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Generative Models

A probabilistic way to think about the data generation process

Idea: First generate a random latent variable z from a prior distr. p(z |φ) and then generate x
conditioned on z from the data distr. p(x |z , θ)

Some exceptions to this general view/definition of a generative model:

Not all generative models have latent variables (e.g., for each observation, the other observations may
play the role of latent variables)

The z to x map may be a deterministic fn. (e.g., a neural or deep neural net)

We will focus on probabilistic generative models with latent variables
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Generative Models for Clustering
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Gaussian Mixture Model (GMM)

A generative model for data clustering

Data assumed generated from a mixture of K Gaussians

Let 0 ≤ πk ≤ 1 denote the “mixing weight” of the k-th Gaussian. It means:

πk is the fraction of points generated from the k-th Gaussian

πk = p(zn = k) is the prior prob. of xn belonging to the k-th Gaussian

Let π = (π1, π2, . . . , πK ) denote the vector of mixing wts of K Gaussians. This is a probability

vector and sums to 1, i.e.,
∑K

k=1 πk = 1

Notation zn = k is equivalent to a size K one-hot vector zn

zn = [0 0 . . . 1 0 0]︸ ︷︷ ︸
all zeros except the k-th bit, i.e., znk = 1

Note: The prior p(z |π) on each zn is a multinomial, i.e., p(zn|π) =
∏K

k=1 π
znk
k
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GMM: The Generative Story

The generative story for each xn, n = 1, 2, . . . ,N

First choose one of the K mixture components as

zn ∼ Multinomial(zn|π) (from the prior p(z) over z)

Suppose zn = k. Now generate xn from the k-th Gaussian as

xn ∼ N (xn|µk ,Σk) (from the data distr. p(x |z))
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Multivariate Gaussian Distribution

Multivariate Gaussian in D dimensions

p(x |µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x − µ)>Σ−1(x − µ)

)

Given N i.i.d. observations {xn}Nn=1 from this Gaussian

MLE for the D × 1 mean µ ∈ RD

µ̂ =
1

N

N∑
n=1

xn

MLE for the D × D p.s.d. covariance matrix Σ

Σ̂ =
1

N

N∑
n=1

(xn − µ̂)(xn − µ̂)>

Note: The “trace trick” simplifies the derivative calculations

x>Σ−1x︸ ︷︷ ︸
a scalar

= trace(x>Σ−1x) = trace(Σ−1xx>)
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Learning GMM

Let’s do MLE for estimating GMM parameters Θ = {πk ,µk ,Σk}Kk=1

We basically have to estimate K multivariate Gaussians with wts π1, . . . , πK

The conditional p.d.f. of a data point x if it comes from Gaussian k

p(x|z = k) = N (x|µk ,Σk )

Since z is NOT known, we need to look at the marginal p.d.f. of x

p(x) =
∑

z

p(x, z) =
K∑

k=1

p(x, z = k) =
K∑

k=1

p(z = k)p(x|z = k) =
K∑

k=1

πkN (x|µk ,Σk )

Note: Here p(x) means p(x |Θ) where Θ = {πk ,µk ,Σk}Kk=1

To learn the GMM parameters Θ, we have to do MLE on p(x)

In general, it is not an easy problem due to the difficult form of p(x) (for “why”, see the next slide)
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Learning GMM: The Difficulty

Given N observations x1, . . . , xN , the log-likelihood will be

L = log
N∏

n=1

p(xn) =
N∑

n=1

log p(xn) =
N∑

n=1

log
K∑

k=1

πkN (xn|µk ,Σk )︸ ︷︷ ︸
params get coupled!

Due to the coupling of parameters, MLE by simply taking derivatives of L and setting to zero
won’t give a closed form solution of Θ = {πk ,µk ,Σk}Kk=1

Gradient based iterative methods can be used

However, we will use Expectation Maximization (EM) - a more general way of solving such problems
(i.e., parameter estimation with latent variables)

Note: For problems where zn is continuous or comes from a combinatorially large space (e.g., it’s a
binary vector), doing MLE will be even harder!

L =
N∑

n=1

log

∫
zn

p(xn|zn)p(zn)dzn︸ ︷︷ ︸
Ouch! Intractable integral!!!

