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Recap: GMM

The generative story for each xn, n = 1, 2, . . . ,N

First choose one of the K mixture components as

zn ∼ Multinomial(zn|π) (from the prior p(z) over z)

Suppose zn = k. Now generate xn from the k-th Gaussian as

xn ∼ N (xn|µk ,Σk) (from the data distr. p(x |z))
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Recap: Learning GMM

Initialize the parameters Θ = {πk ,µk ,Σk}Kk=1 randomly, or using K -means

Iterate until convergence (e.g., when log p(x |Θ) ceases to increase)

Given Θ, compute each expectation znk (post. prob. of znk = 1), ∀n, k

γnk = E[znk ] ∝ πkN (xn|µk ,Σk ) (and re-normalize s.t.
K∑

k=1

γnk = 1)

Given γnk = E[znk ], and Nk =
∑N

n=1 γnk , update Θ as

µk =
1

Nk

N∑
n=1

γnkxn

Σk =
1

Nk

N∑
n=1

γnk (xn − µk )(xn − µk )>

πk =
Nk

N

(This algorithm is an instance of the more general Expectation Maximization (EM) algorithm which we
will look at today )
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Expectation Maximization (EM)
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Parameter Estimation with Latent Variables

Consider a generative model with joint distr. p(X,Z|Θ) =
∏N

n=1 p(xn, zn)

Observed data: X = {xn}Nn=1

Latent variables: Z = {zn}Nn=1. All the model parameters: Θ

Goal: Estimate the model parameters Θ via MLE (or MAP)

Θ̂ = arg max
Θ

log p(X|Θ) = arg max
Θ

log
∑

Z

p(X,Z|Θ) (when Z is discrete)

= arg max
Θ

log

∫
Z

p(X,Z|Θ)dZ (when Z is continuous)

Doing MLE in such models can be difficult because of the log-sum/integral

In general, can’t do usual MLE/MAP to get closed form solution for Θ

A reason: Even if p(X,Z|Θ) is in exponential family, p(X|Θ) in general isn’t

Note: Exp. famil dist. are easy to work with when doing MLE/MAP on them (note that log exp()
would give simple expressions; easy to work with)
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Exponential Family

An exponential family distribution is defined as

p(x ; θ) = h(x)eη(θ)T (x)−A(θ)

θ is called the parameter of the family

h(x), η(θ), T (x), and A(θ) are known functions

p(.) depends on x only through T (x)

T (x) is called the sufficient statistics: summarizes the entire p(x ; θ)

Exponential family is the only family for which conjugate priors exist (often also in the
exponential family)

Many other nice properties (especially useful in Bayesian inference)

Many well-known distribution (Bernoulli, Binomial, categorical, beta, gamma, Gaussian, etc.) are
exponential family distributions

https://en.wikipedia.org/wiki/Exponential_family
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Parameter Estimation with Latent Variables

Assume Z is known to us (somehow)

Now do MLE on the joint p.d.f. log p(X,Z|Θ) instead of log p(X|Θ)

.. actually MLE on the expected log p(X,Z|Θ), since Z is random

Assume that MLE of E[log p(X,Z|Θ)] is easy to solve (e.g., will be the case if p(Z) and p(X|Z) are in
exponential family) than solving MLE of log p(X|Θ)

Two questions to consider here:

How do we come up with our “guess” of Z?

Given current estimate of Θ = Θold , guess Z using the posterior dist. of Z

p(Z|Θold ,X) ∝ p(Z)p(X|Z)

(but why this dist.? we will see shortly)

Is MLE on E[log p(X,Z|Θ)] equivalent to MLE on log p(X|Θ)?

