Introduction to Generative Models

Piyush Rai

Machine Learning (CS771A)

Sept 23, 2016

• Defines a probabilistic way that could have "generated" the data

Defines a probabilistic way that could have "generated" the data

• Each observation x_n is assumed to be associated with a latent variable z_n (we can think of z_n as a compact/compressed "encoding" of x_n)

• Defines a probabilistic way that could have "generated" the data

- Each observation x_n is assumed to be associated with a latent variable z_n (we can think of z_n as a compact/compressed "encoding" of x_n)
- z_n is assumed to be a random variable with some prior distribution $p(z|\phi)$

Defines a probabilistic way that could have "generated" the data

- Each observation x_n is assumed to be associated with a latent variable z_n (we can think of z_n as a compact/compressed "encoding" of x_n)
- z_n is assumed to be a random variable with some prior distribution $p(z|\phi)$
- Assume another data distribution $p(x|z,\theta)$ that can "generate" x given z

• Defines a probabilistic way that could have "generated" the data

- Each observation x_n is assumed to be associated with a latent variable z_n (we can think of z_n as a compact/compressed "encoding" of x_n)
- z_n is assumed to be a random variable with some prior distribution $p(z|\phi)$
- Assume another data distribution $p(x|z,\theta)$ that can "generate" x given z
- What x and z "look like", and the form of the distributions $p(z|\phi), p(x|z,\theta)$ will be problem-specific (we will soon look at some examples)

• Defines a probabilistic way that could have "generated" the data

- Each observation x_n is assumed to be associated with a latent variable z_n (we can think of z_n as a compact/compressed "encoding" of x_n)
- z_n is assumed to be a random variable with some prior distribution $p(z|\phi)$
- Assume another data distribution $p(x|z,\theta)$ that can "generate" x given z
- What \mathbf{x} and \mathbf{z} "look like", and the form of the distributions $p(\mathbf{z}|\phi), p(\mathbf{x}|\mathbf{z}, \theta)$ will be problem-specific (we will soon look at some examples)
- ullet $\{ heta,\phi\}$ are the unknown model parameters

Defines a probabilistic way that could have "generated" the data

- Each observation x_n is assumed to be associated with a latent variable z_n (we can think of z_n as a compact/compressed "encoding" of x_n)
- z_n is assumed to be a random variable with some prior distribution $p(z|\phi)$
- Assume another data distribution $p(x|z,\theta)$ that can "generate" x given z
- What \mathbf{x} and \mathbf{z} "look like", and the form of the distributions $p(\mathbf{z}|\phi), p(\mathbf{x}|\mathbf{z}, \theta)$ will be problem-specific (we will soon look at some examples)
- $\bullet \ \{\theta,\phi\}$ are the unknown model parameters
- The goal will be to learn $\{\theta,\phi\}$ and ${m z}_n$'s, given the observed data

Machine Learning (CS771A) Introduction to Generative Models

• Generative models can be described using a "generative story" for the data

• The "generative story" of each observation x_n , $\forall n$

- The "generative story" of each observation x_n , $\forall n$
 - ullet First draw a random latent variable $oldsymbol{z}_n \sim p(oldsymbol{z}|\phi)$ from the prior on $oldsymbol{z}$

- The "generative story" of each observation x_n , $\forall n$
 - ullet First draw a random latent variable $oldsymbol{z}_n \sim p(oldsymbol{z}|\phi)$ from the prior on $oldsymbol{z}$
 - Given z_n , now generate x_n as $x_n \sim p(x|\theta,z_n)$ from the data distribution

- The "generative story" of each observation x_n , $\forall n$
 - ullet First draw a random latent variable $oldsymbol{z}_n \sim p(oldsymbol{z}|\phi)$ from the prior on $oldsymbol{z}$
 - Given z_n , now generate x_n as $x_n \sim p(x|\theta,z_n)$ from the data distribution
- Such models usually have two types of variables: "local" and "global"

