTM) when talking about learning from seqential data

[^0]: \dagger Probabilistic Principal Component Analysis (Tipping and Bishop, 1999)

