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Generative Model

Defines a probabilistic way that could have “generated” the data

Each observation xn is assumed to be associated with a latent variable zn (we can think of zn as a
compact/compressed “encoding” of xn)

zn is assumed to be a random variable with some prior distribution p(z |φ)

Assume another data distribution p(x |z , θ) that can “generate” x given z

What x and z “look like”, and the form of the distributions p(z |φ), p(x |z , θ) will be
problem-specific (we will soon look at some examples)

{θ, φ} are the unknown model parameters

The goal will be to learn {θ, φ} and zn’s, given the observed data

Machine Learning (CS771A) Introduction to Generative Models 2



Generative Model

Defines a probabilistic way that could have “generated” the data

Each observation xn is assumed to be associated with a latent variable zn (we can think of zn as a
compact/compressed “encoding” of xn)

zn is assumed to be a random variable with some prior distribution p(z |φ)

Assume another data distribution p(x |z , θ) that can “generate” x given z

What x and z “look like”, and the form of the distributions p(z |φ), p(x |z , θ) will be
problem-specific (we will soon look at some examples)

{θ, φ} are the unknown model parameters

The goal will be to learn {θ, φ} and zn’s, given the observed data

Machine Learning (CS771A) Introduction to Generative Models 2



Generative Model

Defines a probabilistic way that could have “generated” the data

Each observation xn is assumed to be associated with a latent variable zn (we can think of zn as a
compact/compressed “encoding” of xn)

zn is assumed to be a random variable with some prior distribution p(z |φ)

Assume another data distribution p(x |z , θ) that can “generate” x given z

What x and z “look like”, and the form of the distributions p(z |φ), p(x |z , θ) will be
problem-specific (we will soon look at some examples)

{θ, φ} are the unknown model parameters

The goal will be to learn {θ, φ} and zn’s, given the observed data

Machine Learning (CS771A) Introduction to Generative Models 2



Generative Model

Defines a probabilistic way that could have “generated” the data

Each observation xn is assumed to be associated with a latent variable zn (we can think of zn as a
compact/compressed “encoding” of xn)

zn is assumed to be a random variable with some prior distribution p(z |φ)

Assume another data distribution p(x |z , θ) that can “generate” x given z

What x and z “look like”, and the form of the distributions p(z |φ), p(x |z , θ) will be
problem-specific (we will soon look at some examples)

{θ, φ} are the unknown model parameters

The goal will be to learn {θ, φ} and zn’s, given the observed data

Machine Learning (CS771A) Introduction to Generative Models 2



Generative Model

Defines a probabilistic way that could have “generated” the data

Each observation xn is assumed to be associated with a latent variable zn (we can think of zn as a
compact/compressed “encoding” of xn)

zn is assumed to be a random variable with some prior distribution p(z |φ)

Assume another data distribution p(x |z , θ) that can “generate” x given z

What x and z “look like”, and the form of the distributions p(z |φ), p(x |z , θ) will be
problem-specific (we will soon look at some examples)

{θ, φ} are the unknown model parameters

The goal will be to learn {θ, φ} and zn’s, given the observed data

Machine Learning (CS771A) Introduction to Generative Models 2



Generative Model

Defines a probabilistic way that could have “generated” the data

Each observation xn is assumed to be associated with a latent variable zn (we can think of zn as a
compact/compressed “encoding” of xn)

zn is assumed to be a random variable with some prior distribution p(z |φ)

Assume another data distribution p(x |z , θ) that can “generate” x given z

What x and z “look like”, and the form of the distributions p(z |φ), p(x |z , θ) will be
problem-specific (we will soon look at some examples)

{θ, φ} are the unknown model parameters

The goal will be to learn {θ, φ} and zn’s, given the observed data

Machine Learning (CS771A) Introduction to Generative Models 2



Generative Model

Defines a probabilistic way that could have “generated” the data

Each observation xn is assumed to be associated with a latent variable zn (we can think of zn as a
compact/compressed “encoding” of xn)

zn is assumed to be a random variable with some prior distribution p(z |φ)

Assume another data distribution p(x |z , θ) that can “generate” x given z

What x and z “look like”, and the form of the distributions p(z |φ), p(x |z , θ) will be
problem-specific (we will soon look at some examples)

{θ, φ} are the unknown model parameters

The goal will be to learn {θ, φ} and zn’s, given the observed data

Machine Learning (CS771A) Introduction to Generative Models 2



“Generative Story” of Data

Generative models can be described using a “generative story” for the data

The “generative story” of each observation xn, ∀n

First draw a random latent variable zn ∼ p(z |φ) from the prior on z

Given zn, now generate xn as xn ∼ p(x |θ, zn) from the data distribution

Such models usually have two types of variables: “local” and “global”

Each zn is a “local” variable (specific to the data point xn)

(φ, θ) are global variables (shared by all the data points)

We may be interested in learning the global vars, or local vars, or both

Usually it’s possible to infer the global vars from local vars (or vice-versa)
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Why Generative Models?