- The "generative story" of each observation x_n , $\forall n$
 - First draw a random latent variable $z_n \sim p(z|\phi)$ from the prior on z
 - Given z_n , now generate x_n as $x_n \sim p(x|\theta,z_n)$ from the data distribution
- Such models usually have two types of variables: "local" and "global"
 - Each z_n is a "local" variable (specific to the data point x_n)

- The "generative story" of each observation x_n , $\forall n$
 - First draw a random latent variable $z_n \sim p(z|\phi)$ from the prior on z
 - Given z_n , now generate x_n as $x_n \sim p(x|\theta,z_n)$ from the data distribution
- Such models usually have two types of variables: "local" and "global"
 - Each z_n is a "local" variable (specific to the data point x_n)
 - \bullet (ϕ, θ) are global variables (shared by all the data points)

- The "generative story" of each observation x_n , $\forall n$
 - First draw a random latent variable $z_n \sim p(z|\phi)$ from the prior on z
 - Given z_n , now generate x_n as $x_n \sim p(x|\theta,z_n)$ from the data distribution
- Such models usually have two types of variables: "local" and "global"
 - Each z_n is a "local" variable (specific to the data point x_n)
 - ullet $(\phi, heta)$ are global variables (shared by all the data points)
 - We may be interested in learning the global vars, or local vars, or both

- The "generative story" of each observation x_n , $\forall n$
 - ullet First draw a random latent variable $oldsymbol{z}_n \sim p(oldsymbol{z}|\phi)$ from the prior on $oldsymbol{z}$
 - Given z_n , now generate x_n as $x_n \sim p(x|\theta,z_n)$ from the data distribution
- Such models usually have two types of variables: "local" and "global"
 - Each z_n is a "local" variable (specific to the data point x_n)
 - (ϕ, θ) are global variables (shared by all the data points)
 - We may be interested in learning the global vars, or local vars, or both
 - Usually it's possible to infer the global vars from local vars (or vice-versa)

• A proper, probabilistic way to think about the data generation process

• A proper, probabilistic way to think about the data generation process

• Allows modeling different types of data (real, binary, count, etc.) by changing the data distribution $p(\mathbf{x}|\theta,\mathbf{z})$ appropriately

• A proper, probabilistic way to think about the data generation process

- Allows modeling different types of data (real, binary, count, etc.) by changing the data distribution $p(\mathbf{x}|\theta,\mathbf{z})$ appropriately
- Can synthesize or "hallucinate" new data using an already learned model
 - Generate a "random" z from $p(z|\phi)$ and generate x from $p(x|\theta,z)$

A proper, probabilistic way to think about the data generation process

- Allows modeling different types of data (real, binary, count, etc.) by changing the data distribution $p(\mathbf{x}|\theta,\mathbf{z})$ appropriately
- Can synthesize or "hallucinate" new data using an already learned model
 - Generate a "random" z from $p(z|\phi)$ and generate x from $p(x|\theta,z)$

• Allows handling missing data (by treating missing data also as latent variable)

Some "Canonical" Generative Models

• Mixture model (used in clustering and probability density estimation)

Some "Canonical" Generative Models

• Mixture model (used in clustering and probability density estimation)

• Latent factor model (used in dimensionality reduction)

Some "Canonical" Generative Models

Mixture model (used in clustering and probability density estimation)

• Latent factor model (used in dimensionality reduction)

• Can even combine these (e.g., mixture of latent factor models)

• Assume data $\{x_n\}_{n=1}^N$ was generated from a mixture of K distributions

• Suppose these K distributions are $p(\pmb{x}|\theta_1),\ldots,p(\pmb{x}|\theta_K)$

- Suppose these K distributions are $p(x|\theta_1), \ldots, p(x|\theta_K)$
- Don't know which of the K distributions each x_n was generated from

- Suppose these K distributions are $p(x|\theta_1), \ldots, p(x|\theta_K)$
- Don't know which of the K distributions each x_n was generated from
- Consider the following generative story for each x_n , n = 1, 2, ..., N

- Suppose these K distributions are $p(x|\theta_1), \ldots, p(x|\theta_K)$
- Don't know which of the K distributions each x_n was generated from
- Consider the following generative story for each x_n , n = 1, 2, ..., N
 - First choose a mixture component $z_n \in \{1, 2, ..., K\}$ as $z_n \sim p(z|\phi)$

