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@ Defines a probabilistic way that could have “generated” the data
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p(z|P) p(x|z,0) .

@ Each observation x,, is assumed to be associated with a latent variable z,, (we can think of z, as a
compact/compressed “encoding” of x,)

@ z, is assumed to be a random variable with some prior distribution p(z|¢)
@ Assume another data distribution p(x|z,6) that can “generate” x given z

© What x and z “look like", and the form of the distributions p(z|®), p(x|z,8) will be
problem-specific (we will soon look at some examples)
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Generative Model

@ Defines a probabilistic way that could have “generated” the data

p(z|P) p(x|z,0) .

Each observation x,, is assumed to be associated with a latent variable z, (we can think of z, as a
compact/compressed “encoding” of x,)

@ z, is assumed to be a random variable with some prior distribution p(z|¢)
@ Assume another data distribution p(x|z,6) that can “generate” x given z

What x and z “look like", and the form of the distributions p(z|¢), p(x|z, 8) will be
problem-specific (we will soon look at some examples)

{6, ¢} are the unknown model parameters
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Generative Model

@ Defines a probabilistic way that could have “generated” the data

p(z|P) p(x|z,0) .

@ Each observation x,, is assumed to be associated with a latent variable z,, (we can think of z, as a
compact/compressed “encoding” of x,)

@ z, is assumed to be a random variable with some prior distribution p(z|¢)
@ Assume another data distribution p(x|z,6) that can “generate” x given z

© What x and z “look like", and the form of the distributions p(z|®), p(x|z,8) will be
problem-specific (we will soon look at some examples)

e {0, ¢} are the unknown model parameters

@ The goal will be to learn {6, ¢} and z,'s, given the observed data
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“Generative Story” of Data

@ Generative models can be described using a “generative story” for the data

p(z|P) p(X|Z,9) .
, 4
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@ The “generative story” of each observation x,, Vn
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@ The “generative story” of each observation x,, Vn

o First draw a random latent variable z, ~ p(z|¢) from the prior on z
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“Generative Story” of Data

@ Generative models can be described using a “generative story” for the data

p(z|P) p(X|Z,9) .
4

@ The “generative story” of each observation x,, Vn

o First draw a random latent variable z, ~ p(z|¢$) from the prior on z
o Given z,, now generate x, as x, ~ p(x|0, z,) from the data distribution
@ Such models usually have two types of variables: “local” and “global”

e Each z, is a “local” variable (specific to the data point x,)
o (¢,0) are global variables (shared by all the data points)

o We may be interested in learning the global vars, or local vars, or both
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“Generative Story” of Data

@ Generative models can be described using a “generative story” for the data

p(z|P) p(X|Z,9) .
4

@ The “generative story” of each observation x,, Vn

o First draw a random latent variable z, ~ p(z|¢) from the prior on z

o Given z,, now generate x, as x, ~ p(x|0, z,) from the data distribution

@ Such models usually have two types of variables: “local” and “global”

e Each z, is a “local” variable (specific to the data point x,)

(¢, 0) are global variables (shared by all the data points)
o We may be interested in learning the global vars, or local vars, or both
o Usually it's possible to infer the global vars from local vars (or vice-versa)
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Why Generative Models?

@ A proper, probabilistic way to think about the data generation process

p(z|P) p(x|z,0) .
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o Allows modeling different types of data (real, binary, count, etc.) by changing the data distribution
p(x|6, z) appropriately
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Why Generative Models?

@ A proper, probabilistic way to think about the data generation process

p(z|®) p(x|z,0) .
L/

o Allows modeling different types of data (real, binary, count, etc.) by changing the data distribution
p(x|6, z) appropriately

@ Can synthesize or “hallucinate” new data using an already learned model

o Generate a “random” z from p(z|¢) and generate x from p(x|0, z)

@ Allows handling missing data (by treating missing data also as latent variable)
Hallucinated faces pic courtesy: http://torch.ch/blog/2015/11/13/gan.html
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Some “Canonical”’” Generative Models

@ Mixture model (used in clustering and probability density estimation)
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o Latent factor model (used in dimensionality reduction)
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Some “Canonical”’” Generative Models