(We will see that) E[log p(X,Z|Θ)] is a tight lower-bound on log p(X|Θ)

Maximizing this lower-bound iteratively will also improve log p(X|Θ)
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Justification

The incomplete data log lik. can be written as a sum of two terms

log p(X|Θ) = L(q,Θ) + KL(q||pz )

where q is some distr. on Z, pz = p(Z|X,Θ) is the posterior over Z, and

L(q,Θ) =
∑

Z

q(Z) log

{
p(X,Z|Θ)

q(Z)

}

KL(q||pz ) = −
∑

Z

q(Z) log

{
p(Z|X,Θ)

q(Z)

}

(to verify, use log p(X,Z|Θ) = log p(Z|X,Θ) + log p(X|Θ) in the expression of L(q,Θ))

Since KL(q||pz) ≥ 0, L(q,Θ) is a lower-bound on log p(X|Θ) for any q

Picture courtesy: PRML (Bishop, 2006)

Machine Learning (CS771A) Expectation Maximization (EM) Algorithm and Generative Models for Dim. Red. 8



Justification

The incomplete data log lik. can be written as a sum of two terms

log p(X|Θ) = L(q,Θ) + KL(q||pz )

where q is some distr. on Z, pz = p(Z|X,Θ) is the posterior over Z, and

L(q,Θ) =
∑

Z

q(Z) log

{
p(X,Z|Θ)

q(Z)

}

KL(q||pz ) = −
∑

Z

q(Z) log

{
p(Z|X,Θ)

q(Z)

}

(to verify, use log p(X,Z|Θ) = log p(Z|X,Θ) + log p(X|Θ) in the expression of L(q,Θ))

Since KL(q||pz) ≥ 0, L(q,Θ) is a lower-bound on log p(X|Θ) for any q

Picture courtesy: PRML (Bishop, 2006)

Machine Learning (CS771A) Expectation Maximization (EM) Algorithm and Generative Models for Dim. Red. 8



Justification (contd.)

Recall log p(X|Θ) = L(q,Θ) + KL(q||pz). Consider the following scheme:

With Θ fixed to Θold , maximize the “functional” L(q,Θold) w.r.t. q

q̂ = arg max
q
L(q,Θold)

which is equivalent to making KL(q||pz) = 0 or setting q̂ = p(Z|X,Θold)

(This step makes L(q̂,Θold) = log p(X|Θold); see next slide)

With q̂ fixed at p(Z|X,Θold), maximize L(q̂,Θ) w.r.t. Θ, where

L(q̂,Θ) =
∑

Z

p(Z|X,Θold ) log p(X,Z|Θ)−
∑

Z

p(Z|X,Θold ) log p(Z|X,Θold )

︸ ︷︷ ︸
constant w.r.t. Θ

= Q(Θ,Θold ) + const

Θnew = arg max
Θ
Q(Θ,Θold ) (where Q(Θ,Θold ) = E[log p(X,Z|Θ)])

(This step ensures that log p(X|Θnew ) ≥ log p(X|Θold); see next slide)
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Justification (contd.)

Step 1: Set q = p(Z|X,Θ), KL(q||pz) becomes 0, L(q,Θold) increases and becomes equal to
log p(X|Θold)

Step 2: Θnew makes L(q,Θnew ) go further up, makes KL(q||pz) > 0 again because q 6= p(Z|X,Θnew )
and thus ensures that log p(X|Θnew ) ≥ log p(X|Θold)

These two steps never decrease log p(X|Θ). Thus it’s a good way of doing MLE

Picture courtesy: PRML (Bishop, 2006)
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An Alternate Justification

Consider the ‘incomplete” data log likelihood

log p(X|Θ) = log
∑

Z

p(X,Z|Θ)

= log
∑

Z

q(Z)
p(X,Z|Θ)

q(Z)
(where q(Z) is some dist.)

≥
∑

Z

q(Z) log
p(X,Z|Θ)

q(Z)
(concave f , Jensen’s Ineq.: f (

∑
λixi ) ≥

∑
λi f (xi ))

log p(X|Θ) ≥
∑

Z

q(Z) log p(X,Z|Θ)−
∑

Z

q(Z) log q(Z)

︸ ︷︷ ︸
doesn’t depend on Θ

=
∑

Z

q(Z) log p(X,Z|Θ) + const.

If we set q(Z) = p(Z|X,Θ), the above inequality becomes equality∑
Z

q(Z) log
p(X,Z|Θ)

q(Z)
=

∑
Z

p(Z|X,Θ) log �
���p(Z|X,Θ)p(X|Θ)

����p(Z|X,Θ)
=

∑
Z

p(Z|X,Θ) log p(X|Θ)

= log p(X|Θ)
∑

Z

p(Z|X,Θ) = log p(X|Θ)

Thus for q(Z) = p(Z|X,Θ), we have

log p(X|Θ) =
∑

Z

p(Z|X,Θ) log p(X,Z|Θ) + const. = E[log p(X,Z|Θ)] + const.