- Suppose these K distributions are $p(\mathbf{x}|\theta_1), \dots, p(\mathbf{x}|\theta_K)$
- Don't know which of the K distributions each x_n was generated from
- Consider the following generative story for each x_n , n = 1, 2, ..., N
 - First choose a mixture component $z_n \in \{1, 2, \dots, K\}$ as $z_n \sim p(z|\phi)$
 - ullet Now generate $oldsymbol{x}_n$ from the mixture component no. $oldsymbol{z}_n$ as $oldsymbol{x}_n \sim p(oldsymbol{x}| heta_{oldsymbol{z}_n})$

- Suppose these K distributions are $p(x|\theta_1), \ldots, p(x|\theta_K)$
- Don't know which of the K distributions each x_n was generated from
- Consider the following generative story for each x_n , n = 1, 2, ..., N
 - First choose a mixture component $z_n \in \{1, 2, ..., K\}$ as $z_n \sim p(z|\phi)$
 - Now generate x_n from the mixture component no. z_n as $x_n \sim p(x|\theta_{z_n})$
- ullet In a mixture model, z is discrete so $p(z|\phi)$ is a multinomial distribution

- Suppose these K distributions are $p(x|\theta_1), \ldots, p(x|\theta_K)$
- Don't know which of the K distributions each x_n was generated from
- Consider the following generative story for each x_n , n = 1, 2, ..., N
 - First choose a mixture component $z_n \in \{1, 2, \dots, K\}$ as $z_n \sim p(z|\phi)$
 - ullet Now generate $oldsymbol{x}_n$ from the mixture component no. $oldsymbol{z}_n$ as $oldsymbol{x}_n\sim p(oldsymbol{x}| heta_{oldsymbol{z}_n})$
- ullet In a mixture model, z is discrete so $p(z|\phi)$ is a multinomial distribution
- The data distribution $p(x|\theta_{z_n})$ depends on the type of data being modeled

- Suppose these K distributions are $p(x|\theta_1), \ldots, p(x|\theta_K)$
- Don't know which of the K distributions each x_n was generated from
- Consider the following generative story for each x_n , n = 1, 2, ..., N
 - First choose a mixture component $z_n \in \{1, 2, ..., K\}$ as $z_n \sim p(z|\phi)$
 - ullet Now generate $oldsymbol{x}_n$ from the mixture component no. $oldsymbol{z}_n$ as $oldsymbol{x}_n \sim p(oldsymbol{x}| heta_{oldsymbol{z}_n})$
- ullet In a mixture model, $oldsymbol{z}$ is discrete so $p(oldsymbol{z}|\phi)$ is a multinomial distribution
- The data distribution $p(x|\theta_{z_n})$ depends on the type of data being modeled
- Mixture models can model complex distributions as superposition of simpler distributions (can be used for density estimation, as well as clustering).

Example: Latent Factor Model

ullet Assume each D-dim $oldsymbol{x}_n$ generated from a K-dim latent factor $oldsymbol{z}_n$ ($K\ll D$)

Example: Latent Factor Model

• Assume each D-dim x_n generated from a K-dim latent factor z_n ($K \ll D$)

• Consider the following generative story for each x_n , n = 1, 2, ..., N

Example: Latent Factor Model

• Assume each *D*-dim x_n generated from a *K*-dim latent factor z_n ($K \ll D$)

- Consider the following generative story for each x_n , n = 1, 2, ..., N
 - ullet First generate $oldsymbol{z}_n$ from a K-dim distr. as $oldsymbol{z}_n \sim p(oldsymbol{z}|\phi)$

- Consider the following generative story for each x_n , n = 1, 2, ..., N
 - First generate z_n from a K-dim distr. as $z_n \sim p(z|\phi)$
 - Now generate x_n from a D-dim distr. as $x_n \sim p(x|z_n, \theta)$