@ Mixture model (used in clustering and probability density estimation)

ol

o Latent factor model (used in dimensionality reduction)

@ Can even combine these (e.g., mixture of latent factor models)
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Example: Mixture Model

o Assume data {x,}N_; was generated from a mixture of K distributions
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Suppose these K distributions are p(x|61),. .., p(x|0k)

Don't know which of the K distributions each x, was generated from

Consider the following generative story for each x,, n=1,2,..., N

o First choose a mixture component z, € {1,2,... K} as z, ~ p(z|¢)

o Now generate x, from the mixture component no. z, as x, ~ p(x|6,)
@ In a mixture model, z is discrete so p(z|¢) is a multinomial distribution

@ The data distribution p(x|0,,) depends on the type of data being modeled
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Example: Mixture Model

o Assume data {x,}N_; was generated from a mixture of K distributions

@ Suppose these K distributions are p(x|61),. .., p(x|0k)
@ Don't know which of the K distributions each x,, was generated from
@ Consider the following generative story for each x,, n=1,2,..., N
o First choose a mixture component z, € {1,2,...,K} as z, ~ p(z|p)
o Now generate x, from the mixture component no. z, as x, ~ p(x|6,)
@ In a mixture model, z is discrete so p(z|¢) is a multinomial distribution
@ The data distribution p(x|0,,) depends on the type of data being modeled

@ Mixture models can model complex distributions as superposition of simpler distributions (can be
used for density estimation, as well as clustering).
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Example: Latent Factor Model

@ Assume each D-dim x,, generated from a K-dim latent factor z, (K < D)
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Example: Latent Factor Model

@ Assume each D-dim x,, generated from a K-dim latent factor z, (K < D)

z X
@ Consider the following generative story for each x,, n=1,2,..., N

o First generate z, from a K-dim distr. as z, ~ p(z|¢)

o Now generate x, from a D-dim distr. as x, ~ p(x|z,, )
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Example: Latent Factor Model

@ Assume each D-dim x,, generated from a K-dim latent factor z, (K < D)

@ Consider the following generative story for each x,, n=1,2,..., N
o First generate z, from a K-dim distr. as z, ~ p(z|¢)

o Now generate x, from a D-dim distr. as x, ~ p(x|z,, )

e When p(z|¢) and p(x|z,,6) are Gaussian distributions, this basic generative model is called factor
analysis or probabilistic PCA

Machine Learning (CS771A) Introduction to Generative Models



Example: Latent Factor Model

@ Assume each D-dim x,, generated from a K-dim latent factor z, (K < D)

@ Consider the following generative story for each x,, n=1,2,..., N
o First generate z, from a K-dim distr. as z, ~ p(z|¢)

o Now generate x, from a D-dim distr. as x, ~ p(x|z,, )

e When p(z|¢) and p(x|z,,6) are Gaussian distributions, this basic generative model is called factor
analysis or probabilistic PCA
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Example: Latent Factor Model

@ Assume each D-dim x,, generated from a K-dim latent factor z, (K < D)

@ Consider the following generative story for each x,, n=1,2,..., N
o First generate z, from a K-dim distr. as z, ~ p(z|¢)
o Now generate x, from a D-dim distr. as x, ~ p(x|z,, )

e When p(z|¢) and p(x|z,,6) are Gaussian distributions, this basic generative model is called factor
analysis or probabilistic PCA

@ The choice of p(z|¢) and p(x|z,,0) in general will be problem dependent

@ Many recent advances in generative models (e.g., deep generative models, generative adversarial
networks, etc) are based on these basic principles
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Going Forward..