Thus log p(X|Θ) is tightly lower-bounded by E[log p(X,Z|Θ)] which EM maximizes
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The Expectation Maximization (EM) Algorithm

Initialize the parameters: Θold . Then alternate between these steps:

E (Expectation) step:

Compute the posterior p(Z|X,Θold) over latent variables Z using Θold

Compute the expected complete data log-likelihood w.r.t. this posterior

Q(Θ,Θold ) = E
p(Z|X,Θold )

[log p(X,Z|Θ)] =
∑

Z

p(Z|X,Θold ) log p(X,Z|Θ)

M (Maximization) step:
Maximize the expected complete data log-likelihood w.r.t. Θ

Θnew = arg max
Θ
Q(Θ,Θold) (if doing MLE)

Θnew = arg max
Θ
{Q(Θ,Θold) + log p(Θ)} (if doing MAP)

If the log-likelihood or the parameter values not converged then set Θold = Θnew and go to the E
step.

The algorithm converges to a local maxima of p(X|Θ) (as we saw)
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If the log-likelihood or the parameter values not converged then set Θold = Θnew and go to the E
step.

The algorithm converges to a local maxima of p(X|Θ) (as we saw)
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EM: A View in the Parameter Space

E-step: Update of q makes the L(q,Θ) curve touch the log p(X|Θ) curve

M-step gives the maxima Θnew of L(q,Θ)

Next E-step readjusts L(q,Θ) curve (green) to meet log p(X|Θ) curve again

This continues until a local maxima of log p(X|Θ) is reached
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EM: Some Comments

A general framework for parameter estimation in latent variable models

Very widely used in problems with “missing data”, e.g., missing features, or missing labels
(semi-supervised learning)

“Missing” parts can be treated as latent variables z and estimated using EM

More advanced probabilistic inference algorithms are based on similar ideas

E.g., variational Bayesian inference

Very easy to extend to online learning setting and gives SGD like algorithms (will post a reading on
“Online EM” on the class webpage)

Note: The E and M steps may not always be possible to perform exactly (approximate inference
methods may be needed in such cases)
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Generative Models for
Dimensionality Reduction
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Generative Model for Dimensionality Reduction

Assume the following generative model for each xn ∈ RD

First draw a latent variable (latent factors or latent features) zn ∈ RK as

zn ∼ N (z |0, IK )

Now draw xn by transforming zn as xn = Wzn + εn, where W is a D × K matrix, K � D and
Gaussian noise εn ∼ N (0, σ2ID). Equivalent to saying

xn ∼ N (x |Wzn, σ
2ID)

This defines a probabilistic PCA (PPCA) generative model

When Gaussian noise has diag. instead of spherical covar: Factor Analysis

Given observations X = {xn}Nn=1, we want to learn params Θ = {W, σ2} and latent variables
Z = {zn}Nn=1. EM gives a nice and efficient way of doing this.
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Generative Model for Dimensionality Reduction

The model for each observation xn xn = Wzn + εn
Note: We’ll assume data to be centered, otherwise xn = µ + Wzn + εn

Zooming in at the relationship between each xn and each zn

A directed graphical model linking zn and xn via “edge weights” W

The D × K matrix W is also called the factor loading matrix

Can think of each column of W as a basis (but not mutually orthogonal)

W can be used to interpret the relationship of b/w the K latent features and D observed features of
each observation xn
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Some Nice Aspects about PPCA/FA

Can also be seen as modeling data using a low-rank Gaussian

p(xn) = N (xn|0,WW> + σ2ID)

PPCA reduces to PCA as the noise variance σ2 tends to zero

Can use EM to estimate the model parameters (which can be more efficient than standard PCA
based on eigen-decomposition)

Gaussian assumption of xn and zn can be removed to model other data types

Can extend this basic model to dynamic settings, e.g., by changing the prior

p(zn) = N (zn|zn−1, IK )

Can model data using a mixture of PPCA or mixture of FA models
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Next Class

Talk in more detail about PPCA, Factor Analysis, and extensions

EM algorithm for parameter estimation in these models

Finish off the discussion of generative models and unsupervised learning and move on to “Assorted
Topics”
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