In such cases, something like EM becomes even more important
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(i.e., parameter estimation with latent variables)

Note: For problems where zn is continuous or comes from a combinatorially large space (e.g., it’s a
binary vector), doing MLE will be even harder!
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Learning GMM by Making Guesses!

MLE for GMM will be simplified if we “knew” the zn for each xn

Reason: If zn is known, the summation over zn isn’t required

N∑
n=1

log

�
��A
AA

K∑
k=1

πkN (xn|µk ,Σk )

With zn “known”, we can try doing MLE on p(xn, zn), instead of on p(xn)

p(xn, zn) is known as “complete data likelihood” (zn makes xn “complete”)

p(xn) is known as “incomplete data likelihood”

Since we don’t know the “true” zn, we will have to rely on a “guess” for zn

This guess for zn will be based on the current values of params Θ

Can do MLE on p(xn, zn) to re-estimate Θ using these guesses, and repeat

A more formal view of this iterative procedure is given by the Expectation Maximization (EM)
algorithm (next lecture)
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Learning GMM

The complete data log-likelihood over the N obs.

N∑
n=1

log p(xn, zn) =
N∑

n=1

log p(xn|zn)p(zn) =
N∑

n=1

log
K∏

k=1

[p(xn|zn = k)p(zn = k)]znk︸ ︷︷ ︸
(note that, for each n, only one znk will be 1)

The above gets further simplified to

N∑
n=1

K∑
k=1

znk log p(zn = k)p(xn|zn = k) =
N∑

n=1

K∑
k=1

znk [log πk + logN (xn|µk ,Σk)]

If we know value of each znk deterministically, we can plug these in and do MLE on the above
objective (which has a simple and separable structure)

What if we don’t have a deterministic guess for znk?

In such cases, we can use the posterior expectations of the znk ’s (which are basically posterior
probabilities of cluster assignments of points to clusters)
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Learning GMM: Cluster Assignment Probabilities

Posterior expectations E[znk ] can be computed using current estimates of Θ

E[znk ] = 0× p(znk = 0|xn) + 1× p(znk = 1|xn)

= p(znk = 1|xn)

∝ p(znk = 1)p(xn|znk = 1) (Bayes Rule)

Thus E[znk ] ∝ πkN (xn|µk ,Σk ) (Posterior prob. of xn belonging to cluster k)

The final expression of E[znk ] makes intuitive sense

Note: We can finally normalize E[znk ] as E[znk ] = πkN (xn|µk ,Σk )∑K
`=1 π`N (xn|µ`,Σ`)

since
∑K

k=1 E[znk ] = 1

Given E[znk ], we can now define expected complete data log-lik.

L =
N∑

n=1

K∑
k=1

E[znk ][log πk + logN (xn|µk ,Σk)]

.. and do MLE for the parameters Θ using this as the objective function
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Learning GMM: Component Parameters

Given E[znk ] = γnk = πkN (xn|µk ,Σk )∑K
`=1 π`N (xn|µ`,Σ`)

, the expected complete data log-lik.

L =
N∑

n=1

K∑
k=1

γnk [log πk + logN (xn|µk ,Σk )]

Taking derivatives w.r.t. µk and Σk , ∀k = 1, . . . ,K

∂L
∂µk

=
∂

∂µk

N∑
n=1

γnk logN (xn|µk ,Σk ) = 0 (note: constants w.r.t. µk can be ignored)

∂L
∂Σk

=
∂

∂Σk

N∑
n=1

γnk logN (xn|µk ,Σk ) = 0 (note: constants w.r.t. Σk can be ignored)

For each k, it’s a “weighted” version of the MLE problem for the multivariate Gaussian
N (x |µk ,Σk), given observations {xn}Nn=1 with weights {γnk}Nn=1

Can also solve for πk likewise (subject to contraint
∑K

k=1 πk = 1)

Derivations are a bit tedious (but straightforward). I will provide a note.
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GMM Parameter Update Equations

The final expressions for updates of {πk ,µk ,Σk}Kk=1

µk =
1

Nk

N∑
n=1

γnkxn

Σk =
1

Nk

N∑
n=1

γnk(xn − µk)(xn − µk)>

πk =
Nk

N

Note: Nk =
∑N

n=1 γnk is the effective num. of pts. assigned to Gaussian k

Update equations make intuitive sense

Also note that each point xn contributes to each {πk ,µk ,Σk}Kk=1 but fractionally (based on the
values of γnk)
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The Full Algorithm for Learning GMM