- Consider the following generative story for each x_n , n = 1, 2, ..., N
 - First generate z_n from a K-dim distr. as $z_n \sim p(z|\phi)$
 - Now generate x_n from a D-dim distr. as $x_n \sim p(x|z_n, \theta)$
- When $p(\mathbf{z}|\phi)$ and $p(\mathbf{x}|\mathbf{z}_n, \theta)$ are Gaussian distributions, this basic generative model is called factor analysis or probabilistic PCA

- Consider the following generative story for each x_n , n = 1, 2, ..., N
 - First generate z_n from a K-dim distr. as $z_n \sim p(z|\phi)$
 - Now generate x_n from a D-dim distr. as $x_n \sim p(x|z_n, \theta)$
- When $p(z|\phi)$ and $p(x|z_n, \theta)$ are Gaussian distributions, this basic generative model is called factor analysis or probabilistic PCA
- The choice of $p(z|\phi)$ and $p(x|z_n,\theta)$ in general will be problem dependent

- Consider the following generative story for each x_n , n = 1, 2, ..., N
 - First generate z_n from a K-dim distr. as $z_n \sim p(z|\phi)$
 - Now generate x_n from a D-dim distr. as $x_n \sim p(x|z_n, \theta)$
- When $p(z|\phi)$ and $p(x|z_n, \theta)$ are Gaussian distributions, this basic generative model is called factor analysis or probabilistic PCA
- The choice of $p(z|\phi)$ and $p(x|z_n,\theta)$ in general will be problem dependent
- Many recent advances in generative models (e.g., deep generative models, generative adversarial networks, etc) are based on these basic principles

• We will look at, in more detail, some specific generative models

- We will look at, in more detail, some specific generative models
 - Gaussian mixture model (for clustering and density estimation)

- We will look at, in more detail, some specific generative models
 - Gaussian mixture model (for clustering and density estimation)
 - Factor Analysis and Probabilistic PCA (for dimensionality reduction)

- We will look at, in more detail, some specific generative models
 - Gaussian mixture model (for clustering and density estimation)
 - Factor Analysis and Probabilistic PCA (for dimensionality reduction)
- We will also look at how to do parameter estimation in such models

- We will look at, in more detail, some specific generative models
 - Gaussian mixture model (for clustering and density estimation)
 - Factor Analysis and Probabilistic PCA (for dimensionality reduction)
- We will also look at how to do parameter estimation in such models
 - One common approach is to perform MLE/MAP

- We will look at, in more detail, some specific generative models
 - Gaussian mixture model (for clustering and density estimation)
 - Factor Analysis and Probabilistic PCA (for dimensionality reduction)
- We will also look at how to do parameter estimation in such models
 - One common approach is to perform MLE/MAP
 - However, presence of latent variables z makes MLE/MAP hard

- We will look at, in more detail, some specific generative models
 - Gaussian mixture model (for clustering and density estimation)
 - Factor Analysis and Probabilistic PCA (for dimensionality reduction)
- We will also look at how to do parameter estimation in such models
 - One common approach is to perform MLE/MAP
 - However, presence of latent variables z makes MLE/MAP hard
 - Reason: Since z is a random variable, we must sum over all possible values of z when doing MLE/MAP for the model parameters θ,ϕ

$$\log p(x|\theta,\phi) = \log \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{z},\theta) p(\mathbf{z}|\phi) \quad \text{(Log can't go inside the summation!)}$$

- We will look at, in more detail, some specific generative models
 - Gaussian mixture model (for clustering and density estimation)
 - Factor Analysis and Probabilistic PCA (for dimensionality reduction)
- We will also look at how to do parameter estimation in such models
 - One common approach is to perform MLE/MAP
 - However, presence of latent variables z makes MLE/MAP hard
 - Reason: Since z is a random variable, we must sum over all possible values of z when doing MLE/MAP for the model parameters θ,ϕ

$$\log p(\mathbf{x}|\theta,\phi) = \log \sum_{\mathbf{z}} p(\mathbf{x}|\mathbf{z},\theta) p(\mathbf{z}|\phi) \quad \text{(Log can't go inside the summation!)}$$