A proper, probabilistic way to think about the data generation process

Allows modeling different types of data (real, binary, count, etc.) by changing the data distribution
p(x |θ, z) appropriately

Can synthesize or “hallucinate” new data using an already learned model

Generate a “random” z from p(z |φ) and generate x from p(x |θ, z)

Allows handling missing data (by treating missing data also as latent variable)
Hallucinated faces pic courtesy: http://torch.ch/blog/2015/11/13/gan.html
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Some “Canonical” Generative Models

Mixture model (used in clustering and probability density estimation)

Latent factor model (used in dimensionality reduction)

Can even combine these (e.g., mixture of latent factor models)
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Example: Mixture Model

Assume data {xn}Nn=1 was generated from a mixture of K distributions

Suppose these K distributions are p(x |θ1), . . . , p(x |θK )

Don’t know which of the K distributions each xn was generated from

Consider the following generative story for each xn, n = 1, 2, . . . ,N

First choose a mixture component zn ∈ {1, 2, . . . ,K} as zn ∼ p(z |φ)

Now generate xn from the mixture component no. zn as xn ∼ p(x |θzn )

In a mixture model, z is discrete so p(z |φ) is a multinomial distribution

The data distribution p(x |θzn) depends on the type of data being modeled

Mixture models can model complex distributions as superposition of simpler distributions (can be
used for density estimation, as well as clustering).
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Example: Latent Factor Model

Assume each D-dim xn generated from a K -dim latent factor zn (K � D)

Consider the following generative story for each xn, n = 1, 2, . . . ,N

First generate zn from a K -dim distr. as zn ∼ p(z |φ)

Now generate xn from a D-dim distr. as xn ∼ p(x |zn, θ)

When p(z |φ) and p(x |zn, θ) are Gaussian distributions, this basic generative model is called factor
analysis or probabilistic PCA

The choice of p(z |φ) and p(x |zn, θ) in general will be problem dependent

Many recent advances in generative models (e.g., deep generative models, generative adversarial
networks, etc) are based on these basic principles
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Going Forward..

We will look at, in more detail, some specific generative models

Gaussian mixture model (for clustering and density estimation)

Factor Analysis and Probabilistic PCA (for dimensionality reduction)

We will also look at how to do parameter estimation in such models

One common approach is to perform MLE/MAP

However, presence of latent variables z makes MLE/MAP hard

Reason: Since z is a random variable, we must sum over all possible values of z when doing
MLE/MAP for the model parameters θ, φ

log p(x |θ, φ) = log
∑

z

p(x |z , θ)p(z |φ) (Log can’t go inside the summation!)

Expectation Maximization (EM) algorithm gives a way to solve the problem

Basic idea in EM: Instead of summing over all possibilities of z , make a “guess” z̃ and maximize
log p(x , z̃ |θ, φ) w.r.t. θ, φ to learn θ, φ. Use these values of θ, φ to refine your guess z̃ and repeat until
convergence.
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However, presence of latent variables z makes MLE/MAP hard

Reason: Since z is a random variable, we must sum over all possible values of z when doing
MLE/MAP for the model parameters θ, φ

log p(x |θ, φ) = log
∑

z

p(x |z , θ)p(z |φ) (Log can’t go inside the summation!)

Expectation Maximization (EM) algorithm gives a way to solve the problem

Basic idea in EM: Instead of summing over all possibilities of z , make a “guess” z̃ and maximize
log p(x , z̃ |θ, φ) w.r.t. θ, φ to learn θ, φ. Use these values of θ, φ to refine your guess z̃ and repeat until
convergence.
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Gaussian Mixture Model (GMM)

Assume the data is generated from a mixture of K Gaussians

Each Gaussian represents a “cluster” in the data

The distribution p(x) will be a weighted a mixture of K Gaussians

p(x) =
∑

z

p(x, z) =
∑

z

p(z)p(x|z) =
K∑

k=1

p(z = k)p(x, z = k) =
K∑

k=1

πkN (x|µk ,Σk )

where πk ’s are the mixing weights:
∑K

k=1 πk = 1, πk ≥ 0 (intuitively, πk = p(z = k) is the
fraction of data generated by the k-th distribution)

The goal is to learn the params {µk ,Σk}Kk=1 of these K Gaussians, the mixing weights {πk}Kk=1,
and/or the cluster assignment zn of each xn

GMM in many ways improves over K -means clustering
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GMM Clustering: Pictorially

Some synthetically generated data (top-left) generated from a mixture of 3 overlapping Gaussians
(top-right).

Notice the “mixed” colored points in the overlapping regions in the final clustering
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Next Class

GMM in more detail. Extensions of GMM.

Parameter estimation in GMM

The Expectation Maximization (EM) algorithm
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