Initialize the parameters Θ = {πk ,µk ,Σk}Kk=1 randomly, or using K -means

Iterate until convergence (e.g., when log p(x |Θ) ceases to increase)

Given Θ, compute each expectation znk (post. prob. of znk = 1), ∀n, k

γnk = E[znk ] ∝ πkN (xn|µk ,Σk ) (and re-normalize s.t.
K∑

k=1

γnk = 1)

Given γnk = E[znk ] and Nk =
∑N

n=1 γnk , update Θ = {πk ,µk ,Σk}Kk=1 as

µk =
1

Nk

N∑
n=1

γnkxn

Σk =
1

Nk

N∑
n=1

γnk (xn − µk )(xn − µk )
>

πk =
Nk

N

(It’s basically an Expectation Maximization (EM) algorithm for learning GMM. We will look at EM
more formally in the next class.)
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Illustration of GMM Clustering

Notice the “mixed” colored points in the overlapping regions in the final clustering

Also check out this demo of GMM: https://www.youtube.com/watch?v=B36fzChfyGU
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GMM vs K -means

For the GMM clustering (rightmost figure), the most probable cluster for each point has been labeled

Note that K -means, unlike GMM, tends to learn equi-sized clusters.

GMM with Σk = I and πk = 1/K , and soft assignments converted to hard assign. (setting the largest
prob. to 1, rest to 0), is equivalent to K -means.

Pic courtesy: https://en.wikipedia.org/wiki/Expectation-maximization_algorithm/
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Mixture Models: Some Extensions

Other types of component distributions can be used

Sequence data models, such as HMM, can also be seen as mixture models

p(zn|φ) = p(zn|zn−1) (Current cluster/state depends on previous)

Also used in supervised learning problems (mixture of experts)

For data xn, first choose one of K experts, and then use that expert’s predictive model for p(yn|xn)

Experts and points-to-experts assignments can be learned iteratively as in GMM

Can be used for performing generative classification (e.g., näıve Bayes)

p(yn = k|xn) ∝ p(yn = k)p(xn|yn = k) (cluster ids are the known classes)

p(y = k) and p(x |z = k) can be efficiently estimated using training data

Number of clusters (K ) in a mixture model can be learned from data using nonparametric Bayesian
methods (e.g., “infinite” mixture models)
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p(yn = k|xn) ∝ p(yn = k)p(xn|yn = k) (cluster ids are the known classes)

p(y = k) and p(x |z = k) can be efficiently estimated using training data

Number of clusters (K ) in a mixture model can be learned from data using nonparametric Bayesian
methods (e.g., “infinite” mixture models)

Machine Learning (CS771A) Generative Models for Clustering, GMM, and Intro to EM 17



Mixture Models: Some Extensions

Other types of component distributions can be used

Sequence data models, such as HMM, can also be seen as mixture models

p(zn|φ) = p(zn|zn−1) (Current cluster/state depends on previous)

Also used in supervised learning problems (mixture of experts)

For data xn, first choose one of K experts, and then use that expert’s predictive model for p(yn|xn)

Experts and points-to-experts assignments can be learned iteratively as in GMM

Can be used for performing generative classification (e.g., näıve Bayes)
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p(yn = k |xn) ∝ p(yn = k)p(xn|yn = k) (cluster ids are the known classes)

p(y = k) and p(x |z = k) can be efficiently estimated using training data

Number of clusters (K ) in a mixture model can be learned from data using nonparametric Bayesian
methods (e.g., “infinite” mixture models)

Machine Learning (CS771A) Generative Models for Clustering, GMM, and Intro to EM 17



Mixture Models: Some Extensions

Other types of component distributions can be used

Sequence data models, such as HMM, can also be seen as mixture models

p(zn|φ) = p(zn|zn−1) (Current cluster/state depends on previous)

Also used in supervised learning problems (mixture of experts)

For data xn, first choose one of K experts, and then use that expert’s predictive model for p(yn|xn)

Experts and points-to-experts assignments can be learned iteratively as in GMM

Can be used for performing generative classification (e.g., näıve Bayes)
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Next Class

The general Expectation Maximization (EM) algorithm

Generative models for dimensionality reduction

Factor Analysis and Probabilistic PCA (and extensions)

EM based parameter estimation for these models
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