• Expectation Maximization (EM) algorithm gives a way to solve the problem

- We will look at, in more detail, some specific generative models
 - Gaussian mixture model (for clustering and density estimation)
 - Factor Analysis and Probabilistic PCA (for dimensionality reduction)
- We will also look at how to do parameter estimation in such models
 - One common approach is to perform MLE/MAP
 - However, presence of latent variables z makes MLE/MAP hard
 - Reason: Since z is a random variable, we must sum over all possible values of z when doing MLE/MAP for the model parameters θ,ϕ

$$\log p(\mathbf{x}|\theta,\phi) = \log \sum_{\mathbf{z}} p(\mathbf{x}|\mathbf{z},\theta) p(\mathbf{z}|\phi) \quad \text{(Log can't go inside the summation!)}$$

- Expectation Maximization (EM) algorithm gives a way to solve the problem
- Basic idea in EM: Instead of summing over all possibilities of z, make a "guess" \tilde{z} and maximize $\log p(x,\tilde{z}|\theta,\phi)$ w.r.t. θ,ϕ to learn θ,ϕ . Use these values of θ,ϕ to refine your guess \tilde{z} and repeat until convergence.

ullet Assume the data is generated from a mixture of K Gaussians

• Each Gaussian represents a "cluster" in the data

ullet Assume the data is generated from a mixture of K Gaussians

- Each Gaussian represents a "cluster" in the data
- The distribution p(x) will be a weighted a mixture of K Gaussians

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^{K} p(\mathbf{z} = k) p(\mathbf{x}, \mathbf{z} = k) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

• Assume the data is generated from a mixture of K Gaussians

- Each Gaussian represents a "cluster" in the data
- The distribution p(x) will be a weighted a mixture of K Gaussians

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^K p(\mathbf{z} = k) p(\mathbf{x}, \mathbf{z} = k) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 where π_k 's are the **mixing weights**: $\sum_{k=1}^K \pi_k = 1, \pi_k \geq 0$ (intuitively, $\pi_k = p(\mathbf{z} = k)$ is the

fraction of data generated by the k-th distribution)

• Assume the data is generated from a mixture of K Gaussians

- Each Gaussian represents a "cluster" in the data
- The distribution p(x) will be a weighted a mixture of K Gaussians

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^{K} p(\mathbf{z} = k) p(\mathbf{x}, \mathbf{z} = k) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where π_k 's are the **mixing weights**: $\sum_{k=1}^K \pi_k = 1, \pi_k \ge 0$ (intuitively, $\pi_k = p(z = k)$ is the fraction of data generated by the k-th distribution)

• The goal is to learn the params $\{\mu_k, \Sigma_k\}_{k=1}^K$ of these K Gaussians, the mixing weights $\{\pi_k\}_{k=1}^K$, and/or the cluster assignment \mathbf{z}_n of each \mathbf{x}_n

(ロ) (日) (日) (日) (日)

• Assume the data is generated from a mixture of K Gaussians

- Each Gaussian represents a "cluster" in the data
- The distribution p(x) will be a weighted a mixture of K Gaussians

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^{K} p(\mathbf{z} = k) p(\mathbf{x}, \mathbf{z} = k) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where π_k 's are the **mixing weights**: $\sum_{k=1}^K \pi_k = 1, \pi_k \ge 0$ (intuitively, $\pi_k = p(z = k)$ is the fraction of data generated by the k-th distribution)

- The goal is to learn the params $\{\mu_k, \Sigma_k\}_{k=1}^K$ of these K Gaussians, the mixing weights $\{\pi_k\}_{k=1}^K$, and/or the cluster assignment \mathbf{z}_n of each \mathbf{x}_n
- GMM in many ways improves over K-means clustering

GMM Clustering: Pictorially

Some synthetically generated data (top-left) generated from a mixture of 3 overlapping Gaussians (top-right).

Notice the "mixed" colored points in the overlapping regions in the final clustering

Next Class

- GMM in more detail. Extensions of GMM.
- Parameter estimation in GMM
- The Expectation Maximization (EM) algorithm