@ We will look at, in more detail, some specific generative models
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@ We will look at, in more detail, some specific generative models

o Gaussian mixture model (for clustering and density estimation)

e Factor Analysis and Probabilistic PCA (for dimensionality reduction)
@ We will also look at how to do parameter estimation in such models

e One common approach is to perform MLE/MAP
e However, presence of latent variables z makes MLE/MAP hard

o Reason: Since z is a random variable, we must sum over all possible values of z when doing
MLE/MAP for the model parameters 0, ¢

log p(x]0, ¢) = Iogz p(x|z,0)p(z]¢) (Log can't go inside the summation!)
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e One common approach is to perform MLE/MAP
e However, presence of latent variables z makes MLE/MAP hard
o Reason: Since z is a random variable, we must sum over all possible values of z when doing

MLE/MAP for the model parameters 0, ¢

log p(x]0, ¢) = Iogz p(x|z,0)p(z]¢) (Log can't go inside the summation!)

Expectation Maximization (EM) algorithm gives a way to solve the problem
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Going Forward..

@ We will look at, in more detail, some specific generative models

Gaussian mixture model (for clustering and density estimation)

Factor Analysis and Probabilistic PCA (for dimensionality reduction)

@ We will also look at how to do parameter estimation in such models

One common approach is to perform MLE/MAP
However, presence of latent variables z makes MLE /MAP hard
Reason: Since z is a random variable, we must sum over all possible values of z when doing

MLE/MAP for the model parameters 0, ¢

log p(x]0, ¢) = Iogz p(x|z,0)p(z]¢) (Log can't go inside the summation!)

Expectation Maximization (EM) algorithm gives a way to solve the problem

Basic idea in EM: Instead of summing over all possibilities of z, make a “guess” Z and maximize
log p(x, 2|0, ¢) w.r.t. 6,¢ to learn 8, ¢. Use these values of 6, ¢ to refine your guess Z and repeat until
convergence.
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Gaussian Mixture Model (GMM)

@ Assume the data is generated from a mixture of K Gaussians
Ny, %)

@ Each Gaussian represents a “cluster” in the data
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Gaussian Mixture Model (GMM)

@ Assume the data is generated from a mixture of K Gaussians
Ny, %)

@ Each Gaussian represents a “cluster” in the data

@ The distribution p(x) will be a weighted a mixture of K Gaussians
K

K
p(x)=>_p(x,2) =>_ p(z)p(x|z) = > _ p(z = k)p(x,z = k) = > mN (x|, k)

z z k=1 k=1
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where 7,'s are the mixing weights: Z,’f:l 7k = 1,m, > 0 (intuitively, 7 = p(z = k) is the
fraction of data generated by the k-th distribution)
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@ Each Gaussian represents a “cluster” in the data

@ The distribution p(x) will be a weighted a mixture of K Gaussians
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K
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z z k=1 k=1
where 7,'s are the mixing weights: Z,’f:l 7k = 1,m, > 0 (intuitively, 7 = p(z = k) is the
fraction of data generated by the k-th distribution)

@ The goal is to learn the params {1, T }K_, of these K Gaussians, the mixing weights {mx}K_,,
and/or the cluster assignment z,, of each x,
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Gaussian Mixture Model (GMM)

@ Assume the data is generated from a mixture of K Gaussians
Ny, %)

@ Each Gaussian represents a “cluster” in the data

@ The distribution p(x) will be a weighted a mixture of K Gaussians
K

K
p(x)=>_p(x,2) =>_ p(z)p(x|z) = > _ p(z = k)p(x,z = k) = > mN (x|, k)

z z k=1 k=1
where 7,'s are the mixing weights: Z,’f:l 7k = 1,m, > 0 (intuitively, 7 = p(z = k) is the
fraction of data generated by the k-th distribution)

@ The goal is to learn the params {1, T }K_, of these K Gaussians, the mixing weights {mx}K_,,
and/or the cluster assignment z,, of each x,

@ GMM in many ways improves over K-means clustering
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GMM Clustering: Pictorially

Some synthetically generated data (top-left) generated from a mixture of 3 overlapping Gaussians
(top-right).

05

o 05 1
Samples from p(x

o 05 1 0 05 1
Samples labeled using Soft clustering learned
their true component by a Gaussian mixture model

Notice the “mixed” colored points in the overlapping regions in the final clustering
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Next Class

@ GMM in more detail. Extensions of GMM.
@ Parameter estimation in GMM

@ The Expectation Maximization (EM) algorithm

Machine Learning (CS771A) Introduction to Generative Models

11



